欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (6): 1573-1583.doi: 10.3724/SP.J.1006.2023.21028

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

甜荞FeSGT1基因克隆及抗旱功能解析

朱旭东1(), 杨兰锋1, 陈媛媛1, 侯泽豪1,2, 罗旖柔1, 熊泽浩1, 方正武1,*()   

  1. 1长江大学农学院/主要粮食作物产业化湖北省协同创新中心, 湖北荆州 434025
    2中国农业科学院作物科学研究所, 北京 100081
  • 收稿日期:2022-04-18 接受日期:2022-09-05 出版日期:2023-06-12 网络出版日期:2022-09-15
  • 通讯作者: *方正武, E-mail: fangzhengwu88@163.com
  • 作者简介:E-mail: 202071604@yangtzeu.edu.cn
  • 基金资助:
    国家自然科学基金项目(31671755)

Biological functional analysis of common buckwheat (Fagopyrum esculentum) FeSGT1 gene in enhancing drought stress resistance

ZHU Xu-Dong1(), YANG Lan-Feng1, CHEN Yuan-Yuan1, HOU Ze-Hao1,2, LUO Yi-Rou1, XIONG Ze-Hao1, FANG Zheng-Wu1,*()   

  1. 1College of Agriculture, Yangtze University/Hubei Center for Collaborative Innovation of Grain Industry, Jingzhou 434025, Hubei, China
    2Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2022-04-18 Accepted:2022-09-05 Published:2023-06-12 Published online:2022-09-15
  • Contact: *E-mail: fangzhengwu88@163.com
  • Supported by:
    National Natural Science Foundation of China(31671755)

摘要:

SGT1 (suppressor of the G2 allele of skp1)作为skp1-4的抑制因子, 在植物的非生物胁迫响应中具有重要作用。根据甜荞干旱胁迫下的转录组学和蛋白质组学分析, 我们克隆出一个与甜荞耐旱性状相关的候选基因FeSGT1。生物信息学分析表明FeSGT1包含一个1086 bp开放阅读框(ORF), 编码361个氨基酸, 具有3个(TPR、CS和SGS)保守结构域。进化分析表明, FeSGT1与藜麦CqSGT1 (XP_021726759.1)、甜菜BvSGT1 (XP_010671588.1)和菠菜SoSGT1 (XP_021839743.1)亲缘关系较近。亚细胞定位初步显示FeSGT1蛋白定位于细胞膜上。qRT-PCR分析发现FeSGT1在干旱胁迫24 h内表达呈现上调趋势。在盐、低温(4℃)胁迫和ABA处理下, FeSGT1基因表达在12 h达到高峰, 24 h后开始下降。在拟南芥中过表达FeSGT1基因发现, 在干旱和盐胁迫下, 转基因植株的发芽率、根长、鲜重和存活率显著提高, 丙二醛(MDA)和过氧化氢(H2O2)含量明显降低, 而过氧化氢酶(CAT)活性显著升高。过表达FeSGT1显著增强了转基因拟南芥植株的耐旱和耐盐能力, 为深入研究FeSGT1基因调控甜荞抗旱分子机制奠定了基础。

关键词: 甜荞, FeSGT1, 转基因拟南芥, 抗旱性

Abstract:

SGT1 (Suppressor of the G2 Allele of skP1) is an inhibitor of skp1-4, which plays an important role in the abiotic stress response of plants. Based on the early transcriptomics and proteinomics analyses of common buckwheat under drought stress, a FeSGT1 gene was screened and cloned, which contained a 1086 bp open reading frame encoding 361 amino acids and 3 domains including TPR, CS, and SGS. Homologous protein comparison showed that FeSGT1 was closely related to CqSGT1 (XP_021726759.1), BvSGT1 (XP_010671588.1), and SoSGT1 (XP_021839743.1). Besides, FeSGT1 gene encoded membrane localization protein. The relative expression levels revealed that FeSGT1 tended to be up-regulated within 24 hours of drought stress. The expression of FeSGT1 gene peaked at 12 hours and began to decline after 24 hours under salt, low temperature (4℃), and ABA treatments. Overexpression of FeSGT1 gene in transgenic Arabidopsis not only conferred drought and salt tolerance, but also significantly increased root length, fresh weight, and survival rate compared with the wild type (WT) plant, accompanied by the elevated activities of catalase (CAT), the lowered malonaldehyde (MDA) and H2O2 contents, thus allowing plants to better adapt to adverse environments. Our results provided information in the exploring of the molecular regulation mechanism responding to drought tolerance in common buckwheat.

Key words: Common buckwheat (Fagopyrum esculentum), FeSGT1, transgenic Arabidopsis, drought resistance

表1

引物序列汇总"

引物名称
Primer name
引物序列
Primer sequence (5′-3′)
用途
Purpose
FeSGT1-F ATGGCGTCCGATCTCGAAAAG ORF扩增
FeSGT1-R TTAGTATTCCCATTTCTTCACCTC Amplification of ORF
Actin-QF ACCTTGCTGGACGTGACCTTAC 荧光定量内参基因
Actin-QR CCATCAGGAAGCTCATAGTTC Reference gene of qRT-PCR
FeSGT1-QF ATCACGCTGAACTCTTCGCA 荧光定量PCR
FeSGT1-QR TGCGTTCATCACACTCACGA Quantitative real time-PCR
pH-FeSGT1-F CTCGAGATGGCCGGCCCTGATATTTTG 亚细胞定位
pH-FeSGT1-R CCTAGGATCCTCTTGGCTCTCATC Subcellular Localization
pBI-FeSGT1-F CTCGAGATGGCCGGCCCTGATATTTTG 转基因拟南芥
pBI-FeSGT1-R CCCGGGCTAATCCTCTTGGCTCTCATC Transgenic Arabidopsis
p121-SGT1-F TTTGGAGAGGACCTCGACCT 转基因拟南芥鉴定
p121-SGT1-R TTAGTATTCCCATTTCTTCACCTC Identification of transgenic Arabidopsis

图1

甜荞FeSGT1的鉴定和结构分析 A: FeSGT1与其他植物SGT1蛋白的多重比对; B: FeSGT1蛋白系统进化树分析; C: FeSGT1蛋白三级结构分析。"

图2

FeSGT1的亚细胞定位 FeSGT1蛋白在烟草叶片中的亚细胞定位。绿色表示GFP信号, 红色表示叶绿体自身荧光。"

图3

甜荞FeSGT1 基因在不同非生物胁迫下的表达分析 *、**分别表示在0.05和0.01概率水平差异显著。数据表示为平均值±SD (n = 3)"

图4

FeSGT1转基因拟南芥干旱处理表型分析 A: 干旱胁迫下WT和OE株系的种子萌发分析。B: 干旱胁迫下WT和OE株系的发芽率; 计算后5 d的发芽率。C: 干旱胁迫下WT和OE株系的根长测定。D: 干旱胁迫下WT和OE株系的总根长和鲜重; *表示在0.05概率水平差异显著。"

图5

FeSGT1基因的异位表达增强了转基因拟南芥的抗旱性 A: 干旱胁迫下3周龄WT和OE株系的表型分析。B: 复水7 d后WT和OE株系在干旱条件下的存活率。C~E: 对照和干旱处理下WT和OE株系的MDA (C) H2O2 (D)含量和CAT (E)活性。*、**分别表示在0.05 和0.01概率水平差异显著。"

图6

盐处理下FeSGT1转基因植株表型分析 A: 盐胁迫下WT和OE株系的种子萌发分析。B: 盐胁迫下WT和OE株系的发芽率; 计算后5 d的发芽率。C: 盐胁迫下WT和OE株系的根长测定。D: 盐胁迫下WT和OE株系的总根长和鲜重; *表示在0.05概率水平差异显著。"

图7

FeSGT1基因的异位表达增强了转基因拟南芥的耐盐性 A:盐胁迫下3周龄WT和OE株系的表型分析。B: WT和OE株系在盐胁迫下的存活率。C~E: 对照和盐处理下WT和OE株系的MDA (C)、H2O2 (D)含量和CAT (E)活性。*表示在0.05概率水平差异显著。"

[1] 万燕, 韦爽, 贾晓凤, 刘曼, 谭茂玲, 宋超, 向达兵, 赵钢. 荞麦抗旱性研究进展. 作物杂志, 2015, (4): 23-26.
Wan Y, Wei S, Jia X F, Liu M, Tan M L, Song C, Xiang D B, Zhao G. Advances in drought resistance of buckwheat. Crops, 2015, (4): 23-26. (in Chinese with English abstract)
[2] 冯佰利, 姚爱华, 高金峰, 高小丽, 柴岩. 中国荞麦优势区域布局与发展研究. 中国农学通报, 2005, 21(3): 375-377.
Feng B L, Yao A H, Gao J F, Gao X L, Cai Y. Study on regional distribution and development of buckwheat in China. Chin Agric Sci Bull, 2005, 21(3): 375-377. (in Chinese with English abstract)
doi: 10.11924/j.issn.1000-6850.0503375
[3] Fang Z W, Xu X Y, Gao J F, Wang P K, Liu Z X, Feng B L. Characterization of FeDREB1 promoter involved in cold- and drought-inducible expression from common buckwheat (Fagopyrum esculentum). Genet Mol Res, 2015, 14: 7990-8000.
doi: 10.4238/2015.July.17.7 pmid: 26214481
[4] Chen L H, Zhang B, Xu Z Q. Salt tolerance conferred by overexpression of Arabidopsis vacuolar Na(+)/H(+) antiporter gene AtNHX1 in common buckwheat (Fagopyrum esculentum). Transgenic Res, 2008, 17: 121-132.
doi: 10.1007/s11248-007-9085-z
[5] Płażek A, Hura K, Hura T, Słomka A, Hornyák M, Sychta K. Synthesis of heat-shock proteins HSP-70 and HSP-90 in flowers of common buckwheat (Fagopyrum esculentum) under thermal stress. Crop Past Sci, 2020, 71: 760-767.
doi: 10.1071/CP20011
[6] Ohta M, Schumaker K S, Zhu J K. Mechanisms Underlying Plant Tolerance to Abiotic Stresses. Boston, MA: Springer US, 2006. pp 360-385.
[7] Xiang X Y, Chen J, Xu W X, Qiu J R, Song L, Wang J T, Tang R, Chen D, Jiang C Z, Huang Z. Dehydration-induced WRKY transcriptional factor MfWRKY70 of Myrothamnus flabellifolia enhanced drought and salinity tolerance in Arabidopsis. Biomolecules, 2021, 11: 327.
doi: 10.3390/biom11020327
[8] Gong Z, Xiong L, Shi H, Yang S, Herrera-Estrella L R, Xu G, Chao D Y, Li J, Wang P Y, Qin F, Li J, Ding Y, Shi Y, Wang Y, Yang Y, Guo Y, Zhu J K. Plant abiotic stress response and nutrient use efficiency. Sci China: Life Sci, 2020, 63: 635-674.
doi: 10.1007/s11427-020-1683-x
[9] Schachtman D, Liu W. Molecular pieces to the puzzle of the interaction between potassium and sodium uptake in plants. Trends Plant Sci, 1999, 4: 281-287.
pmid: 10407444
[10] Zhu J K. Salt and drought stress signal transduction in plants. Annu Rev Plant Biol, 2002, 53: 247-273.
doi: 10.1146/arplant.2002.53.issue-1
[11] Forner M Á, Rodríguez J, Primo E, Iglesias D J. Hydraulic and chemical responses of citrus seedlings to drought and osmotic stress. J Plant Growth Regul, 2011, 30: 353-366.
doi: 10.1007/s00344-011-9197-9
[12] Patade V Y, Suprasanna P, Bapat V A. Effects of salt stress in relation to osmotic adjustment on sugarcane (Saccharum officinarum L.) callus cultures. J Plant Growth Regul, 2008, 55: 169-173.
[13] Shinozaki K, Yamaguchi-Shinozaki K. Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr Opin Plant Biol, 2000, 3: 217-223.
pmid: 10837265
[14] Azevedo C, Sadanandom A, Kitagawa K, Freialdenhoven A, Shirasu K, Schulze-Lefert P. The RAR1 interactor SGT1, an essential component of R gene-triggered disease resistance. Science, 2002, 295: 2073-2076.
doi: 10.1126/science.1067554
[15] Austin M J, Muskett P, Kahn K, Feys B J, Jones J D, Parker J E. Regulatory role of SGT1 in early R gene-mediated plant defenses. Science, 2002, 295: 2077-2080.
pmid: 11847308
[16] Huang G T, Ma S L, Bai L P, Zhang L, Ma H, Jia P, Liu J, Zhong M, Guo Z F. Signal transduction during cold, salt, and drought stresses in plants. Mol Biol Rep, 2011, 39: 969-987.
doi: 10.1007/s11033-011-0823-1
[17] Meldau S, Baldwin I T, Wu J. For security and stability: SGT1 in plant defense and development. Plant Signal Behav, 2011, 6: 1479-1482.
doi: 10.4161/psb.6.10.17708
[18] Zhang X C, Millet Y A, Cheng Z, Bush J, Ausubel F M. Jasmonate signaling in Arabidopsis involves SGT1b-HSP70-HSP90 chaperone complexes. Nat Plant, 2015, 1: 15049.
doi: 10.1038/nplants.2015.49
[19] Shirasu K. The HSP90-SGT1 chaperone complex for NLR immune sensors. Annu Rev Plant Biol, 2009, 60: 139-164.
doi: 10.1146/annurev.arplant.59.032607.092906 pmid: 19014346
[20] Muskett P, Parker J. Role of SGT1 in the regulation of plant R gene signaling. Microbes Infect, 2003, 5: 969-976.
pmid: 12941389
[21] Shanmugam A, Thamilarasan S K, Park J I, Jung M Y, Nou I S. Characterization and abiotic stress-responsive expression analysis of SGT1 genes in Brassica oleracea. Genome, 2016, 59: 243-251.
doi: 10.1139/gen-2015-0128 pmid: 26966988
[22] Li R, Yang R, Zheng W, Wu L, Zhang C, Zhang H. Melatonin promotes SGT1-involved signals to ameliorate drought stress adaption in rice. Int J Mol Sci, 2022, 23: 599.
doi: 10.3390/ijms23020599
[23] Fu D Q, Ghabrial S, Kachroo A. GmRAR1 and GmSGT1 are required for basal, R gene-mediated and systemic acquired resistance in soybean. Mol Plant-Microbe Interact, 2009, 22: 86-95.
doi: 10.1094/MPMI-22-1-0086
[24] Noël L D, Cagna G, Stuttmann J, Wirthmüller L, Betsuyaku S, Witte C P, Bhat R, Pochon N, Colby T, Parker J E. Interaction between SGT1 and cytosolic/nuclear HSC70 chaperones regulates Arabidopsis immune responses. Plant Cell, 2007, 19: 4061-4076.
doi: 10.1105/tpc.107.051896
[25] Bhattarai K K, Li Q, Liu Y, Dinesh-Kumar S P, Kaloshian I. The Mi-1-mediated pest resistance requires HSP90 and SGT1. Plant Physiol, 2007, 144: 312-323.
[26] Gray W M, Muskett P R, Chuang H W, Parker J E. Arabidopsis SGT1b is required for SCF(TIR1)-mediated auxin response. Plant Cell, 2003, 15: 1310-1319.
doi: 10.1105/tpc.010884
[27] Elsasser S, Gali R R, Schwickart M, Larsen C N, Leggett D S, Müller B, Feng M T, Tübing F, Dittmar G A, Finley D. Proteasome subunit Rpn1 binds ubiquitin-like protein domains. Nat Cell Biol, 2002, 4: 725-730.
pmid: 12198498
[28] Lee S S, Cho H S, Yoon G M, Ahn J W, Kim H H, Pai H S. Interaction of NtCDPK1 calcium-dependent protein kinase with NtRpn3 regulatory subunit of the 26S proteasome in Nicotiana tabacum: NtCDPK1 interacts with Rpn3 homolog. Plant J, 2003, 33: 825-840.
doi: 10.1046/j.1365-313X.2003.01672.x
[29] Hou Z H, Yin J L, Lu Y F, Song J H, Wang S P, Wei S D, Liu Z X, Zhang Y X, Fang Z W. Transcriptomic analysis reveals the temporal and spatial changes in physiological process and gene expression in common buckwheat (Fagopyrum esculentum Moench) grown under drought stress. Agronomy (Basel), 2019, 9: 569.
doi: 10.3390/agronomy9100569
[30] 侯泽豪, 卢奕霏, 孙坤坤, 王书平, 张迎新, 刘志雄, 方正武. 甜荞资源萌发期耐旱性鉴定体系建立与种质筛选. 干旱地区农业研究, 2021, 39(1): 95-102.
Hou Z H, Lu Y F, Sun K K, Wang S P, Zhang Y X, Liu Z X, Fang Z W. Establishment of buckwheat drought tolerance identification system at germination stage and screening of drought-tolerance germplasms. Agric Res Arid Areas, 2021, 39(1): 95-102. (in Chinese with English abstract)
[31] 蔡坤妍. 小麦抗病相关蛋白TaSGT1靶标鉴定及其功能分析. 西北农林科技大学硕士学位论文, 陕西咸阳, 2021.
Cai K Y. Identification and function analysis of target of wheat disease-resistance protein TaSGT1. MS Thesis of Northwest A&F University, Xianyang, Shaanxi, China, 2021. (in Chinese with English abstract)
[32] Cazalé A C, Clément M, Chiarenza S, Roncato M A, Pochon N, Creff A, Marin E, Leonhardt N, Noël L D. Altered expression of cytosolic/nuclear HSC70-1 molecular chaperone affects development and abiotic stress tolerance in Arabidopsis thaliana. J Exp Bot, 2009, 60: 2653-2664.
doi: 10.1093/jxb/erp109
[33] Mayor A, Martinon F, De Smedt T, Pétrilli V, Tschopp J. A crucial function of SGT1 and HSP90 in inflammasome activity links mammalian and plant innate immune responses. Nat Immunol, 2007, 8: 497-503.
doi: 10.1038/ni1459
[34] Yu Y, Yang S, Bian L, Yu K, Meng X, Zhang G, Xu W, Yao W, Guo D. Identification of C3H2C3-type ring E3 ubiquitin ligase in grapevine and characterization of drought resistance function of VyRCHC114. BMC Plant Biol, 2021, 21: 422.
doi: 10.1186/s12870-021-03162-8
[35] Kawamura Y, Takenaka S, Hase S, Kubota M, Ichinose Y, Kanayama Y, Nakaho K, Klessig D F, Takahashi H. Enhanced defense responses in Arabidopsis induced by the cell wall protein fractions from Pythium oligandrum require SGT1, RAR1, NPR1 and JAR1. Plant Cell Physiol, 2009, 50: 924-934.
doi: 10.1093/pcp/pcp044 pmid: 19304739
[36] Meldau S, Baldwin I T, Wu J. SGT1 regulates wounding- and herbivory-induced jasmonic acid accumulation and Nicotiana attenuata’s resistance to the specialist lepidopteran herbivore Manduca sexta. New Phytol, 2011, 189: 1143-1156.
doi: 10.1111/nph.2011.189.issue-4
[37] Wang Y, Mostafa S, Zeng W, Jin B. Function and mechanism of jasmonic acid in plant responses to abiotic and biotic stresses. Int J Mol Sci, 2021, 22: 8568.
doi: 10.3390/ijms22168568
[38] Tan X, Calderon-Villalobos L I, Sharon M, Zheng C, Robinson C V, Estelle M, Zheng N. Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature, 2007, 446: 640-645.
doi: 10.1038/nature05731
[39] Luna C M, Pastori G M, Driscoll S, Groten K, Bernard S, Foyer C H. Drought controls on H2O2 accumulation, catalase (CAT) activity and CAT gene expression in wheat. J Exp Bot, 2005, 56: 417-423.
doi: 10.1093/jxb/eri039
[1] 雷新慧, 冷佳俊, 陶金才, 万晨茜, 吴怡欣, 王家乐, 王鹏科, 冯佰利, 王孟, 高金锋. 叶面喷施亚硒酸钠对甜荞光合特性、产量及硒积累效应的影响[J]. 作物学报, 2023, 49(6): 1678-1689.
[2] 孟雨, 田文仲, 温鹏飞, 丁志强, 张学品, 贺利, 段剑钊, 刘万代, 郭天财, 冯伟. 基于不同发育阶段协同的小麦品种抗旱性综合评判[J]. 作物学报, 2023, 49(2): 570-582.
[3] 王云奇, 高福莉, 李傲, 郭同济, 戚留冉, 曾寰宇, 赵建云, 王笑鸽, 高国英, 杨佳鹏, 白金泽, 马亚欢, 梁月馨, 张睿. 小麦花后穗部温度变化规律及其与产量的关系[J]. 作物学报, 2022, 48(9): 2400-2408.
[4] 李佩婷, 赵振丽, 黄潮华, 黄国强, 徐良年, 邓祖湖, 张玉, 赵新旺. 基于转录组及WGCNA的甘蔗干旱响应调控网络分析[J]. 作物学报, 2022, 48(7): 1583-1600.
[5] 王兴荣, 李玥, 张彦军, 李永生, 汪军成, 徐银萍, 祁旭升. 青稞种质资源成株期抗旱性鉴定及抗旱指标筛选[J]. 作物学报, 2022, 48(5): 1279-1287.
[6] 张海燕, 解备涛, 姜常松, 冯向阳, 张巧, 董顺旭, 汪宝卿, 张立明, 秦桢, 段文学. 不同抗旱性甘薯品种叶片生理性状差异及抗旱指标筛选[J]. 作物学报, 2022, 48(2): 518-528.
[7] 韩贝, 王旭文, 李保奇, 余渝, 田琴, 杨细燕. 陆地棉种质资源抗旱性状的关联分析[J]. 作物学报, 2021, 47(3): 438-450.
[8] 徐银萍, 潘永东, 刘强德, 姚元虎, 贾延春, 任诚, 火克仓, 陈文庆, 赵锋, 包奇军, 张华瑜. 大麦种质资源成株期抗旱性鉴定及抗旱指标筛选[J]. 作物学报, 2020, 46(3): 448-461.
[9] 张海燕,解备涛,汪宝卿,董顺旭,段文学,张立明. 不同甘薯品种抗旱性评价及耐旱指标筛选[J]. 作物学报, 2019, 45(3): 419-430.
[10] 张笑笑,潘映红,任富莉,蒲伟军,王道平,李玉斌,陆平,李桂英,朱莉. 基于多重表型分析的准确评价高粱抗旱性方法的建立[J]. 作物学报, 2019, 45(11): 1735-1745.
[11] 李英双,胡丹,聂蛟,黄科慧,张玉珂,张园莉,佘恒志,方小梅,阮仁武,易泽林. 甜荞株高和茎粗的遗传分析[J]. 作物学报, 2018, 44(8): 1185-1195.
[12] 李龙,毛新国,王景一,昌小平,柳玉平,景蕊莲. 小麦种质资源抗旱性鉴定评价[J]. 作物学报, 2018, 44(7): 988-999.
[13] 王建伟,贺晓岚,李文旭,陈新宏. 小麦近缘属植物1-FFT基因的克隆及功能分析[J]. 作物学报, 2018, 44(6): 814-823.
[14] 吕品, 于海峰, 侯建华. 利用抗旱选择导入系定位向日葵产量性状QTL[J]. 作物学报, 2018, 44(03): 385-396.
[15] 汪灿,周棱波,张国兵,张立异,徐燕,高旭,姜讷,邵明波. 薏苡种质资源成株期抗旱性鉴定及抗旱指标筛选[J]. 作物学报, 2017, 43(09): 1381-1394.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .