欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (6): 1601-1615.doi: 10.3724/SP.J.1006.2023.24115

• 耕作栽培·生理生化 • 上一篇    下一篇

高产油菜品种稳产性形成机制

余新颖(), 王春云, 李大双, 王宗铠, 蒯婕, 汪波, 王晶, 徐正华, 周广生*()   

  1. 华中农业大学植物科学技术学院/农业农村部长江中游作物生理生态与耕作重点实验室, 湖北武汉 430070
  • 收稿日期:2022-05-10 接受日期:2022-09-05 出版日期:2023-06-12 网络出版日期:2022-09-16
  • 通讯作者: *周广生, E-mail: zhougs@mail.hzau.edu.cn
  • 作者简介:E-mail: 2075386202@qq.com
  • 基金资助:
    国家重点研发计划项目(2020YFD1000900);湖北现代农业产业技术体系项目和中央高校基本科研业务费专项基金项目(2662019PY076)

Formation mechanism of yield stability in high-yielding rapeseed varieties

YU Xin-Ying(), WANG Chun-Yun, LI Da-Shuang, WANG Zong-Kai, KUAI Jie, WANG Bo, WANG Jing, XU Zheng-Hua, ZHOU Guang-Sheng*()   

  1. College of Plant Science and Technology, Huazhong Agricultural University/Key Laboratory of Crop Ecophysiology and Farming System for the Middle Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan 430070, Hubei, China
  • Received:2022-05-10 Accepted:2022-09-05 Published:2023-06-12 Published online:2022-09-16
  • Contact: *E-mail: zhougs@mail.hzau.edu.cn
  • Supported by:
    National Key Research and Development Program of China(2020YFD1000900);Hubei Province Modern Agricultural Industry Technology System Project, and the Fundamental Research Funds for the Central Universities(2662019PY076)

摘要:

作物生产中, 稳产与高产同等重要。本试验以高产但稳产性存在差异的品种“湘杂油518”和“大地199”为材料, 分别在武汉和兰州进行播期、施氮量、种植密度的单因素田间试验, 测定农艺及生理指标、各处理籽粒产量, 计算其变异系数, 探究主要农艺性状与稳产性的关联度, 为油菜大面积丰产及良种选育提供理论依据。结果表明, (1) 播期、氮肥及密度显著影响油菜产量; 相同试点, 两品种的最高产量差异不显著, 但其在各处理间的稳产性差异明显; 本试验中, 大地199在不同播期、氮肥处理下产量变异系数均低于湘杂油518, 稳产性较强。(2) 与湘杂油518相比, 大地199各关键生育期的叶面积指数(leaf area index, LAI)、光能利用效率(light energy utilization efficiency, LUE)、地上部干物质累积量和花期根系形态等指标均较优, 且变异系数小, 是其高产且稳产性强的基础。(3) 灰色关联度分析发现, 各处理条件下, 油菜籽粒产量与群体角果数、花期地上部干重和平均根直径等指标关联度较大; 且产量变异系数与群体角果数、花期地上部干重和平均根直径变异系数极显著正相关。综上, 优化油菜群体角果数、花期地上部干重和平均根直径等指标, 可为油菜品种选育及大面积丰产提供理论支撑。

关键词: 油菜, 栽培措施, 高产, 稳产性

Abstract:

In crop production, yield stability is as important as high yield. To explore the relationship between main agronomic traits and yield stability and to provide a theoretical basis for large-scale high yield and improved variety breeding of rapeseed, a single factor field experiments of sowing date, nitrogen rate, and planting density were carried out in Wuhan and Lanzhou. The high yielding varieties [Xiangzayou 518 (XZY 518) and Dadi 199 (DD 199)] with different yield stability were used as the materials, the agronomic, physiological indices and the yield of each treatment were measured, and the variation coefficient of each index was calculated. The results showed that: (1) Sowing date, nitrogen rate, and plant density significantly affected the rapeseed yield. There was no significant difference in the maximum yield between two varieties, however there was a significant difference in the yield stability among these treatments. The yield variation coefficients of DD 199 were lower than that of XZY 518 with the strong stability. (2) Compared with XZY518, the indices of leaf area index (LAI), light energy utilization efficiency (LUE), aboveground dry matter accumulation, and root morphology at flowering stage of DD 199 were better, while the variation coefficient of were smaller, which was the basis of high and stable yield. (3) Grey correlation analysis showed that under each treatment, the yield of rapeseed was significantly positive correlated with the population pod number, aboveground dry weight, and average root diameter at flowering stage. In addition, the variation coefficient of population pod number, aboveground dry weight, and average root diameter at flowering stage were significantly positively correlated with the variation coefficient of yield. In conclusion, optimizing the indices such as population pod number, aboveground dry weight, and average root diameter at flowering stage can provide a theoretical support for breeding of rapeseed variety and achieving high yield at large-scale.

Key words: rapeseed, cultivated measures, high yield, yield stability

图1

不同生态区主要气候因子"

表1

各单因素处理水平及其他关键栽培参数"

处理
Treatment
试验点
Experimental site
参数及代号
Parameters and codes
其他栽培参数
Other cultivation parameters
播期
Sowing date
武汉
Wuhan
9/20 (S1) 10/5 (S2) 10/20 (S3) 氮肥: 240
Nitrogen: 240
密度: 45
Density: 45
兰州
Lanzhou
4/6 (S1) 4/13 (S2) 4/20 (S3) 氮肥: 240
Nitrogen: 240
密度: 45
Density: 45
氮肥
Nitrogen
武汉, 兰州Wuhan, Lanzhou 120 (N1) 240 (N2) 360 (N3) 播期:10/5, 4/13
Sowing date: 10/5, 4/13
密度: 45
Density: 45
密度
Density
武汉, 兰州Wuhan, Lanzhou 15 (D1) 45 (D3) 75 (D5) 播期: 10/5, 4/13
Sowing date: 10/5, 4/13
氮肥: 240
Nitrogen: 240

表2

两试验点不同处理从播种至各生育期时期指标测定天数"

处理
Treatment
2020-2021武汉 2020-2021 Wuhan 2021 兰州 2021 Lanzhou
苗期
Seedling stage
薹期
Bolting stage
花期
Flowering stage
角果期
Maturity stage
苗期
Seedling stage
薹期
Bolting stage
花期
Flowering stage
角果期Maturity stage
S1 76 135 166 212 53 65 87 116
S2 76 135 166 212 53 65 87 116
S3 99 138 170 215 58 69 91 118
N1 76 135 166 212 53 65 87 116
N2 76 135 166 212 53 65 87 116
N3 76 135 166 212 53 65 87 116
D1 76 135 166 212 53 65 87 116
D2 76 135 166 212 53 65 87 116
D3 76 135 166 212 53 65 87 116

表3

关键栽培措施对油菜产量及其构成的影响"

栽培措施 Cultivation measures 品种Variety 处理Treatment 武汉 Wuhan (2020-2021) 兰州 Lanzhou (2021)
单株角果数Pods per plant 每角果粒数Seeds per pod 千粒重1000-seed
weight (g)
单株产量Yield per plant 成株率Survival
rate (%)
实际产量Actual yield
(kg hm-2)
理论产量Theoretical yield (kg hm-2) 单株角果数Pods per plant 每角果粒数Seeds per pod 千粒重1000-seed
weight (g)
单株产量Yield per plant 成株率Survival rate (%) 实际产量Actual yield
(kg hm-2)
理论产量Theoretical yield (kg hm-2)
播期Sowing date XZY518 S1 145.9 a 19.7 a 3.60 b 10.40 a 65.5 d 2843.6 a 3074.5 a 94.1 d 19.7 a 3.63 a 6.72 b 94.3 ab 2802.7 c 2850.2 c
S2 135.8 b 17.7 b 3.47 bc 8.32 c 80.3 b 2555.1 bc 2975.7 ab 127.4 b 20.4 a 3.49 bc 9.05 a 92.2 ab 3512.1 b 3665.5 b
S3 101.6 e 17.2 b 3.30 c 5.74 e 82.1 ab 2085.7 d 2122.5 c 92.8 d 18.1 b 3.30 d 5.56 c 86.7 c 2151.7 d 2246.7 d
CV1 (%) 14.84 5.91 4.00 23.41 9.75 12.52 15.69 15.29 4.86 3.83 20.47 3.51 19.69 19.90
DD199 S1 125.9 c 17.2 b 4.20 a 9.06 b 74.1 c 2674.7 b 3017.2 ab 129.6 b 19.5 a 3.60 ab 9.08 a 96.7 a 3451.8 b 3947.5 ab
S2 112.0 d 16.7 b 4.10 a 7.63 d 81.9 b 2503.6 c 2810.5 b 138.7 a 20.3 a 3.52 b 9.91 a 96.0 a 3814.3 a 4277.5 a
S3 92.0 f 16.4 b 3.97 a 5.92 e 87.1 a 2196.4 d 2320.5 c 113.0 c 19.1 ab 3.43 cd 7.41 b 91.2 bc 2975.7 c 3038.2 c
CV2 (%) 12.67 1.82 2.70 16.99 6.56 8.05 10.76 8.36 2.54 1.98 11.79 2.59 10.06 13.96
氮肥 Nitrogen XZY518 N1 96.3 c 17.6 b 3.63 b 6.15 e 88.0 b 2203.3 d 2433.8 c 93.5 e 18.3 d 3.60 a 6.15 d 94.7 a 2593.1 e 2667.3 e
N2 134.0 b 17.9 b 3.57 b 8.57 c 80.9 cd 2766.9 b 3122.8 b 130.9 c 19.9 bc 3.44 c 8.97 b 94.0 a 3789.9 c 3795.3 c
N3 158.5 a 20.3 a 3.50 b 11.20 a 73.7 d 3248.6 a 3708.3 a 159.1 b 21.8 a 3.35 d 11.60 a 86.0 b 4457.6 a 4492.9 b
CV1 (%) 19.72 6.63 1.93 23.93 7.19 15.59 16.87 21.04 7.24 3.01 25.05 4.65 21.35 20.60
DD199 N1 85.4 d 17.3 b 4.13 a 6.10 e 94.6 a 2384.5 c 2594.9 c 104.7 d 18.9 d 3.59 a 7.09 c 94.3 a 2852.9 d 2901.5 d
N2 105.9 c 17.5 b 4.07 a 7.55 d 89.0 b 2670.3 b 3023.4 b 135.9 c 19.1 cd 3.49 b 9.04 b 94.0 a 3633.4 c 3820.8 c
N3 136.3 b 18.3 b 4.03 a 10.10 b 81.7 c 3121.2 a 3694.9 a 172.6 a 20.2 b 3.42 c 11.90 a 86.8 b 4264.3 b 4814.1 a
CV2 (%) 19.16 2.59 1.04 20.73 5.94 11.13 14.58 20.16 3.01 1.94 21.31 3.68 16.11 20.31
密度 Density XZY518 D1 234.2 a 19.4 a 3.73 c 16.90 a 91.2 a 2004.0 c 2313.9 c 286.8 b 19.6 a 3.54 ab 19.90 b 98.0 a 2737.1 d 2823.3 d
D3 111.6 c 18.2 bc 3.60 d 7.34 c 79.8 b 2569.0 b 2627.8 b 153.2 c 18.7 b 3.45 b 9.87 c 90.9 b 4006.0 b 3951.0 b
D5 90.0 d 17.9 bc 3.53 d 5.65 d 59.2 c 2467.9 b 2506.1 bc 84.6 e 17.7 c 3.30 c 4.94 e 89.0 b 3203.2 c 3284.4 c
CV1 (%) 43.71 3.48 2.48 49.27 17.23 10.48 5.21 48.01 4.19 2.86 53.82 4.37 15.81 13.81
DD199 D1 173.9 b 19.0 ab 4.37 a 14.37 b 93.0 a 1932.3 c 2004.1 d 309.4 a 19.6 a 3.63 a 22.00 a 98.0 a 2818.5 d 3250.0 c
D3 93.3 d 18.4 b 4.27 ab 7.32 c 81.1 b 2526.8 b 2670.8 b 162.7 c 18.8 b 3.54 ab 10.80 c 97.0 a 4199.7 ab 4713.1 a
D5 74.9 e 17.8 c 4.23 b 5.66 d 77.4 b 3133.0 a 3283.1 a 113.2 d 18.1 bc 3.45 b 7.05 d 92.4 b 4468.9 a 4901.1 a
CV2 (%) 37.68 2.59 1.13 42.08 7.96 19.37 19.69 42.70 3.42 2.02 47.88 2.64 18.88 17.21
Total CV1(%) 31.11 5.54 3.20 37.84 12.38 14.79 16.92 43.72 6.30 3.33 46.93 4.08 21.74 20.56
Total CV2(%) 39.97 4.49 2.87 31.53 7.76 14.37 16.89 38.59 3.40 2.07 41.72 3.52 16.48 18.38

图2

关键栽培措施对油菜叶面积指数的影响 处理同表1。XZY 518为湘杂油 518, DD 199为大地199。SS、BS、FS、MS分别表示苗期、薹期、花期、角果期。*、**分别表示在0.05和0.01概率水平显著差异, NS表示差异不显著。"

表4

关键栽培措施下油菜各生育期叶面积指数的变异系数分析"

栽培措施
Cultural
measures
变异系数
Coefficient of
variations
武汉Wuhan (2020-2021) 兰州Lanzhou (2021)
苗期
SS
薹期
BS
花期
FS
苗期
SS
薹期
BS
花期
FS
播期Sowing date CV1 (%) 25.7 19.1 16.4 12.3 11.3 14.9
CV2 (%) 23.0 12.9 13.9 6.6 3.6 12.0
氮肥 Nitrogen CV1 (%) 38.2 38.7 37.6 19.7 20.4 24.1
CV2 (%) 25.3 24.6 30.2 13.1 12.9 12.8
密度 Density CV1 (%) 33.1 35.4 34.7 18.9 18.6 8.5
CV2 (%) 31.6 33.7 33.3 16.6 17.5 14.9
Total CV1 (%) 36.1 34.8 33.6 17.6 17.7 17.3
Total CV2 (%) 27.0 25.2 27.3 14.3 13.3 16.0

表5

栽培措施对油菜光能利用率的影响"

栽培措施 Cultivation Measures 品种
Variety
处理
Treatment
武汉Wuhan (2020-2021) 兰州Lanzhou (2021)
播种-
苗期
Sowing-
seedling
苗期-
薹期
Seedling-
bolting
薹期-
花期
Bolting-
flowering
花期-
角果期
Flowering-
maturity
全生
育期
Whole
growth
播种-
苗期
Sowing-
seedling
苗期-
薹期
Seedling-
bolting
薹期-
花期
Bolting-
flowering
花期-
角果期
Flowering-
maturity
全生
育期
Whole growth
播期
Sowing date
XZY
518
S1 0.77 a 0.78 a 2.83 a 5.25 a 2.26 a 0.44 b 0.53 bc 0.83 c 1.25 a 0.76 c
S2 0.72 b 0.18 cd 2.14 bc 2.78 b 1.44 b 0.58 a 0.78 a 2.22 ab 1.17 a 1.19 a
S3 0.22 f 0.12 d 1.24 d 1.65 d 0.98 e 0.29 c 0.42 c 1.47 bc 0.56 b 0.69 c
CV1 (%) 43.57 82.78 31.45 46.59 33.94 27.12 26.12 37.70 31.02 25.12
DD
199
S1 0.65 c 0.67 a 2.36 b 2.28 c 1.41 b 0.38 bc 0.56 abc 2.16 ab 0.61 b 0.93 b
S2 0.53 d 0.35 b 2.17 bc 2.12 c 1.24 c 0.35 bc 0.72 ab 2.87 a 0.88 ab 1.20 a
S3 0.29 e 0.34 bc 1.98 c 1.17 e 1.07 d 0.28 c 0.52 bc 1.39 c 0.45 b 0.66 c
CV2 (%) 30.45 33.81 7.15 26.39 11.19 12.45 14.40 28.24 27.44 23.70
氮肥
Nitrogen
XZY
518
N1 0.29 d 0.33 c 1.30 c 1.37 c 0.82 d 0.23 d 0.47 d 1.22 e 0.15 e 0.52 d
N2 0.58 b 0.42 bc 1.92 b 2.36 b 1.32 b 0.44 b 0.58 cd 1.80 c 0.58 cd 0.85 c
N3 0.81 a 0.50 ab 2.97 a 4.83 a 2.28 a 0.52 a 0.88 bc 2.35 a 0.84 b 1.15 b
CV1 (%) 37.99 26.67 33.41 50.99 41.12 30.83 26.93 25.78 54.37 30.63
栽培措施 Cultivation Measures 品种
Variety
处理
Treatment
武汉Wuhan (2020-2021) 兰州Lanzhou (2021)
播种-
苗期
Sowing-
seedling
苗期-
薹期
Seedling-
bolting
薹期-
花期
Bolting-
flowering
花期-
角果期
Flowering-
maturity
全生
育期
Whole
growth
播种-
苗期
Sowing-
seedling
苗期-
薹期
Seedling-
bolting
薹期-
花期
Bolting-
flowering
花期-
角果期
Flowering-
maturity
全生
育期
Whole growth
氮肥
Nitrogen
DD
199
N1 0.30 d 0.39 c 1.21 c 0.85 d 0.69 e 0.22 d 0.94 b 1.47 d 0.41 d 0.76 c
N2 0.40 c 0.48 ab 1.76 b 1.18 c 0.96 c 0.32 c 1.25 a 2.15 b 0.66 bc 1.10 b
N3 0.61 b 0.55 a 2.79 a 1.47 c 1.36 b 0.44 b 1.37 a 2.51 a 1.20 a 1.38 a
CV2 (%) 29.58 13.84 34.11 21.71 27.43 27.53 15.27 21.10 43.57 23.47
密度
Density
XZY
518
D1 0.31 f 0.14 d 1.30 de 1.68 cd 0.86 e 0.12 c 0.18 d 1.45 d 0.27 b 0.61 c
D3 0.86 a 0.55 b 2.93 a 2.77 a 1.78 a 0.29 a 0.45 c 2.81 a 1.08 c 1.22 a
D5 0.66 c 0.46 b 2.28 b 2.04 bc 1.36 c 0.21 b 0.25 d 2.75 ab 0.60 d 0.95 b
CV1 (%) 37.26 45.90 30.87 20.96 28.20 33.60 39.00 26.85 51.16 26.93
DD
199
D1 0.37 e 0.25 c 1.02 e 1.52 d 0.79 e 0.12 c 0.41 c 1.63 d 0.49 a 0.65 c
D3 0.50 d 0.53 b 1.56 cd 2.27 b 1.21 d 0.17 b 0.58 b 2.26 c 1.08 b 0.93 b
D5 0.77 b 0.66 a 1.72 c 3.04 a 1.55 b 0.19 b 0.76 a 2.56 b 1.50 cd 1.15 a
CV2 (%) 30.48 35.64 20.89 27.26 26.27 18.40 24.50 18.03 40.48 22.48
Total CV1 (%) 39.82 53.04 31.98 47.75 35.81 42.13 42.03 34.86 50.86 27.85
Total CV2 (%) 31.74 29.51 28.45 37.51 23.83 36.68 39.82 23.02 44.39 24.60

图3

关键栽培措施对油菜各生育时期干物累积量及根冠比的影响 处理同表1。XZY 518为湘杂油 518, DD 199为大地199。图中同一行不同字母表示在0.05概率水平差异显著, 差异显著性比较是在单因素的6个处理间进行的, 图中圆圈表示3个梯度间的变异系数。*和**表示在0.05和0.01概率水平显著差异, NS表示差异不显著。"

表6

关键栽培措施对花期油菜根系形态的影响"

栽培措施 Cultivation measures 品种Variety 处理
Treatment
武汉 Wuhan (2020-2021) 兰州 Lanzhou (2021)
总根长
Total root length (cm)
根表面积
Root surface area (cm2)
根体积Root volume
(cm3)
平均根直径Average root diameter (mm) 总根长
Total root length (cm)
根表面积
Root surface area (cm2)
根体积 Root volume
(cm3)
平均根直径Average root diameter
(mm)
播期
Sowing date
XZY518 S1 2332.5 a 1148.1 ab 165.1 ab 2.21 a 280.5 ab 249.3 bc 58.3 bc 1.53 c
S2 2069.1 b 724.2 c 92.9 bc 1.67 c 309.0 a 321.2 a 119.4 a 2.06 a
S3 802.6 d 389.6 d 39.3 c 1.10 f 179.2 d 217.0 c 44.2 c 1.08 e
CV1 (%) 38.50 41.17 52.01 27.41 21.74 16.59 44.13 25.79
DD199 S1 2334.7 a 1296.1 a 229.7 a 1.95 b 234.1 c 224.3 c 52.9 c 1.65 c
S2 2114.9 b 1077.7 d 167.6 ab 1.48 d 275.0 b 311.3 ab 81.0 b 1.89 b
S3 1339.1 c 788.9 c 139.3 b 1.33 e 229.4 c 237.6 c 42.0 c 1.30 d
CV2 (%) 22.13 19.70 21.11 16.66 8.32 14.85 28.02 14.96
氮肥
Nitrogen
XZY518 N1 1233.1 d 371.3 e 35.9 d 1.20 c 181.9 d 205.4 c 35.4 d 2.41 a
N2 1952.3 b 676.0 c 89.8 c 1.32 c 289.0 b 234.6 c 51.2 c 1.71 b
N3 2383.6 a 905.0 b 142.9 b 2.17 a 359.8 a 371.2 ab 82.1 a 0.94 d
CV1 (%) 25.56 33.59 48.79 27.61 26.41 26.73 34.49 35.78
DD199 N1 1487.1 c 535.6 d 79.4 c 1.20 c 205.7 cd 227.2 c 36.3 d 2.22 a
N2 1707.1 bc 753.8 c 118.9 b 1.67 b 240.0 c 319.0 b 68.0 b 1.69 b
N3 2371.2 a 1048.2 a 191.9 a 2.21 a 312.8 b 410.7 a 86.5 a 1.20 c
CV2 (%) 20.26 26.96 35.83 24.17 17.71 23.49 32.59 24.23
密度
Density
XZY518 D1 3772.5 a 1399.9 a 270.5 a 2.60 a 530.9 a 639.6 a 190.2 a 1.06 e
D3 1896.7 c 724.2 bc 124.2 b 1.53 b 309.0 c 266.1 cd 54.6 cd 1.45 d
D5 1088.3 d 433.3 cd 46.1 c 1.22 b 235.4 d 211.7 d 36.4 d 2.48 a
CV1 (%) 49.91 47.50 49.57 33.05 35.04 51.06 73.20 25.89
DD199 D1 2983.3 b 1346.6 a 255.8 a 2.66 a 460.1 b 521.4 b 157.4 b 1.13 e
D3 2602.0 b 950.0 b 135.0 b 1.63 b 285.0 c 331.1 c 81.0 c 1.60 c
D5 1506.9 c 347.7 d 54.8 c 1.25 b 219.6 d 223.1 d 44.3 d 1.94 b
CV2 (%) 26.47 46.59 42.51 32.22 31.57 34.39 49.99 21.27
Total CV1 (%) 42.77 43.97 63.44 30.28 33.69 43.13 64.03 33.32
Total CV2 (%) 26.22 34.63 40.84 26.76 26.87 30.68 48.42 20.98

表7

产量与各影响因子的灰色关联度分析"

评价项
Evaluation item
XZY518 DD199
关联度
Correlation
degree
排名
Ranking
关联度
Correlation
degree
排名
Ranking
千粒重1000-seed weight 0.844 7 0.777 10
群体角果数Population pod number 0.935 1 0.945 1
每角果粒数Seeds per pod 0.875 3 0.848 7
成株率Survival rate 0.810 13 0.808 9
总根长Total root length 0.571 19 0.496 19
根表面积Root surface area 0.699 17 0.592 18
根体积Root volume 0.768 15 0.656 16
平均根直径Average root diameter 0.853 6 0.888 3
苗期干重Dry weight at seedling stage 0.832 9 0.769 13
薹期干重Dry weight at bolting stage 0.816 11 0.740 14
花期干重Dry weight at flowering stage 0.907 2 0.891 2
成熟期干重Dry weight at maturity stage 0.832 8 0.832 8
苗期叶面积指数 LAI at seedling stage 0.815 12 0.769 12
薹期叶面积指数 LAI at bolting stage 0.861 4 0.862 4
花期叶面积指数LAI at flowering stage 0.859 5 0.856 5
播种-苗期光能利用效率 LUE at sowing-seedling stage 0.734 16 0.688 15
苗-薹期光能利用效率LUE at seedling-bolting stage 0.787 14 0.776 11
薹-花期光能利用效率LUE at bolting-flowering stage 0.824 10 0.855 6
花-角果期光能利用效率LUE at flowering-maturity stage 0.632 18 0.643 17

表8

产量与主要影响因子的相关性分析"

指标
Index
产量Yield
XZY518 DD199
群体角果数Population pod number 0.932** 0.968**
每角果粒数Seeds per pod 0.672** 0.688**
平均根直径Average root diameter 0.632** 0.775**
花期干重Dry weight at flowering stage 0.928** 0.906**
成熟期干重Dry weight at maturity stage 0.499* 0.518*
薹期叶面积指数 LAI at bolting stage 0.504* 0.689**
花期叶面积指数LAI at flowering stage 0.560* 0.696**
薹-花期光能利用效率LUE at bolting-flowering stage 0.639** 0.606**

表9

产量变异系数与主要影响因子变异系数的相关性分析"

指标
Index
产量Yield
XZY518 DD199
群体角果数Population pod number 0.952** 0.987**
每角果粒数Seeds per pod 0.587 0.968**
平均根直径Average root diameter 0.924** 0.865*
花期干重Dry weight at flowering stage 0.993** 0.927**
成熟期干重Dry weight at maturity stage 0.884* 0.420
薹期叶面积指数 LAI at bolting stage -0.530 0.552
花期叶面积指数LAI at flowering stage -0.289 0.303
薹-花期光能利用效率LUE at bolting-flowering stage 0.181 0.583
[1] 袁圆, 汪波, 周广生, 刘芳, 黄俊生, 蒯婕. 播期和种植密度对油菜产量和茎秆抗倒性的影响. 中国农业科学, 2021, 54: 1613-1626.
doi: 10.3864/j.issn.0578-1752.2021.08.004
Yuan Y, Wang B, Zhou G S, Liu F, Huang J S, Kuai J. Effects of different sowing dates and planting densities on the yield and stem lodging resistance of rapeseed. Sci Agric Sin, 2021, 54: 1613-1626. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2021.08.004
[2] 刘成, 冯中朝, 肖唐华, 马晓敏, 周广生, 黄凤洪, 李加纳, 王汉中. 我国油菜产业发展现状、潜力及对策. 中国油料作物学报, 2019, 41: 485-489.
Liu C, Feng Z C, Xiao T H, Ma X M, Zhou G S, Huang F H, Li J N, Wang H Z. Development, potential and adaptation of Chinese rapeseed industry. Chin J Oil Crop Sci, 2019, 41: 485-489. (in Chinese with English abstract)
[3] 蒯婕, 李真, 汪波, 刘芳, 叶俊, 周广生. 密度和行距配置对油菜苗期性状及产量形成的影响. 中国农业科学, 2021, 54: 2319-2332.
doi: 10.3864/j.issn.0578-1752.2021.11.006
Kuai J, Li Z, Wang B, Liu F, Ye J, Zhou G S. Effects of density and row spacing on seedling traits of rapeseed and seed yield. Sci Agric Sin, 2021, 54: 2319-2332. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2021.11.006
[4] FAO. Statistical databases, food and agriculture organization (FAO) of the United Nations. 2020. http://www.fao.org.
[5] 李小勇, 周敏, 王涛, 张兰, 周广生, 蒯婕. 种植密度对油菜机械收获关键性状的影响. 作物学报, 2018, 44: 278-287.
doi: 10.3724/SP.J.1006.2018.00278
Li X Y, Zhou M, Wang T, Zhang L, Zhou G S, Kuai J. Effects of planting density on the mechanical harvesting characteristics of semi-winter rapeseed. Acta Agron Sin, 2018, 44: 278-287. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2018.00278
[6] 娄洪祥, 姬建利, 蒯婕, 汪波, 徐亮, 李真, 刘芳, 黄威, 刘暑艳, 尹羽丰, 王晶, 周广生. 种植密度对油菜正反交组合产量与倒伏相关性状的影响. 作物学报, 2021, 47: 1724-1740.
doi: 10.3724/SP.J.1006.2021.04253
Lou H X, Ji J L, Kuai J, Wang B, Xu L, Li Z, Liu F, Huang W, Liu S Y, Yin Y F, Wang J, Zhou G S. Effects of planting density on yield and lodging related characters of reciprocal hybrids in Brassica napus L. Acta Agron Sin, 2021, 47: 1724-1740. (in Chinese with English abstract)
[7] 蒯婕, 杜雪竹, 胡曼, 曾讲学, 左青松, 吴江生, 周广生. 共生期与种植密度对棉田套播油菜生长及产量的影响. 作物学报, 2016, 42: 591-599.
doi: 10.3724/SP.J.1006.2016.00591
Kuai J, Du X Z, Hu M, Zeng J X, Zuo Q S, Wu J S, Zhou G S. Effect of symbiotic periods and plant densities on growth and yield of rapeseed intercropping cotton. Acta Agron Sin, 2016, 42: 591-599. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2016.00591
[8] 赵明, 周宝元, 马玮, 李从锋, 丁在松, 孙雪芳. 粮食作物生产系统定量调控理论与技术模式. 作物学报, 2019, 45: 485-498.
doi: 10.3724/SP.J.1006.2019.83051
Zhao M, Zhou B Y, Ma W, Li C F, Ding Z S, Sun X F. Theoretical and technical models of quantitative regulation in food crop production system. Acta Agron Sin, 2019, 45: 485-498. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2019.83051
[9] 赵明, 李建国, 张宾, 董志强, 王美云. 论作物高产挖潜的补偿机制. 作物学报, 2006, 32: 1566-1573.
Zhao M, Li J G, Zhang B, Dong Z Q, Wang M Y. The compensatory mechanism in exploring crop production potential. Acta Agron Sin, 2006, 32: 1566-1573. (in Chinese with English abstract)
[10] 严威凯. 双标图分析在农作物品种多点试验中的应用. 作物学报, 2010, 36: 1805-1819.
doi: 10.3724/SP.J.1006.2010.01805
Yan W K. Optimal use of biplots in analysis of multi-location variety test date. Acta Agron Sin, 2010, 36: 1805-1819. (in Chinese with English abstract)
[11] 喻树迅, 黄祯茂, 姜瑞云, 原日红, 聂先舟, 徐竹生, 徐久玮. 短季棉中棉16高产稳产生化机理的研究. 中国农业科学, 1992, 25(5): 24-30.
Yu S X, Huang Z M, Jiang R Y, Yuan R H, Nie X Z, Xu Z S, Xu J W. Researches on the biochemical mechanism of high consistent yield of short cotton Zhongmiansuo 16. Sci Agric Sin, 1992, 25(5): 24-30. (in Chinese with English abstract)
[12] 周广生, 王晶, 蒯婕, 汪波. 专辑导读:加强大田经济作物栽培措施与环境/资源配置的互作研究、推动产业高效优质发展. 作物学报, 2021, 47: 1633-1638.
doi: 10.3724/SP.J.1006.2021.04633
Zhou G S, Wang J, Kuai J, Wang B. Editorial: strengthening the research on the interaction between cultivated measures and environment/resource allocation of field economic crops to promote the development of industry with high efficiency and high quality. Acta Agron Sin, 2021, 47: 1633-1638. (in Chinese with English abstract)
[13] 蒯婕, 王积军, 左青松, 陈红琳, 高建芹, 汪波, 周广生, 傅廷栋. 长江流域直播油菜密植效应及其机理研究进展. 中国农业科学, 2018, 51: 4625-4632.
doi: 10.3864/j.issn.0578-1752.2018.24.004
Kuai J, Wang J J, Zuo Q S, Chen H L, Gao J Q, Wang B, Zhou G S, Fu T D. Effects and mechanism of higher plant density on directly-sown rapeseed in the Yangtze River basin of China. Sci Agric Sin, 2018, 51: 4625-4632. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2018.24.004
[14] 黄桃翠, 李加纳, 唐世义. 2014-2015年度长江中游组区试油菜稳定性探析. 中国油料作物学报, 2016, 38: 423-430.
Huang T C, Li J N, Tang S Y. Stability of oilseed rape varieties in 2014-2015 national rapeseed variety test in regions along midway of Yangtze River. Chin J Oil Crop Sci, 2016, 38: 423-430. (in Chinese with English abstract)
[15] 许轲, 杨海生, 张洪程, 龚金龙, 沈新平, 陶小军, 戴其根, 霍中洋, 魏海燕, 高辉. 江淮下游地区水稻品种生产力纬向差异及其合理利用. 作物学报, 2014, 40: 871-890.
doi: 10.3724/SP.J.1006.2014.00871
Xu K, Yang H S, Zhang H C, Gong J L, Shen X P, Tao X J, Dai Q G, Huo Z Y, Wei H Y, Gao H. Latitudinal difference of rice varieties productivity in the lower Yangtze and Huai valleys and its rational utilization. Acta Agron Sin, 2014, 40: 871-890. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2014.00871
[16] 杨进成, 胡新洲, 沈祥宏, 李祥, 刘坚坚, 施立安, 黄彬彬, 杨占忠, 张云明, 张玉荣, 李红彦, 安正云. 不同氮肥用量对免耕山地油菜产量及其农艺性状的影响. 中国农学通报, 2019, 35(28): 11-16.
doi: 10.11924/j.issn.1000-6850.casb18050035
Yang J C, Hu X Z, Shen X H, Li X, Liu J J, Shi L A, Huang B B, Yang Z Z, Zhang Y M, Zhang Y R, Li H Y, An Z Y. Nitrogen amounts affect yield and agronomic traits of no-till oilseed rape in plateau areas. Chin Agric Sci Bull, 2019, 35(28): 11-16. (in Chinese with English abstract)
doi: 10.11924/j.issn.1000-6850.casb18050035
[17] 王磊, 高杰, 渠建洲, 冯娇娇, 张兴华, 郝引川, 张仁和, 郭东伟, 薛吉全. 两种密度下不同玉米品种的高产稳产及适应性分析. 玉米科学, 2016, 24(2): 136-141.
Wang L, Gao J, Qu J Z, Feng J J, Zhang X H, Hao Y C, Zhang R H, Guo D W, Xue J Q. Yield properties and adaptability of different maize varieties under two densities. J Maize Sci, 2016, 24(2): 136-141. (in Chinese with English abstract)
[18] 张毅. 我国冬油菜区域试验品种的高产稳产和适应性分析. 中国油料作物学报, 2018, 40: 359-366.
Zhang Y. Evaluation of yield stability and adaptability of varieties in national winter rapeseed regional trials in the lower reaches of Yangtze River valley. Chin J Oil Crop Sci, 2018, 40: 359-366. (in Chinese with English abstract)
[19] Zhang Y, Tang Q, Zou Y, Li D, Qin J, Yang S, Chen L, Bing X, Peng S. Yield potential and radiation use efficiency of "super" hybrid rice grown under subtropical conditions. Field Crops Res, 2009, 114: 91-98.
doi: 10.1016/j.fcr.2009.07.008
[20] 宋军, 余桂容, 杜文平, 徐利远. 几种分析方法在玉米丰产与稳产性分析中的应用. 作物杂志, 2010, (2): 69-71.
Song J, Yu G R, Du W P, Xu L Y. Application of several analytical methods in high yield and stability analysis in maize. Crops, 2010, (2): 69-71. (in Chinese with English abstract)
[21] 严明建, 黄文章, 胡景涛, 吕直文, 雷树凡, 黄成志. 2个类型水稻组合主要性状的灰色关联分析. 中国农学通报, 2011, 27(15): 44-47.
Yan M J, Huang W Z, Hu J T, Lyu Z W, Lei S F, Huang C Z. Analysis on grey correlation of mainly properties in two rice type. Chin Agric Sci Bull, 2011, 27(15): 44-47. (in Chinese with English abstract)
doi: 10.11924/j.issn.1000-6850.2010-3813
[22] 金文林, 白琼岩. 作物区试中品种产量性状评价的秩次分析法. 作物学报, 1999, 25: 632-638.
Jin W L, Bai Q Y. The analysis based on ranks of crop varieties in regional trials. Acta Agron Sin, 1999, 25: 632-638. (in Chinese with English abstract)
[23] Bahram M N, Elham T, Amir M, Elham F. Effect of planting date and amount of seed on light distribution and interception through canola cultivars canopy. Res Crops, 2015, 16: 485-492.
doi: 10.5958/2348-7542.2015.00067.4
[24] 陈丽明, 周燕芝, 谭义青, 吴自明, 谭雪明, 曾勇军, 石庆华, 潘晓华, 曾研华. 双季机械直播早籼稻品种的丰产性和稳产性. 中国农业科学, 2020, 53: 261-272.
doi: 10.3864/j.issn.0578-1752.2020.02.004
Chen L M, Zhou Y Z, Tan Y Q, Wu Z M, Tan X M, Zeng Y J, Shi Q H, Pan X H, Zeng Y H. High and stable yield of early indica rice varieties with double-season mechanical direct seeding. Sci Agric Sin, 2020, 53: 261-272. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2020.02.004
[25] Neusa M, Sandra G, Anabela R. Aluminum inhibits root growth and induces hydrogen peroxide accumulation in Plantago algarbiensis and P. almogravensis seedlings. Protoplasma, 2013, 250: 1295-1302.
doi: 10.1007/s00709-013-0511-1
[26] Zhang Z, Chu G, Liu L, Wang Z, Wang X, Zhang H, Yang J, Zhang J. Mid-season nitrogen application strategies for rice varieties differing in panicle size. Field Crops Res, 2013, 150: 9-18.
doi: 10.1016/j.fcr.2013.06.002
[27] 刘德明, 刘强, 荣湘民, 彭建伟, 谢桂先, 张玉平, 宋海星. 不同油菜品种光合作用及干物质积累对氮效率的影响. 湖南农业科学, 2010, (9): 29-31.
Liu D M, Liu Q, Rong X M, Peng J W, Xie G X, Zhang Y P, Song H X. Influences of photosynthesis and dry matter accumulation of different oilseed rape cultivars on nitrogen use efficiency. Hunan Agric Sci, 2010, (9): 29-31 (in Chinese with English abstract).
[28] Paul M J, Foyer C H. Sink regulation of photosynthesis. J Exp Bot, 2001, 52: 1383-1400.
doi: 10.1093/jexbot/52.360.1383 pmid: 11457898
[29] Boquet D J. Cotton in ultra-narrow row spacing: plant density and nitrogen fertilizer rates. Agron J, 2005. 97: 279-287.
doi: 10.2134/agronj2005.0279
[30] Fageria N K. Influence of dry matter and length of roots on growth of five field crops at varying soil zinc and copper levels. J Plant Nutr, 2005, 27: 1517-1523.
doi: 10.1081/PLN-200025995
[31] Forde B, Lorenzo H. The nutritional control of root development. Plant Soil, 2001, 232: 51-68.
doi: 10.1023/A:1010329902165
[32] Chen Y, Shuai J B, Zhang Z, Shi P J, Tao F L. Simulating the impact of watershed management for surface water quality protection: a case study on reducing inorganic nitrogen load at a watershed scale. Ecol Engin, 2014, 62: 61-70.
doi: 10.1016/j.ecoleng.2013.10.023
[33] 杨云马, 孙彦铭, 贾良良, 贾树龙, 孟春香. 磷肥施用深度对夏玉米产量及根系分布的影响. 中国农业科学, 2018, 51: 1518-1526.
doi: 10.3864/j.issn.0578-1752.2018.08.009
Yang Y M, Sun Y M, Jia L L, Jia S L, Meng C X. Effects of phosphorus fertilization depth on yield and root distribution of summer maize. Sci Agric Sin, 2018, 51: 1518-1526. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2018.08.009
[34] 李杰, 张洪程, 常勇, 龚金龙, 胡雅杰, 龙厚元, 戴其根, 霍中洋, 许轲, 魏海燕, 高辉. 高产栽培条件下种植方式对超级稻根系形态生理特征的影响. 作物学报, 2011, 37: 2208-2220.
doi: 10.3724/SP.J.1006.2011.02208
Li J, Zhang H C, Chang Y, Gong J L, Hu Y J, Long H Y, Dai Q G, Huo Z Y, Xu K, Wei H Y, Gao H. Influence of planting methods on root system morphological and physiological characteristics of super rice under high-yielding cultivation condition. Acta Agron Sin, 2011, 37: 2208-2220. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2011.02208
[35] 钟丽. 油菜产量与主要性状的灰色关联度分析. 南方农业学报, 2012, 43: 421-424.
Zhong L. Gray relational grade analysis between the rapeseed yield and related traits. J South Agric, 2012, 43: 421-424. (in Chinese with English abstract)
[36] 巨霞. 不同类型春油菜光合生理指标与产量的灰色关联分析. 湖北农业科学, 2013, 52: 4041-4044.
Ju X. Grey Correlative degree analysis of the photosynthetic indexes and yield of different types of spring rape. Hubei Agric Sci, 2013, 52: 4041-4044. (in Chinese with English abstract)
[37] 刘代平, 宋海星, 刘强, 荣湘民, 彭建伟, 谢桂先, 刘浩荣. 油菜根系形态和生理特性与其氮效率的关系. 土壤, 2008, 40: 765-769.
Liu D P, Song H X, Liu Q, Rong X M, Peng J W, Xie G X, Liu H R. Relationship between root morphologic and physiological properties and nitrogen efficiency of oilseed rape cultivars. Soils, 2008, 40: 765-769. (in Chinese with English abstract)
[38] 戴敬, 郑伟, 喻义珠, 杨举善. 油菜花后光合面积变化及其与产量的关系. 中国油料作物学报, 2001, 23(2): 20-23.
Dai J, Zheng W, Yu Y Z, Yang S J. The relationship between yield and photosynthetic area after flowering in rapeseed. Chin J Oil Crop Sci, 2001, 23(2): 20-23. (in Chinese with English abstract)
[39] 甘雅文, 李隆, 李鲁华, 张伟, 王宝驹. 南疆核桃与小麦间作系统种间根直径及比根长空间分布特征. 西北农业学报, 2015, 24(5): 56-63.
Gan Y W, Li L, Li L H, Zhang W, Wang B J. Spatial distribution of root diameter and specific root length in walnut/wheat agroforestry system in southern Xinjiang. Acta Agric Boreali-Sin, 2015, 24(5): 56-63. (in Chinese with English abstract)
[1] 宋毅, 李静, 谷贺贺, 陆志峰, 廖世鹏, 李小坤, 丛日环, 任涛, 鲁剑巍. 氮肥用量对冬油菜籽粒产量和品质的影响[J]. 作物学报, 2023, 49(7): 2002-2011.
[2] 唐玉凤, 姚敏, 何昕, 官梅, 刘忠松, 官春云, 钱论文. 甘蓝型油菜SGR基因家族的全基因组鉴定与功能分析[J]. 作物学报, 2023, 49(7): 1829-1842.
[3] 袁大双, 张晓莉, 朱冬鸣, 杨友鸿, 姚梦楠, 梁颖. BnMAPK2 对甘蓝型油菜耐旱性的影响[J]. 作物学报, 2023, 49(6): 1518-1531.
[4] 闫金垚, 宋毅, 陆志峰, 任涛, 鲁剑巍. 磷肥用量对油菜籽产量及品质的影响[J]. 作物学报, 2023, 49(6): 1668-1677.
[5] 杨一丹, 何督, 刘静, 张岩, 陈飞志, 巫燕飞, 杜雪竹. 寄主诱导的基因沉默干扰核盘菌致病基因OAH在甘蓝型油菜抗菌核病中的应用[J]. 作物学报, 2023, 49(6): 1542-1550.
[6] 陶玥玥, 盛雪雯, 徐坚, 沈园, 王海候, 陆长婴, 沈明星. 长三角水稻-油菜周年两熟温光资源分配与利用特征[J]. 作物学报, 2023, 49(5): 1327-1338.
[7] 杨太桦, 杨福权, 郜耿东, 殷帅, 金庆东, 徐林珊, 蒯婕, 汪波, 徐正华, 葛贤宏, 王晶, 周广生. 初步探究LncRNA在甘蓝型油菜生态型分化中的作用[J]. 作物学报, 2023, 49(5): 1197-1210.
[8] 张盈川, 吴晓明玉, 陶保龙, 陈丽, 鲁海琴, 赵伦, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. Bna-miR43-FBXL调控模块参与甘蓝型油菜铝胁迫的功能分析[J]. 作物学报, 2023, 49(5): 1211-1221.
[9] 陈慧, 肖清, 汪华栋, 文静, 马朝芝, 涂金星, 沈金雄, 傅廷栋, 易斌. 甘蓝型油菜SUMO蛋白家族成员鉴定及Bna.SUMO1.C08基因的功能研究[J]. 作物学报, 2023, 49(4): 917-925.
[10] 陈晓汉, 王丽琴, 汪华栋, 肖清, 陶保龙, 赵伦, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. BnABCI8影响甘蓝型油菜叶绿体发育[J]. 作物学报, 2023, 49(4): 893-905.
[11] 柏成成, 姚小尧, 王雨璐, 王赛玉, 李金莹, 蒋有为, 靳舒荣, 陈春杰, 刘渔, 魏星玥, 徐新福, 李加纳, 倪郁. 甘蓝型油菜长链烷烃合成相关基因的克隆及其与BnCER1-2的互作[J]. 作物学报, 2023, 49(4): 1016-1027.
[12] 王珍, 张晓莉, 刘淼, 姚梦楠, 孟晓静, 曲存民, 卢坤, 李加纳, 梁颖. 甘蓝型油菜BnMAPK1超量表达及中油821的转录差异表达分析[J]. 作物学报, 2023, 49(3): 856-868.
[13] 方娅婷, 任涛, 张顺涛, 周橡棋, 赵剑, 廖世鹏, 丛日环, 鲁剑巍. 氮磷钾肥对旱地和水田油菜产量及养分利用的影响差异[J]. 作物学报, 2023, 49(3): 772-783.
[14] 张文宣, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 利用CRISPR/Cas9技术突变BnaMPK6基因降低甘蓝型油菜的耐盐性[J]. 作物学报, 2023, 49(2): 321-331.
[15] 陶士宝, 柯健, 孙杰, 尹传俊, 朱铁忠, 陈婷婷, 何海兵, 尤翠翠, 郭爽爽, 武立权. 长江中下游地区不同穗型中籼杂交稻高产群体农艺特征[J]. 作物学报, 2023, 49(2): 511-525.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .