欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (8): 2025-2038.doi: 10.3724/SP.J.1006.2023.22051

• 作物遗传育种·种质资源·分子遗传学 •    下一篇

水稻OsGMS2基因的鉴定及其核不育系种子繁殖体系构建

唐杰1(), 龙湍2(), 吴春瑜1, 李新鹏1, 曾翔1, 吴永忠1, 黄培劲1,*()   

  1. 1 海南波莲科技有限公司, 海南海口 570125
    2 海南大学热带作物学院, 海南海口 570208
  • 收稿日期:2022-09-18 接受日期:2023-02-10 出版日期:2023-08-12 网络出版日期:2023-03-13
  • 通讯作者: 黄培劲
  • 作者简介:唐杰, E-mail: jesontom@126.com
    龙湍, E-mail: longtuan2001@aliyun.com第一联系人:**同等贡献
  • 基金资助:
    中国水稻研究所水稻生物学国家重点实验室开放课题项目(20190203)

Identification of OsGMS2 and construction of seed production system for genic male sterile line in rice

TANG Jie1(), LONG Tuan2(), WU Chun-Yu1, LI Xin-Peng1, ZENG Xiang1, WU Yong-Zhong1, HUANG Pei-Jin1,*()   

  1. 1 Hainan Bolian Technology Co., Ltd., Haikou 570125, Hainan, China
    2 College of Tropical Crops, Hainan University, Haikou 570208, Hainan, China
  • Received:2022-09-18 Accepted:2023-02-10 Published:2023-08-12 Published online:2023-03-13
  • Contact: HUANG Pei-Jin
  • About author:First author contact:**Contributed equally to this work
  • Supported by:
    Open Project of the State Key Laboratory of Rice Biology, China Rice Research Institute(20190203)

摘要:

雄性不育是作物杂种优势利用的基础。本研究在籼稻93-11 60Co-γ辐射诱变突变体库中鉴定了一个普通核雄性不育突变体osgms2。突变体雄性彻底败育, 雌性育性正常, 其他农艺性状与野生型一致。遗传分析表明雄性不育稳定遗传且为单基因隐性突变, 通过与明恢63构建遗传群体将突变基因精细定位于水稻4号染色体长臂的分子标记S3b和4826之间86 kb物理区间内。通过测序分析发现定位区间内一编码类成束阿拉伯半乳聚糖蛋白的基因LOC_ Os04g48490编码区第118位至126位缺失连续9个碱基, 导致氨基酸整码突变。OsGMS2与已报道的OsFLA1为同一基因, 但是突变位点不同的新等位突变。粳稻中花11背景下的基因敲除和遗传互补实验证实了该基因的功能。实时荧光定量PCR (qPCR)表达分析模式显示, 该基因在水稻各组织均有表达, 但在花期和乳熟期种子表达量较高。蛋白同源比对分析发现, 该蛋白序列保守, 可能在不同物种中发挥重要功能。通过创建OsGMS2-T保持系成功实现了普通核不育系的繁殖。osgms2突变体的发现和基因鉴定为水稻普通核雄性不育研究及杂种优势利用提供了新的材料。

关键词: 水稻, 核雄性不育, osgms2, 基因定位, OsGMS2-T保持系

Abstract:

Male sterility is the basis for application of crop heterosis. The common nuclear male sterile mutant osgms2 was isolated from a mutant library created by 60Co-γ-treated indica cultivar 93-11. The male of the mutant was completely aborted, the female was nomal, and other agronomic characters were consistent with those of the wild type. Genetic analyses indicated that the male sterility phenotype was stably controlled by a single recessive gene. The OsGMS2 gene was fine-mapped within the 86 kb physical interval between two molecular markers S3b and 4826 on the long arm of chromosome 4 with a mapping population of osgms2 and Minghui 63. Further sequencing found the gene LOC_Os04g48490, encoding a fasciclin-like arabinogalactan protein, had a 9-bp deletion at position 118 to 126 from start codon of translation, resulting in three codons mutation. The osgms2 gene was a novel allele of OsFLA1. Subsequent gene knockout and genetic complementation experiments in Zhonghua 11 background confirmed the function of the gene. Real-time quantitative PCR (qPCR) analyses showed that the gene was expressed in all tissues, with the highest level at the flowering and immature seed stages. Alignment analyses revealed that the protein sequence was conserved in different species. By creating the OsGMS2-T maintainer, seed production of the common sterile line was achieved. The identification of the allelic mutant osgms2 provides the new materials for the study on rice nuclear male sterility and application of heterosis.

Key words: rice, genic male sterile, osgms2, gene mapping, OsGMS2-T maintainer line

表1

初定位和精细定位引物"

引物名称
Primer name
上游引物
Forward primer (5°-3°)
下游引物
Reverse primer (5°-3°)
RM17332 CGGTACATCACGGTATCAAATCG TAAATGCTGGAGCGATGCTAACC
RM280 GTGCTCTCCATGTCGGATTATGC CAAGGCAACAAGATTGGTTAGTGG
RM17351 ATAAAGGAGGAGGGCCTCAGATGG CACGGTTTGGAGGTTGGAAGC
RM17352 GCTTGGCATCTGCTTCTGTTGTTGG CTCGCTGCTGATCGAGGTGTCG
RM303 ATCGATGTAGGTAGAGGGACACC CAGATCTAGTCGACATGGTTGG
4826 ACACCATCTCTCTTCTTTTTCTAT ATATGGGTAGGTTTGGATATTCG
S4b GTGTGTGTGAGTAAAATCCTAGTGCA
AAAAAGTGTGTGTGAGTAAAATCCTAGAGCC
ATTTGTACTCCTATGTTTAGAATAGC
S3b ACAAATATATAGCAAAATCGGTGACC
AAAAAACAAATATATAGCAAAATCGGTTACG
GTGGTTTTGTGGATGTTTTGTAACT
S2 AAGTATTTGTAATGCACTATGTAAAGGT
AAAAAAAGTATTTGTAATGCACTATGTAATGGC
TTAAGAGCACACACTTCCAATAATATGT
S1 CTGGGCGCGGTGCGGCGGGCGAGGC
AAAAACTGGGCGCGGTGCGGCGGGCGTGGT
CCGCCTCAGCGCCACCGCCAAGCTGA
S8 AAGTTGTGTTTAGCACTATGTTATTACG
AAAAAAAGTTGTGTTTAGCACTATGTTATGACA
TTTAGCATAATAACTACTATTCATCATT
S10 GCAGGAGACACTTGGTGCCGCCTCTC
AAAAAGCAGGAGACACTTGGTGCCGCCACTT
GCAGATTATTTTCGGTGGGTCCCGTCTC

表2

基因克隆相关引物"

引物名称
Primer name
上游引物
Forward primer (5°-3°)
下游引物
Reverse primer (5°-3°)
LOC_Os04g48490_1 AAACAGAAAGCCCCAATG TGCCGCAGTACGCGCCCAAG
LOC_Os04g48490_2 TTGTCCATGCCGGTGTCCAT GGTCACGGCACAAACTCA
InD48490 GCTCCGGCTGTTGATCT GCCTGCTCTTCCTCCTG
GAPDH-RT GAATGGCTTTCCGTGTT CAAGGTCCTCCTCAACG
T1-sg GCGGTCGGTGGCGGCCATGG
SP CCCGACATAGATGCAATAACTTC GCGCGGTGTCATCTATGTTACT
B1 AAACCCACGCCCAGAAA GCCAGGAGGAAGAGCAG
3148 HB CgcgtttcgaaatttTGATTTCTTCATCGCACT GtcgcgatcgcatgcACAACATGGTGCAACAGTG

图1

野生型93-11和突变体osgms2表型鉴定 A~F: 93-11和突变体osgms2整株(A)、穗(B)、小花(C)、去壳后颖花(D)、单个花药(E)和花粉碘染(F)。"

表3

突变体osgms2的遗传分析"

杂交组合
Cross combination
异交结实率
Out-crossing seed-setting rate
F2 χ23:1 χ20.05
可育株Fertile plants 不育株Sterile plants
osgms2/93-11 71.27%±14.67% 57 13 0.85 3.841
osgms2/ZH11 62.94%±14.34% 80 16 0.57 3.841

图2

osgms2的精细定位 A: 突变基因初定位在4号染色体RM303和S10之间387.8 kb物理区间; B: 精细定位在标记S3b和4826之间86 kb物理区间; C: 精细定位区间内的11个预测基因, 其中标红色ORF11为候选基因; D: 候选基因LOC_Os04g48490的结构及其在osgms2突变体中的突变位点(突变体碱基AACAGCTAC缺失导致天冬酰胺、丝氨酸和酪氨酸的缺失)。"

表4

目标区域预测基因"

序号
Serial number
基因
Gene name
功能注释
Function annotation
ORF1 LOC_Os04g48390 SPX-Major Facility Superfamily (MFS) protein
ORF2 LOC_Os04g48400 HOTHEAD precursor
ORF3 LOC_Os04g48410 Copper chaperone for superoxide dismutase
ORF4 LOC_Os04g48416 OsSub45-putative subtilisin homologue
ORF5 LOC_Os04g48440 The expressed protein
ORF6 LOC_Os04g48450 The expressed protein
ORF7 LOC_Os04g48460 Cytochrome P450
ORF8 LOC_Os04g48470 The expressed protein
ORF9 LOC_Os04g48480 The exostosin family domain containing protein
ORF10 LOC_Os04g48484 The expressed protein
ORF11 LOC_Os04g48490 The fasciclin-like arabinogalactan protein

图3

突变体的共分离验证 osgms2扩增出140 bp的产物; MH63扩增出149 bp的产物; F2可育表型植株扩增出149 bp或同时扩增出149 bp和140 bp的产物; 雄性不育表型的植株扩增出140 bp的产物。"

图4

突变基因的敲除及遗传互补 A: 敲除载体靶序列及纯合突变株cr-osgms2-3测序结果, 黑色加粗下画线碱基为PAM区, 红色标注为AT碱基缺失; B: osgms2基因组互补载体构建图谱; C~F: ZH11和敲除纯合株cr-osgms2-3的整株(C)、花(D)、花药(E)、花粉碘染(F); G~J: ZH11和遗传互补株Com-osgms2的整株(G)、花(H)、花药(I)、花粉碘染(J)。标尺: (C) 10 cm; (D)~(E) 2 mm; (F) 0.1 mm; (G) 10 cm; (H)~(I) 2 mm; (J) 0.1 mm。"

图5

OsGMS2氨基酸序列比对"

图6

OsGMS2在水稻不同组织部位相对表达量"

图7

OsGMS2不育系繁殖 A: OsGMS2-T载体; B: OsGMS2不育系繁殖流程; C: 左、野生型ZH11 (基因型Ms/Ms), 中、OsGMS2-T保持系(基因型ms/Ms-T), 右、osgms2不育系(基因型ms/ms)花粉1%碘-碘化钾染色; D: 明场(BF)、荧光(FRFP)以及合成(Merged)的OsGMS2-T保持系种子。标尺: (C) 0.1 mm; (D) 5 mm。"

图8

T1代OsGMS2-T保持系和osgms2不育系表型鉴定 A: OsGMS2-T保持系和osgms2不育系整株; B: OsGMS2-T保持系和osgms2不育系穗; C: 荧光视野OsGMS2-T保持系种子; D: OsGMS2-T保持系花粉1%碘-碘化钾染色; E: osgms2不育系花粉1%碘-碘化钾染色。标尺: (A) 10 cm; (B) 5 cm; (C) 1 cm; (D)~(E) 0.1 mm。"

[1] 朱英国. 水稻雄性不育生物学. 武汉: 武汉大学出版社, 2000.
Zhu Y G. Biology of Cytoplasmic Male Sterility in Rice. Wuhan: Wuhan University Press, 2000. (in Chinese)
[2] Kaulm L H. Male Sterility in Higher Plants. Berlin: Springer Verlag, 1988. p 1005.
[3] Hong L L, Tang D, Zhu K M, Wang K J, Li M, Cheng Z K. Somatic and reproductive cell development in rice anther is regulated by a putative glutaredoxin. Plant Cell, 2012, 24: 577-588.
doi: 10.1105/tpc.111.093740
[4] Ding Z J, Wang T, Chong K, Bai S N. Isolation and characterization of OsDMC1, the rice homologue of the yeast DMC1 gene essential for meiosis. Sexual Plant Reprod, 2001, 13: 285-288.
doi: 10.1007/s004970100065
[5] Nonomura K, Nakano M, Fukuda T, Eiguchi M, Miyao A, Hirochika H, Kurata N. The novel gene HOMOLOGOUS PAIRING ABERRATION IN RICE MEIOSIS1 of rice encodes a putative coiled-coil protein required for homologous chromosome pairing in meiosis. Plant Cell, 2004, 16: 1008-1020.
doi: 10.1105/tpc.020701
[6] Nonomura K I, Nakano M, Murata K, Miyoshi K, Kurata N. An insertional mutation in the rice PAIR2 gene, the ortholog of Arabidopsis ASY1, results in a defect in homologous chromosome pairing during meiosis. Mol Genet Genomics, 2004, 271: 121-129.
pmid: 14758540
[7] Yuan W Y, Li X W, Chang Y X, Wen R Y, Chen G X, Zhang Q F, Wu C Y. Mutation of the rice gene PAIR3 results in lack of bivalent formation in meiosis. Plant J, 2009, 59: 303-315.
doi: 10.1111/tpj.2009.59.issue-2
[8] Wang M, Wang K J, Tang D, Wei C X, Li M, Shen Y, Chi Z C, Gu M H, Cheng Z K. The central element protein ZEP1 of the synaptonemal complex regulates the number of crossovers during meiosis in rice. Plant Cell, 2010, 22: 417-430.
doi: 10.1105/tpc.109.070789
[9] Shao T, Tang D, Wang K J, Wang M, Che L X, Qin B X, Yu H X, Li M, Gu M H, Cheng Z K. OsREC8 is essential for chromatid cohesion and metaphase I monopolar orientation in rice meiosis. Plant Physiol, 2011, 156: 1386-1396.
doi: 10.1104/pp.111.177428
[10] Nonomura K I, Miyoshi K, Eiguchi M, Suzuki T, Miyao A, Kurata H N. The MSP1 gene is necessary to restrict the number of cells entering into male and female sporogenesis and to initiate anther wall formation in rice. Plant Cell, 2003, 15: 1728-1739.
doi: 10.1105/tpc.012401
[11] Jung K H, Han M J, Lee Y S, Kim Y W, Hwang I, Kim M J, Kim Y K, Nahm B H, An G. Rice undeveloped tapetum1 is a major regulator of early tapetum development. Plant Cell, 2005, 17: 2705-2722.
doi: 10.1105/tpc.105.034090 pmid: 16141453
[12] Li N, Zhang D S, Liu H S, Yin C S, Li X X, Liang W Q, Yuan Z, Xu B, Chu H W, Wang J, Wen T Q, Huang H, Luo D, Ma H, Zhang D B. The rice tapetum degeneration retardation gene is required for tapetum degradation and anther development. Plant Cell, 2006, 18: 2999-3014.
doi: 10.1105/tpc.106.044107 pmid: 17138695
[13] Kaneko M, Inukai Y, Ueguchi-Tanaka M, Itoh H, Izawa T, Kobayashi Y, Hattori T, Miyao A, Hirochika H, Ashikari M, Matsuoka M. Loss-of-function mutations of the rice GAMYB gene impair α-amylase expression in aleurone and flower development. Plant Cell, 2004, 16: 33-44.
doi: 10.1105/tpc.017327
[14] Li H, Yuan Z, Gema V B, Yang C Y, Liang W Q, Zong J, Wilson Z, Zhang D B. PERSISTENT TAPETAL CELL1 encodes a PHD-Finger protein that is required for tapetal cell death and pollen development in rice. Plant Physiol, 2011, 156: 615-630.
doi: 10.1104/pp.111.175760 pmid: 21515697
[15] Yang Z F, Liu L, Sun L P, Yu P, Zhang P P, Adil A, Xiang X J, Wu W X, Zhang Y X, Cao L Y, Cheng S H. OsMS1 functions as a transcriptional activator to regulate programmed tapetum development and pollen exine formation in rice. Plant Mol Biol, 2019, 99: 175-191.
doi: 10.1007/s11103-018-0811-0
[16] Tan H X, Liang W Q, Hu J P, Zhang D B. MTR1 encodes a secretory fasciclin glycoprotein required for male reproductive development in rice. Developmental Cell, 2012, 22: 1127-1137.
doi: 10.1016/j.devcel.2012.04.011
[17] Li X W, Gao X Q, Wei Y, Deng L, Ouyang Y D, Chen G X, Li X H, Zhang Q F, Wu C Y. Rice APOPTOSIS INHIBITOR5 coupled with two DEAD-Box adenosine 5’-triphosphate-dependent RNA helicases regulates tapetum degeneration. Plant Cell, 2011, 23: 1416-1434.
doi: 10.1105/tpc.110.082636
[18] 陈驰, 陈代波, 孙志豪, 彭泽群, Adil Abbas, 贺登美, 张迎信, 程海涛, 于萍, 马兆慧, 宋建, 曹立勇, 程式华, 孙廉平, 占小登, 吕文彦. 水稻典败型隐性核雄性不育突变体ap90的鉴定与基因定位. 作物学报, 2022, 48: 1569-1582.
doi: 10.3724/SP.J.1006.2022.12044
Chen C, Chen D B, Sun Z h, Peng Z Q, Adil A, He D M, Zhang Y X, Cheng H T, Yu P, Ma Z H, Song J, Cao L Y, Cheng S H, Sun L P, Zhan X D, Lyu W Y. Rice classic recessive nuclear male identification and gene mapping of sterile mutant ap90. Acta Agron Sin, 2022, 48: 1569-1582. (in Chinese with English abstract)
[19] Shi J, Tan H X, Yu X H, Liu Y Y, Liang W Q, Kosala R, Rochus B F, Lukas S, Wang Y J, Kai G Y, John S, Ma H, Zhang D B. Defective pollen wall is required for anther and microspore development in rice and encodes a fatty acyl carrier protein reductase. Plant Cell, 2011, 23: 2225-2246.
doi: 10.1105/tpc.111.087528
[20] Li H, Pinot F, Sauveplane V, Werck-Reichhart D, Diehl P, Schreiber L, Franke R, Zhang P, Chen L, Gao Y W, Liang W Q, Zhang D B. Cytochrome P 450 family member CYP704B2 catalyzes the ω-Hydroxylation of fatty acids and is required for anther cutin biosynthesis and pollen exine formation in rice. Plant Cell, 2010, 22: 173-190.
doi: 10.1105/tpc.109.070326
[21] Yang X J, Wu D, Shi J X, He Y, Pinot F, Grausem B, Yin C S, Zhu L, Chen M J, Luo Z J, Liang W Q, Zhang D B. Rice CYP703A3, a cytochrome P450 hydroxylase, is essential for development of anther cuticle and pollen exine. J Integr Plant Biol, 2014, 56: 979-994.
doi: 10.1111/jipb.12212
[22] Men X, Shi J X, Liang W Q, Zhang Q F, Lian G B, Quan S, Zhu L, Luo Z J, Chen M J, Zhang D B. Glycerol-3-Phosphate Acyltransferase 3 (OsGPAT3) is required for anther development and male fertility in rice. J Exp Bot, 2017, 68: 513-526.
doi: 10.1093/jxb/erw445 pmid: 28082511
[23] Zou T, Li S C, Liu M X, Wang T, Xiao Q, Chen D, Li Q, Liang Y L, Zhu J, Liang Y Y, Deng Q M, Wang S Q, Zheng A P, Wang L X, Li P. An atypical strictosidine synthase, OsSTRL2, plays key roles in anther development and pollen wall formation in rice. Sci Rep, 2017, 7: 6863.
doi: 10.1038/s41598-017-07064-4
[24] Deng Y, Wan Y, Liu W, Zhang L S, Zhou K, Feng P, He G H, Wang N. OsFLA1 encodes a fasciclin-like arabinogalactan protein and affects pollen exine development in rice. Theor Appl Genet, 2022, 135: 1247-1262.
doi: 10.1007/s00122-021-04028-1
[25] Zhu Q H, Ramm K, Shivakkumar R, Elizabeth S, Upadhyaya D N M. The ANTHER INDEHISCENCE1gene encoding a single MYB domain protein is involved in anther development in rice. Plant Physiol, 2004, 135: 1514-1525.
doi: 10.1104/pp.104.041459
[26] Moritoh S, Miki D, Akiyama M, Kawahara M, Izawa T, Maki H, Shimamoto K. RNAi-mediated silencing of OsGEN-L (OsGEN-like), a new member of the RAD2/XPG nuclease family, causes male sterility by defect of microspore development in rice. Plant Cell Physiol, 2005, 46: 699-715.
doi: 10.1093/pcp/pci090 pmid: 15792960
[27] Shu J, Minnie 1 C, Srinivasan R. The Oryza sativa no pollen (osnop) gene plays a role in male gametophyte development and most likely encodes a C2-GRAM domain-containing protein. Plant Mol Biol, 2005, 57: 835-853.
doi: 10.1007/s11103-005-2859-x
[28] Huang X R, Peng X B, Sun M X. OsGCD1 is essential for rice fertility and required for embryo dorsal-ventral pattern formation and endosperm development. New Phytol, 2017, 215: 1039-1058.
doi: 10.1111/nph.2017.215.issue-3
[29] Xue Z Y, Xu X, Zhou Y, Wang X N, Zhang Y C, Liu D, Zhao B B, Duan L X, Qi X Q. Deficiency of a triterpene pathway results in humidity-sensitive genic male sterility in rice. Nat Commun, 2018, 9: 604.
doi: 10.1038/s41467-018-03048-8 pmid: 29426861
[30] 唐杰, 吴春瑜, 李佳林, 曾翔, 黄培劲, 龙湍. CRISPR/Cas9技术编辑RMS2基因及其利用. 分子植物育种, 2021, 19: 3973-3982.
Tang J, Wu C H, Li J L, Zeng X, Huang P J, Long T. CRISPR/ Cas9 technology editing RMS2 gene and its utilization. Mol Plant Breed, 2021, 19: 3973-3982. (in Chinese with English abstract)
[31] Nothnagel E A. Proteoglycans and related components in plant cells. Int Rev Plant Cytol, 1997, 174: 195-291.
[32] Showalter A M. Structure and function of plant cell wall proteins. Plant Cell, 1993, 5: 9-23.
doi: 10.1105/tpc.5.1.9 pmid: 8439747
[33] 秦源, 赵洁. 阿拉伯半乳糖蛋白在被子植物有性生殖中的作用. 植物生理与分子生物学学报, 2004, 30: 371-378.
Qin Y, Zhao J. The role of arabinogalactose protein in the sexual reproduction of angiosperms. J Plant Physiol Mol Biol, 2004, 30: 371-378. (in Chinese with English abstract)
[34] Kawaguchi K, Shibuya N. Characterization of arabinogalactan-proteins and a related oligosaccharide in developing rice anthers. In: Nothnagel E A, Bacic A, Clarke A E, eds. Cell Develop Biology of Arabinogalactan Proteins. New York: Kluwer Academic/Plenum Publishers, 2000. pp 149-152
[35] Ma H L, Zhao J. Genome-wide identification, classification, and expression analysis of the arabinogalactan protein gene family in rice (Oryza sativa L.). J Exp Bot, 2010, 61: 2647-2668.
doi: 10.1093/jxb/erq104
[36] 龙湍, 安保光, 李新鹏, 张维, 李京琳, 杨瑶华, 曾翔, 吴永忠, 黄培劲. 籼稻93-11辐射诱变突变体库的创建及其筛选. 中国水稻科学, 2016, 30: 44-52.
doi: 10.16819/j.1001-7216.2016.5126
Long T, An B G, Li X P, Zhang W, Li J L, Yang Y H, Zeng X, Wu Y Z, Huang P J.Construction and screening of an irradiation-induced mutant library of indica rice 93-11. J Chin Rice Sci, 2016, 30: 44-52. (in Chinese with English abstract)
[37] Zhao J, Long T, Wang Y F, Tong X H, Tang J, Li J L, Wang H M, Tang L Q, Li Z Y, Shu Y Z, Liu X X, Li S F, Liu H, Li J L, Wu Y Z, Zhang J. RMS2 encoding a GDSL lipase mediates lipid homeostasis in anthers to determine rice male fertility. Plant Physiol, 2020, 182: 2047-2064.
doi: 10.1104/pp.19.01487
[38] 李京琳, 李佳林, 李新鹏, 安保光, 曾翔, 吴永忠, 黄培劲, 龙湍. 水稻ptc1隐性核不育系的创制及其配合力分析. 作物学报, 2021, 47: 2173-2183.
doi: 10.3724/SP.J.1006.2021.02076
Li J L, Li J L, Li X P, An B G, Zeng X, Wu Y Z, Huang P J, Long T. Creation and combining ability analysis of recessive genic sterile lines with a new ptc1 locus in rice. Acta Agron Sin, 2021, 47: 2173-2183. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2021.02076
[39] 李京琳, 李新鹏, 龙湍, 安保光, 曾翔, 吴永忠, 黄培劲. 一个水稻MSP1突变体的鉴定和分析. 植物生理学报, 2018, 54: 393-400.
Li J L, Li X P, Long T, An B G, Zeng X, Wu Y Z, Huang P J. Identification and characterization of a rice MSP1 mutant. Plant Physiol J, 2018, 54: 393-400. (in Chinese with English abstract)
doi: 10.1111/ppl.1982.54.issue-4
[40] Rogers S O, Bendich A J. Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues. Plant Mol Biol, 1985, 5: 69-76.
doi: 10.1007/BF00020088 pmid: 24306565
[41] Michelmore R. Molecular approaches to manipulation of disease resistance genes. Annu Rev Phytopathol, 1995, 33: 393-427.
pmid: 18999967
[42] Orjuela J, Garavito A, Bouniol M. A universal core genetic map for rice. Theor Appl Genet, 2010, 120: 563-572.
doi: 10.1007/s00122-009-1176-1 pmid: 19847389
[43] Ma X L, Zhang Q Y, Zhu Q L, Liu W, Chen Y, Qiu R, Wang B, Yang Z F, Li H Y, Lin Y R, Xie Y Y, Shen R X, Chen S F, Wang Z, Chen Y L, Guo J X, Chen L T, Zhao X C, Dong Z C, Liu Y G. A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Mol Plant, 2015, 8: 1274-1284.
doi: 10.1016/j.molp.2015.04.007 pmid: 25917172
[44] 李俊.拟南芥阿拉伯半乳糖蛋白基因AtFLA3生物学功能研究. 武汉大学博士学位论文, 湖北武汉, 2010.
Li J.Biological Function of Arabidopsis Arabinogalactose Protein Gene AtFLA3. PhD Dissertation of Wuhan University, Wuhan, Hubei, China, 2010. (in Chinese with English abstract)
[45] Ito S, Suzuki Y, Miyamoto K, Ueda J, Yamaguchi I. AtFLA11, a fasciclin-like arabinogalactan-protein, specifically localized in screlenchyma cells. Biosci Biotechnol Biochem, 2005, 69: 1963-1969.
doi: 10.1271/bbb.69.1963
[46] 马腾飞.水稻木质形成素类AGP蛋白基因家族的鉴定及OsAGP13的生物学功能研究. 武汉大学博士学位论文, 湖北武汉, 2014.
Ma T F.Identification of Rice Lignin-like AGP Protein Gene Family and Biological Function Study of OsAGP13. PhD Dissertation of Wuhan University, Wuhan, Hubei, China, 2014. (in Chinese with English abstract)
[47] Zhang X, Zhao G C, Tan Q, Yuan H, Betts N, Zhu L, Zhang D B, Liang W Q. Rice pollen aperture formation is regulated by the interplay between OsINP1 and OsDAF1. Nat Plants, 2020, 6: 394-403.
doi: 10.1038/s41477-020-0630-6 pmid: 32284546
[48] 袁隆平. 杂交水稻发展的战略. 杂交水稻, 2018, 33(5): 1-2.
Yuan L P. The strategy for hybrid rice development. Hybrid Rice, 2018, 33(5): 1-2. (in Chinese with English abstract)
[1] 徐高峰, 申时才, 张付斗, 杨韶松, 金桂梅, 郑凤萍, 温丽娜, 张云, 吴冉迪. 土壤微生物对长雄野生稻及其化感潜力后代抑草作用的影响[J]. 作物学报, 2023, 49(9): 2562-2571.
[2] 胡艳娟, 薛丹, 耿嫡, 朱末, 王天穹, 王晓雪. 水稻OsCDF1基因突变效应及其基因组变异分析[J]. 作物学报, 2023, 49(9): 2362-2372.
[3] 刘凯, 陈积金, 刘帅, 陈旭, 赵新茹, 孙尚, 薛超, 龚志云. 低温胁迫下组蛋白H3K18cr在水稻全基因组上的动态变化特征解析[J]. 作物学报, 2023, 49(9): 2398-2411.
[4] 贾璐绮, 孙悠, 田然, 张学菲, 代永东, 崔志波, 李杨羊, 冯新宇, 桑贤春, 王晓雯. 水稻种子快速萌发突变体rgs1的鉴定及调控基因克隆[J]. 作物学报, 2023, 49(8): 2288-2295.
[5] 宋兆建, 冯紫旖, 屈天歌, 吕品苍, 杨晓璐, 湛明月, 张献华, 何玉池, 刘育华, 蔡得田. 四倍体水稻回复二倍体品系的籼粳属性鉴定和杂种优势利用初探[J]. 作物学报, 2023, 49(8): 2039-2050.
[6] 王兴荣, 张彦军, 涂奇奇, 龚佃明, 邱法展. 一个新的玉米细胞核雄性不育突变体ms6的鉴定与基因定位[J]. 作物学报, 2023, 49(8): 2077-2087.
[7] 韦新宇, 曾跃辉, 杨旺兴, 肖长春, 候新坡, 黄建鸿, 邹文广, 许旭明. 利用CRISPR-Cas9技术编辑Badh2基因创制优质香型籼稻三系不育系[J]. 作物学报, 2023, 49(8): 2144-2159.
[8] 邓艾兴, 李歌星, 吕玉平, 刘猷红, 孟英, 张俊, 张卫建. 齐穗后遮阴时长对西北稻区粳稻产量和品质的影响[J]. 作物学报, 2023, 49(7): 1930-1941.
[9] 许娜, 徐铨, 徐正进, 陈温福. 水稻株型生理生态与遗传基础研究进展[J]. 作物学报, 2023, 49(7): 1735-1746.
[10] 林孝欣, 黄明江, 韦祎, 朱洪慧, 王子怡, 李忠成, 庄慧, 李彦羲, 李云峰, 陈锐. 水稻籽粒伸长突变体lgdp的鉴定与基因定位[J]. 作物学报, 2023, 49(6): 1699-1707.
[11] 丁杰荣, 马雅美, 潘发枝, 江立群, 黄文洁, 孙炳蕊, 张静, 吕树伟, 毛兴学, 于航, 李晨, 刘清. 泛素受体蛋白OsDSK2b负向调控水稻叶瘟和渗透胁迫抗性[J]. 作物学报, 2023, 49(6): 1466-1479.
[12] 何永明, 张芳. 生长素调控水稻颖花开放的效应研究[J]. 作物学报, 2023, 49(6): 1690-1698.
[13] 陶玥玥, 盛雪雯, 徐坚, 沈园, 王海候, 陆长婴, 沈明星. 长三角水稻-油菜周年两熟温光资源分配与利用特征[J]. 作物学报, 2023, 49(5): 1327-1338.
[14] 韦海敏, 陶伟科, 周燕, 闫飞宇, 李伟玮, 丁艳锋, 刘正辉, 李刚华. 硅素穗肥优化滨海盐碱地水稻矿质元素吸收分配提高耐盐性[J]. 作物学报, 2023, 49(5): 1339-1349.
[15] 戴文慧, 朱琪, 张小芳, 吕沈阳, 项显波, 马涛, 陈宇杰, 朱世华, 丁沃娜. 一个水稻脆秆突变体bc21的鉴定和基因定位[J]. 作物学报, 2023, 49(5): 1426-1431.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .