欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (8): 2039-2050.doi: 10.3724/SP.J.1006.2023.22057

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

四倍体水稻回复二倍体品系的籼粳属性鉴定和杂种优势利用初探

宋兆建1,*(), 冯紫旖1, 屈天歌1, 吕品苍1, 杨晓璐1, 湛明月1, 张献华1, 何玉池1, 刘育华2, 蔡得田1,2,*()   

  1. 1 湖北大学生命科学学院, 湖北武汉430062
    2 武汉多倍体生物科技有限公司, 湖北武汉430345
  • 收稿日期:2022-09-27 接受日期:2023-02-10 出版日期:2023-08-12 网络出版日期:2023-02-28
  • 通讯作者: 宋兆建,蔡得田
  • 作者简介:E-mail: zjsong99@126.com
  • 基金资助:
    湖北省重点研发计划项目(2020BBA032);武汉市重大科技专项和武汉市品牌农业发展计划项目资助

Indica-japonica attribute identification and heterosis utilization of diploid rice lines reverted from tetraploid rice

SONG Zhao-Jian1,*(), FENG Zi-Yi1, QU Tian-Ge1, LYU Pin-Cang1, YANG Xiao-Lu1, ZHAN Ming-Yue1, ZHANG Xian-Hua1, HE Yu-Chi1, LIU Yu-Hua2, CAI De-Tian1,2,*()   

  1. 1 School of Life Sciences, Hubei University, Wuhan 430062, Hubei, China
    2 Wuhan Polyploid Biotechnology Co., Ltd., Wuhan 430345, Hubei, China
  • Received:2022-09-27 Accepted:2023-02-10 Published:2023-08-12 Published online:2023-02-28
  • Contact: SONG Zhao-Jian,CAI De-Tian
  • Supported by:
    Key Research and Development Program of Hubei Province(2020BBA032);Major Science and Technology Project of Wuhan, and the Brand Agriculture Development Plan of Wuhan

摘要:

本研究以8个四倍体水稻回复二倍体品系为材料, 采用InDel分子标记法鉴定其籼粳属性; 同时以回复二倍体品系为父本, 分别与籼稻光温敏雄性不育系培矮64S、粳稻光温敏雄性不育系农垦58S配制杂交组合, 进行亲本及杂种的遗传距离及聚类分析, 考察杂种及其父本的产量相关性状, 分析杂种的超父本优势、超标优势; 另外, 对亲本遗传距离与杂种优势的相关性进行分析, 探讨利用亲本遗传距离预测杂种优势的可行性。结果表明: (1) 回复二倍体品系的籼型基因频率分布在0.605~0.947之间, 所有品系都兼有籼稻和粳稻遗传成分, 但籼粳成分比例各不相同。(2) 回复二倍体品系和培矮64S之间的遗传距离在0.21~0.42之间, 回复二倍体品系和农垦58S之间的遗传距离在0.68~0.95之间; 籼粳属性相同或相近的材料聚为一类, 清晰显示了材料间的亲缘关系。(3) 回复二倍体品系的杂种优势利用需要广亲和基因的参与, 以具有广亲和基因的培矮64S为母本配制的杂交组合在单株有效穗数、每穗总粒数和每穗实粒数方面超父本优势和超标优势明显; 在综合后的单株产量上8个杂交组合都表现出超父本优势和超标优势, 尤其是杂交组合HYP2单株产量超标优势突出, 高达45.92%。(4) 亲本遗传距离与杂种F1的每穗总粒数和单株产量呈显著正相关, 说明InDel遗传距离可以用于杂种优势预测。研究证实了籼粳亚种间四倍体水稻的回复二倍体品系兼有籼稻和粳稻遗传成分, 遗传多样性丰富, 利用这些回复二倍体品系能够配制出超强杂种优势组合, 为通过以籼粳中间型品系与广亲和光温敏雄性不育系配组实现籼粳亚种间杂种优势利用提供了理论依据和参考; 同时初步证实了“以多倍体为变异载体选育回复二倍体水稻”育种途径的可行性, 为水稻育种提供了新的思路和途径。

关键词: 水稻, 多倍体, 回复二倍体, InDel, 籼粳属性, 遗传距离, 杂种优势

Abstract:

In this study, the indica-japonica attribute of eight reverted diploid lines were identified by InDel molecular marker. The hybrid combinations were made between the reverted diploid lines and photoperiod- and thermo-sensitive genic male sterile lines Peiai 64S (indica) and Nongken 58S (japonica), respectively. The genetic distance and cluster analysis of the parents and hybrids were carried out, the yield related traits of the hybrids and the male parents were investigated, then the over male parent heterosis and the competitive heterosis of the hybrids were analyzed. In addition, the correlation between parental genetic distance and the heterosis was analyzed to explore the feasibility of using parental genetic distance to predict heterosis. The results showed as follows: (1) The indica gene frequency of the reverted diploid lines ranged from 0.605 to 0.947. All lines had both indica and japonica genetic components, but the proportions of indica and japonica components were different from each other. (2) The genetic distance between the reverted diploid lines and Pei’ai 64S were 0.21-0.42, and that between the reverted diploid lines and Nongken 58S were 0.68-0.95. The materials with the same or similar indica-japonica attribute were clustered together, which clearly showed the genetic relationship between the materials. (3) The heterosis utilization of the reverted diploid lines needed the participation of wide compatibility genes. The hybrid combinations made between Peiai 64S that had wide compatibility gene and the reverted diploid lines had obvious over male parent heterosis and competitive heterosis in the effective panicle number per plant, the total grain number per panicle, and the filled grain number per panicle. In the yield per plant, eight hybrid combinations all showed over male parent heterosis and competitive heterosis, especially the yield per plant of HYP2 was prominent, up to 45.92%. (4) The genetic distance of parents was significantly positively correlated with the total grain number per panicle and the yield per plant of the hybrids, indicating that the InDel genetic distance can be used for predicting heterosis. The study confirmed that the reverted diploid lines from the tetraploid indica-japonica subspecies rice had both indica and japonica genetic components, and contained abundant genetic diversity. Using the reverted diploid lines, the hybrid combinations with super heterosis could be made, which providing a theoretical basis and reference for the utilization of indica-japonica subspecies heterosis through the combination of indica-japonica intermediate lines and photoperiod- and thermo-sensitive genic male sterile lines with wide compatibility genes. At the same time, we preliminarily confirmed the feasibility of the pathway “breeding new diploid rice varieties by using polyploid as the vector for creating variation”, which provided a new idea and approach for rice breeding.

Key words: rice, polyploid, reverted diploid, InDel, indica-japonica attribute, genetic distance, heterosis

表1

用于籼粳属性鉴定的19对InDel分子标记及序列"

标记名称
Marker
正向引物DNA序列
Forward sequence (5′-3′)
反向引物DNA序列
Reverse sequence (5′-3′)
9311与日本晴片段差异
Fragment differences between 9311 and Nipponbare (bp)
R1M7 ATTCCTGGTTCTACATTACTTA CGCCTCACTAGAATATCGGA 37
R1M37 ATAGTTCGCCATCGTCAT ACACGCCATAGCAAGGAA 53
R2M10 CCCAGTCTGCTGCCATCT GAATGTATTTCAGTTCCAGTAAG 48
R2M50 CCTGAAGGAAATGATAGCAATAG GTTTTGTATGCTCTTCACTTGTC 42
R3M10 CCGAGTACCATTGCTTTC CTGCCATAGTTACTGCTCTGTT 37
R3M53 ACACTGGCTACGGCAAAG TTTGTTCGGGAATAATGATGC 35
R4M17 AGTGCTCGGTTTTGTTTTC GTCAGATATAATTGATGGATGTA 51
R5M13 GAGAAAGAGTGGAAGGAG AGTATCGTCAGGAGGGTC 32
R5M30 CTCAATTTCACCCATCCC CGCTCCGTCTCCAACCTC 46
R6M14 AAATGTCCATGTGTTTGCTTC CATGTGTGGAATGTGGTTG 34
R6M44 TTAGGAATAAAGGCTGGATA TTACCGTTAATAGGTGGAA 34
R7M7 ACCTTCCCTCCCCTTTTGAT AACTTGGTCTTCCTGTTTTATTG 67
R7M37 CAGCCCTAAATCTAAATACCC ACGTTGAGACAGGCGAGC 36
R8M33 CGAAAGAGGAGAGGGGTAGT CGAAAACGAGAAACAAATA 38
R9M42 CTATAAGACCAAAACGAAAACT GAAAACCATTGTGTCACTGTA 48
R10M17 TGAACAATAAACCACAGAAGCA CCCTTTATTCCCTCCTTTG 31
R11M23 AAGGTTGACAAGGACAGAAG TCGCAGGAATGGATAAAA 42
R12M10 ATCATTTCAGCCTGTGCC AGCTTAATAGGGGGGACG 47
R12M27 ATTTCATTGCCATCAGTT GTAATCTTCTATCCGTTCA 33

表2

依据籼型(Fi)或粳型(Fj)基因频率鉴定籼粳属性的InDel分类标准"

籼粳属性
Indica-japonica
attributes
基因频率 Gene frequency
籼型(Fi) Indica 粳型(Fj) Japonica
典型籼稻Typical indica 0.90-1.00 0-0.10
籼稻Indica 0.75-0.89 0.11-0.25
偏籼Indica cline 0.61-0.74 0.26-0.39
中间类型Intermediate 0.40-0.60 0.40-0.60
偏粳Japonica cline 0.26-0.39 0.61-0.74
粳稻Japonica 0.11-0.25 0.75-0.89
典型粳稻Typical japonica 0-0.10 0.90-1.00

表3

回复二倍体品系、不育系及其杂种的籼粳属性鉴定结果"

材料名称
Material
材料类型
Type
籼型基因频率(Fi)
Gene frequencies of indica
粳型基因频率(Fj)
Gene frequencies of japonica
籼粳属性鉴定结果
Indica-japonica attributes
identified by InDel markers
9311 籼稻对照品种Control variety of indica 1.000 0.000 典型籼稻Typical indica
日本晴Nipponbare 粳稻对照品种Control variety of japonica 0 1.000 典型粳稻Typical japonica
A3 回复二倍体Reverted diploid line 0.658 0.342 偏籼Indica cline
T1 回复二倍体Reverted diploid line 0.605 0.395 偏籼Indica cline
ST110 回复二倍体Reverted diploid line 0.868 0.132 籼稻Indica
ST112 回复二倍体Reverted diploid line 0.947 0.053 典型籼稻Typical indica
ST126 回复二倍体Reverted diploid line 0.789 0.211 籼稻Indica
ST130 回复二倍体Reverted diploid line 0.816 0.184 籼稻Indica
ST133 回复二倍体Reverted diploid line 0.789 0.211 籼稻Indica
ST141 回复二倍体Reverted diploid line 0.895 0.105 籼稻Indica
PA64S 籼稻不育系Indica sterile line 0.842 0.158 籼稻Indica
NK58S 粳稻不育系Japonica sterile line 0.105 0.895 粳稻Japonica
HYP1 杂交组合Hybrid rice 0.737 0.263 偏籼Indica cline
HYP2 杂交组合Hybrid rice 0.737 0.263 偏籼Indica cline
HYP3 杂交组合Hybrid rice 0.816 0.184 籼稻Indica
HYP4 杂交组合Hybrid rice 0.816 0.184 籼稻Indica
HYP5 杂交组合Hybrid rice 0.737 0.263 偏籼Indica cline
HYP6 杂交组合Hybrid rice 0.763 0.237 籼稻Indica
HYP7 杂交组合Hybrid rice 0.711 0.289 偏籼Indica cline
HYP8 杂交组合Hybrid rice 0.816 0.184 籼稻Indica
HYN1 杂交组合Hybrid rice 0.447 0.553 中间类型Intermediate
HYN2 杂交组合Hybrid rice 0.447 0.553 中间类型Intermediate
HYN3 杂交组合Hybrid rice 0.289 0.711 偏粳Japonica cline
HYN4 杂交组合Hybrid rice 0.289 0.711 偏粳Japonica cline
HYN5 杂交组合Hybrid rice 0.447 0.553 中间类型Intermediate
HYN6 杂交组合Hybrid rice 0.316 0.684 偏粳Japonica cline
HYN7 杂交组合Hybrid rice 0.316 0.684 偏粳Japonica cline
HYN8 杂交组合Hybrid rice 0.289 0.711 偏粳Japonica cline

表4

回复二倍体品系与不育系间的遗传距离"

父本
(回复二倍体品系)
Male parent
与母本(不育系)的遗传距离
Genetic distance between male and female parents
PA64S NK58S
A3 0.37 0.74
T1 0.42 0.68
ST110 0.26 0.95
ST112 0.21 0.89
ST126 0.32 0.89
ST130 0.21 0.89
ST133 0.26 0.89
ST141 0.26 0.95

图1

基于InDel分子标记的遗传相似系数聚类图 A: 亲本及杂种聚类图(母本培矮64S); B: 亲本及杂种聚类图(母本农垦58S)。"

表5

杂交组合及其父本的主要农艺性状"

材料/组合
Material/
combination
生育期PD (d) 株高
PH (cm)
单株有效穗数EP 每穗总粒数TG 每穗实粒数FG 结实率
SSR (%)
千粒重
TGW (g)
单株产量
YPP (g)
A3 118 135.14±1.42 11.50±1.22 308.05±11.83 267.25±12.73 86.76±2.52 26.08±0.68 80.15±11.37
T1 123 133.64±1.93 12.50±1.58 305.70±8.18 254.95±8.57 83.40±0.91 25.70±0.77 81.89±9.70
ST110 140 124.28±2.02 12.40±1.43 207.37±9.20 184.33±10.96 88.89±1.91 27.06±0.67 61.85±8.57
ST112 136 123.24±2.19 11.60±1.51 210.55±14.88 186.51±12.74 88.58±2.54 30.80±0.48 66.63±8.94
ST126 130 123.82±1.30 14.20±1.14 269.44±23.02 229.79±16.62 85.29±3.93 22.48±0.56 73.35±7.16
ST130 133 124.45±1.93 13.60±1.35 270.00±22.36 232.65±16.22 86.17±2.61 23.53±0.69 74.44±10.83
ST133 135 118.62±1.44 13.80±1.48 246.94±16.64 217.76±14.75 88.18±1.11 25.55±0.49 76.78±10.29
ST141 132 130.03±1.83 11.60±1.07 207.96±9.77 193.62±8.68 93.10±1.58 30.12±0.78 67.65±6.17
HYP1 124 140.14±1.18 14.30±1.34 338.16±22.07 277.86±12.07 82.17±3.65 23.74±0.57 94.33±7.53
HYP2 130 139.36±1.12 15.20±0.92 384.31±8.87 312.76±9.94 81.38±2.68 23.69±0.33 112.63±9.81
HYP3 137 128.64±1.47 15.40±1.07 289.04±12.75 253.96±13.55 87.86±2.39 25.51±0.50 99.76±8.21
HYP4 139 125.06±1.13 14.40±0.84 277.27±15.42 225.31±13.98 81.26±2.08 26.58±0.41 86.23±9.49
HYP5 136 127.74±0.69 14.80±1.14 370.73±20.99 301.37±15.72 81.29±0.93 22.85±0.60 101.93±9.35
HYP6 135 134.64±1.38 14.00±1.41 335.93±11.54 305.76±12.46 91.02±2.44 22.61±0.40 96.78±12.05
HYP7 140 129.83±1.87 13.40±1.35 338.17±18.98 309.46±16.91 91.51±1.04 23.75±0.61 98.48±13.52
HYP8 135 131.77±1.35 13.90±0.99 265.30±14.24 222.73±13.38 83.95±2.02 27.16±0.62 84.10±10.89
HYN1 135 97.23±2.35 29.50±1.65 92.28±5.40 13.32±2.37 14.13±1.86 26.52±1.48 10.34±1.79
HYN2 132 101.97±2.36 32.00±2.54 105.31±8.24 27.16±3.45 25.71±2.15 25.32±1.26 21.88±3.71
HYN3 142 96.35±2.29 36.60±2.01 161.26±6.80 18.58±2.09 11.80±1.26 24.37±1.48 17.13±3.14
HYN4 145 87.93±2.51 25.20±1.81 127.12±2.52 11.46±1.00 8.70±0.73 25.06±1.44 6.89±1.03
HYN5 140 80.08±2.32 33.50±2.80 108.46±5.04 7.79±0.62 7.25±0.56 26.72±1.36 7.27±0.49
HYN6 137 100.30±2.94 36.50±2.27 107.89±5.67 15.60±1.87 14.81±1.59 25.26±1.29 14.95±2.03
HYN7 140 101.00±2.76 33.30±2.45 166.40±10.39 13.15±1.50 7.55±0.61 24.62±0.75 10.56±1.43
HYN8 140 97.79±2.34 23.20±1.87 101.15±7.16 7.82±0.92 7.90±0.61 25.08±1.13 4.61±0.76
丰两优4号(对照)
Fengliangyou 4 (CK)
135 132.19±1.39 10.60±1.17 278.94±11.35 245.76±13.68 88.10±2.39 29.63±0.56 77.19±10.45

表6

各杂交组合产量相关性状超父本优势的描述性统计"

统计数值
Statistical value
单株有效穗数
EP
每穗总粒数
TG
每穗实粒数
FG
结实率
SSR
千粒重
TGW
单株产量
YPP
均值Mean 14.80 29.14 25.62 -2.78 -6.91 33.43
极差Range 27.25 29.61 38.14 15.46 15.36 43.62
最大值Max. 24.35 39.39 42.11 5.63 1.66 61.30
最小值Min. -2.90 9.78 3.97 -9.83 -13.70 17.68
正向优势组合数PDC 7 8 8 2 1 8
负向优势组合数NDC 1 0 0 6 7 0

图2

杂交组合产量相关性状的超父本优势 EP: 单株有效穗数; TG: 每穗总粒数; FG: 每穗实粒数; SSR: 结实率; TGW: 千粒重; YPP: 单株产量。"

表7

杂交组合产量相关性状超标优势的描述性统计(对照丰两优4号)"

统计数值
Statistical value
单株有效穗数
EP
每穗总粒数
TG
每穗实粒数
FG
结实率
SSR
千粒重
TGW
单株产量
YPP
均值Mean 36.08 16.46 12.37 -3.46 -17.36 25.38
极差Range 18.86 42.66 36.63 11.64 15.38 36.97
最大值Max. 45.28 37.77 27.26 3.87 -8.32 45.92
最小值Min. 26.42 -4.89 -9.37 -7.77 -23.70 8.95
正向优势组合数PDC 8 6 6 2 0 8
负向优势组合数NDC 0 2 2 6 8 0

图3

杂交组合产量相关性状的超标优势(对照丰两优4号) EP: 单株有效穗数; TG: 每穗总粒数; FG: 每穗实粒数; SSR: 结实率; TGW: 千粒重; YPP: 单株产量。"

表8

亲本InDel遗传距离与产量相关性状杂种优势的相关系数"

性状
Trait
亲本遗传距离
GD
单株有效穗数
EP
每穗总粒数
TG
每穗实粒数
FG
结实率
SSR
千粒重
TGW
单株有效穗数EP 0.554
每穗总粒数TG 0.761* 0.198
每穗实粒数FG 0.536 -0.008 0.920**
结实率SSR -0.468 -0.460 -0.098 0.298
千粒重TGW -0.527 -0.005 -0.880** -0.941** -0.241
单株产量YPP 0.736* 0.529 0.847** 0.806* 0.010 -0.680
[1] FAO, IFAD, UNICEF, WFP, WHO. The State of Food Security and Nutrition in the World 2022. FAO, 2022. DOI: https://doi.org/10.4060/cc0639en.
doi: https://doi.org/10.4060/cc0639en
[2] Chen R Z, Deng Y W, Ding Y L, Guo J X, Qiu J, Wang B, Wang C S, Xie Y Y, Zhang Z H, Chen J X, Chen L T, Chu C C, He G C, He Z H, Huang X H, Xing Y Z, Yang S H, Xie D X, Liu Y G, Li J Y. Rice functional genomics: decades’ efforts and roads ahead. Sci China Life Sci, 2022, 65: 33-92.
doi: 10.1007/s11427-021-2024-0
[3] Karki S, Rizal G, Quick W P. Improvement of photosynthesis in rice (Oryza sativa L.) by inserting the C4 pathway. Rice, 2013, 6: 28-36.
doi: 10.1186/1939-8433-6-28
[4] Khush G S. Strategies for increasing the yield potential of cereals: case of rice as an example. Plant Breed, 2013, 132: 433-436.
[5] 孙传清, 王象坤, 吉村淳, 岩田伸夫. 普通野生稻和亚洲栽培稻遗传多样性的研究. 遗传学报, 2000, 27: 227-234.
Sun C Q, Wang X K, Yoshimura A, Iwata N.A study of the genetic diversity of common wild rice (O. rufipogon Griff.) and cultivated rice (O. sativa L.) by RFLP analysis. Acta Genet Sin, 2000, 27: 227-234. (in Chinese with English abstract)
[6] Ge S, Sang T, Lu B R, Hong D Y. Phylogeny of rice genomes with emphasis on origins of allotetraploid species. Proc Natl Acad Sci USA, 1999, 96: 14400-14405.
doi: 10.1073/pnas.96.25.14400 pmid: 10588717
[7] Tian C G, Xiong Y Q, Liu T Y, Sun S H, Chen L B, Chen M S. Evidence for an ancient whole-genome duplication event in rice and other cereals. Acta Genet Sin, 2005, 32: 519-527.
[8] Soltis P S. Ancient and recent polyploid in angiosperm. New Phytol, 2005, 166: 1-5.
doi: 10.1111/nph.2005.166.issue-1
[9] Otto S P. The evolutionary consequences of polyploidy. Cell, 2007, 131: 452-462.
doi: 10.1016/j.cell.2007.10.022 pmid: 17981114
[10] Jiang W K, Liu Y L, Xia E H, Gao L Z. Prevalent role of gene features in determining evolutionary fates of whole-genome duplication duplicated genes in flowering plants. Plant Physiol, 2013, 161: 1844-1861.
doi: 10.1104/pp.112.200147
[11] Lagudah E S, Appels R. Wheat as a model system. In: Chapman G P, ed. Grass Evolution and Domestication. Cambridge: Cambridge University Press, 1992. pp 225-265.
[12] 蔡得田, 袁隆平, 卢兴桂. 二十一世纪水稻育种新战略: II. 利用远缘杂交和多倍体双重优势进行超级稻育种. 作物学报, 2001, 27: 110-116.
Cai D T, Yuan L P, Lu X G. A new strategy of rice breeding in the 21st century: II. Searching a new pathway of rice breeding by utilization of double heterosis of wide cross and polyploidization. Acta Agron Sin, 2001, 27: 110-116 (in Chinese with English abstract).
[13] Cai D T, Chen J G, Chen D L, Dai B C, Zhang W, Song Z J, Yang Z F, Du C Q, Tang Z Q, He Y C, Zhang D S, He G C, Zhu Y G. The breeding of two polyploid rice lines with the characteristic of polyploid meiosis stability. Sci China (Ser C, Life Sci), 2007, 50: 356-366.
[14] 李丽冰, 周晓玲, 王杰, 梅潇, 张献华, 宋兆建, 蔡得田. 多倍体水稻优良回复二倍体品系的米质分析. 农业科学, 2021, 11(3): 184-190.
Li L B, Zhou X L, Wang J, Mei X, Zhang X H, Song Z J, Cai D T. Analysis of the grain quality of elite diploid rice lines reverted from polyploid rice. Hans J Agric Sci, 2021, 11(3): 184-190. (in Chinese with English abstract)
[15] 宋兆建, 蔡得田, 王维. 利用隔代回交构建多倍体水稻PMeS近等基因系的方法. ZL201510015646.1, (2015-01-13).
Song Z J, Cai D T, Wang W.The method of breeding PMeS near isogenic line in polyploid rice by alternate-generation backcross.ZL201510015646.1, (2015-01-13) (Chinese Patent).
[16] 卢宝荣, 蔡星星, 金鑫. 籼稻和粳稻的高效分子鉴定方法及其在水稻育种和进化研究中的意义. 自然科学进展, 2009, 19: 628-638.
Lu B R, Cai X X, Jin X. Efficiently molecular identification method of indica and japonica rice and it’s significance in rice breeding and evolution research. Prog Nat Sci, 2009, 19: 628-638. (in Chinese)
[17] 王林友, 张礼霞, 勾晓霞, 范宏环, 金庆生, 王建军. 利用InDel标记鉴定浙优系列杂交稻籼粳属性和预测杂种优势. 中国农业科学, 2014, 47: 1243-1255.
doi: 10.3864/j.issn.0578-1752.2014.07.001
Wang L Y, Zhang L X, Gou X X, Fan H H, Jin Q S, Wang J J. Identification of indica-japonica attribute and prediction of heterosis of Zheyou hybrids rice using InDel molecular markers. Sci Agric Sin, 2014, 47: 1243-1255. (in Chinese with English abstract)
[18] Nei M, Li W H. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA, 1979, 76: 5269-5273.
doi: 10.1073/pnas.76.10.5269 pmid: 291943
[19] 盖钧镒. 作物育种学各论(第2版). 北京: 中国农业出版社, 2006. pp 47-49
Gai J Y. Crop Breeding, 2nd edn. Beijing: China Agriculture Press, 2006. pp 47-49. (in Chinese)
[20] Ou-Yang Y D, Li X, Zhang Q F. Understanding the genetic and molecular constitutions of heterosis for developing hybrid rice. J Genet Genomics, 2022, 49: 385-393.
doi: 10.1016/j.jgg.2022.02.022 pmid: 35276387
[21] 米甲明, 欧阳亦聃. 水稻籼粳亚种间杂种优势利用的理论与实践. 华中农业大学学报, 2022, 41(1): 40-47.
Mi J M, Ou-Yang Y D. Theory and practice of utilizing xian-geng inter-subspecific heterosis in rice. J Huazhong Agric Univ, 2022, 41(1): 40-47. (in Chinese with English abstract)
[22] 袁隆平. 杂交水稻的育种战略设想. 杂交水稻, 1987, 2(1): 1-3.
Yuan L P. Strategy assumption of hybrid rice breeding. Hybrid Rice, 1987, 2(1): 1-3. (in Chinese)
[23] 杨振玉, 高勇, 赵迎春, 魏耀林, 华泽田, 张忠旭, 高日玲. 水稻籼粳亚种间杂种优势利用研究进展. 作物学报, 1996, 22: 422-429.
Yang Z Y, Gao Y, Zhao Y C, Wei Y L, Hua Z T, Zhang Z X, Gao R L. Progress in research on utilization of vigor in hybrids between indica and japonica rice subspecies. Acta Agron Sin, 1996, 22: 422-429. (in Chinese with English abstract)
[24] Ikehashi H, Araki H. Varietal screening of compatibility types revealed in F1 fertility of distant crosses in rice. Jpn J Breed, 1984, 34: 304-313.
doi: 10.1270/jsbbs1951.34.304
[25] 吕川根, 邹江石. 两系法杂交稻两优培九育种的理论与实践. 中国农业科学, 2016, 49: 1635-1645.
doi: 10.3864/j.issn.0578-1752.2016.09.001
Lyu C G, Zou J S. Theory and practice on breeding of two-line hybrid rice, Liangyoupeijiu. Sci Agric Sin, 2016, 49: 1635-1645. (in Chinese with English abstract)
[26] 沈希宏, 陈深广, 曹立勇, 占小登, 陈代波, 吴伟明, 程式华. 超级杂交稻协优9308重组自交系的分子遗传图谱构建. 分子植物育种, 2008, 6: 861-866.
Shen X H, Chen S G, Cao L Y, Zhan X D, Chen D B, Wu W M, Cheng S H. Construction of genetic linkage map based on a RIL population derived from super hybrid rice, XY9308. Mol Plant Breed, 2008, 6: 861-866. (in Chinese with English abstract)
[27] 许德海, 王晓燕, 马荣荣, 禹盛苗, 朱练峰, 欧阳由男, 金千瑜. 重穗型籼粳杂交稻甬优6号超高产生理特性. 中国农业科学, 2010, 43: 4796-4804.
Xu D H, Wang X Y, Ma R R, Yu S M, Zhu L F, Ou-Yang Y N, Jin Q Y.Analysis on physiological properties of the heavy panicle type of indica-japonica inter-subspecific hybrid rice Yongyou 6. Sci Agric Sin, 2010, 43: 4796-4804. (in Chinese with English abstract)
[28] 韦还和, 李超, 张洪程, 孙玉海, 马荣荣, 王晓燕, 杨筠文, 戴其根, 霍中洋, 许轲, 魏海燕, 郭保卫. 水稻甬优12不同产量群体的株型特征. 作物学报, 2014, 40: 2160-2168.
doi: 10.3724/SP.J.1006.2014.02160
Wei H H, Li C, Zhang H C, Sun Y H, Ma R R, Wang X Y, Yang J W, Dai Q G, Huo Z Y, Xu K, Wei H Y, Guo B W.Plant-type characteristics in populations with different yield of Yongyou 12. Acta Agron Sin, 2014, 40: 2160-2168. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2014.02160
[29] 吴明国, 林建荣, 宋昕蔚, 阮关海. 籼粳亚种间杂交水稻新组合春优84的选育. 杂交水稻, 2014, 29(2): 19-21.
Wu M G, Lin J R, Song X W, Ruan G H.Breeding of new japonica-indica hybrid rice combination Chunyou 84. Hybrid Rice, 2014, 29(2): 19-21. (in Chinese with English abstract)
[30] 王林友, 王建军, 张礼霞, 金庆生, 阮关海, 洪晓富, 何祖华. 杂交稻浙优18特征特性及栽培技术. 浙江农业科学, 2013, (4): 364-366.
Wang L Y, Wang J J, Zhang L X, Jin Q S, Ruan G H, Hong X F, He Z H. Characteristics and cultivation techniques of hybrid rice, Zheyou 18. J Zhejiang Agric Sci, 2013, (4): 364-366. (in Chinese)
[31] 宋昕蔚, 林建荣, 吴明国. 水稻籼粳亚种间杂种优势利用研究进展与展望. 科学通报, 2016, 61: 3778-3786.
Song X W, Lin J R, Wu M G. Review and prospect on utilization of heterosis between indica-japonica rice subspecies. Chin Sci Bull, 2016, 61: 3778-3786. (in Chinese with English abstract)
doi: 10.1360/N972016-01039
[32] 赵小燕, 叶胜海, 李小华, 翟荣荣, 余鹏, 金庆生, 张小明. InDel标记鉴定水稻籼粳属性及预测杂种优势. 浙江农业学报, 2015, 27: 1309-1316.
Zhao X Y, Ye S H, Li X H, Zhai R R, Yu P, Jin Q S, Zhang X M. Identification of indica-japonica attribute and prediction of heterosis using InDel markers in rice. Acta Agric Zhejiang, 2015, 27: 1309-1316. (in Chinese with English abstract)
[33] 杨继. 植物多倍体基因组的形成与进化. 植物分类学报, 2001, 39: 357-371.
Yang J. The formation and evolution of polyploid genomes in plants. Acta Phytotaxon Sin, 2001, 39: 357-371. (in Chinese with English abstract)
[34] Conant G C, Birchler J A, Pires J C. Dosage, duplication, and diploidization: clarifying the interplay of multiple models for duplicate gene evolution over time. Curr Opin Plant Biol, 2014, 19: 91-98.
doi: 10.1016/j.pbi.2014.05.008 pmid: 24907529
[35] Moghe G D, Shiu S H. The causes and molecular consequences of polyploidy in flowering plants. Ann NY Acad Sci, 2014, 1320: 16-34.
doi: 10.1111/nyas.12466 pmid: 24903334
[36] Wendel J F. Genome evolution in polyploids. Plant Mol Biol, 2000, 42: 225-249.
pmid: 10688139
[37] Liu B, Wendel J F. Non-Mendelian phenomena in allopolyploid genome evolution. Curr Genomics, 2002, 3: 489-505.
doi: 10.2174/1389202023350255
[1] 徐高峰, 申时才, 张付斗, 杨韶松, 金桂梅, 郑凤萍, 温丽娜, 张云, 吴冉迪. 土壤微生物对长雄野生稻及其化感潜力后代抑草作用的影响[J]. 作物学报, 2023, 49(9): 2562-2571.
[2] 胡艳娟, 薛丹, 耿嫡, 朱末, 王天穹, 王晓雪. 水稻OsCDF1基因突变效应及其基因组变异分析[J]. 作物学报, 2023, 49(9): 2362-2372.
[3] 刘凯, 陈积金, 刘帅, 陈旭, 赵新茹, 孙尚, 薛超, 龚志云. 低温胁迫下组蛋白H3K18cr在水稻全基因组上的动态变化特征解析[J]. 作物学报, 2023, 49(9): 2398-2411.
[4] 唐杰, 龙湍, 吴春瑜, 李新鹏, 曾翔, 吴永忠, 黄培劲. 水稻OsGMS2基因的鉴定及其核不育系种子繁殖体系构建[J]. 作物学报, 2023, 49(8): 2025-2038.
[5] 韦新宇, 曾跃辉, 杨旺兴, 肖长春, 候新坡, 黄建鸿, 邹文广, 许旭明. 利用CRISPR-Cas9技术编辑Badh2基因创制优质香型籼稻三系不育系[J]. 作物学报, 2023, 49(8): 2144-2159.
[6] 贾璐绮, 孙悠, 田然, 张学菲, 代永东, 崔志波, 李杨羊, 冯新宇, 桑贤春, 王晓雯. 水稻种子快速萌发突变体rgs1的鉴定及调控基因克隆[J]. 作物学报, 2023, 49(8): 2288-2295.
[7] 邓艾兴, 李歌星, 吕玉平, 刘猷红, 孟英, 张俊, 张卫建. 齐穗后遮阴时长对西北稻区粳稻产量和品质的影响[J]. 作物学报, 2023, 49(7): 1930-1941.
[8] 许娜, 徐铨, 徐正进, 陈温福. 水稻株型生理生态与遗传基础研究进展[J]. 作物学报, 2023, 49(7): 1735-1746.
[9] 林孝欣, 黄明江, 韦祎, 朱洪慧, 王子怡, 李忠成, 庄慧, 李彦羲, 李云峰, 陈锐. 水稻籽粒伸长突变体lgdp的鉴定与基因定位[J]. 作物学报, 2023, 49(6): 1699-1707.
[10] 丁杰荣, 马雅美, 潘发枝, 江立群, 黄文洁, 孙炳蕊, 张静, 吕树伟, 毛兴学, 于航, 李晨, 刘清. 泛素受体蛋白OsDSK2b负向调控水稻叶瘟和渗透胁迫抗性[J]. 作物学报, 2023, 49(6): 1466-1479.
[11] 何永明, 张芳. 生长素调控水稻颖花开放的效应研究[J]. 作物学报, 2023, 49(6): 1690-1698.
[12] 陶玥玥, 盛雪雯, 徐坚, 沈园, 王海候, 陆长婴, 沈明星. 长三角水稻-油菜周年两熟温光资源分配与利用特征[J]. 作物学报, 2023, 49(5): 1327-1338.
[13] 韦海敏, 陶伟科, 周燕, 闫飞宇, 李伟玮, 丁艳锋, 刘正辉, 李刚华. 硅素穗肥优化滨海盐碱地水稻矿质元素吸收分配提高耐盐性[J]. 作物学报, 2023, 49(5): 1339-1349.
[14] 戴文慧, 朱琪, 张小芳, 吕沈阳, 项显波, 马涛, 陈宇杰, 朱世华, 丁沃娜. 一个水稻脆秆突变体bc21的鉴定和基因定位[J]. 作物学报, 2023, 49(5): 1426-1431.
[15] 陶顺玉, 吴贝, 刘念, 罗怀勇, 黄莉, 周小静, 陈伟刚, 郭建斌, 喻博伦, 雷永, 廖伯寿, 姜慧芳. 花生InDel标记开发及其在含油量QTL定位中的应用[J]. 作物学报, 2023, 49(5): 1222-1230.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .