作物学报 ›› 2023, Vol. 49 ›› Issue (8): 2039-2050.doi: 10.3724/SP.J.1006.2023.22057
宋兆建1,*(), 冯紫旖1, 屈天歌1, 吕品苍1, 杨晓璐1, 湛明月1, 张献华1, 何玉池1, 刘育华2, 蔡得田1,2,*()
SONG Zhao-Jian1,*(), FENG Zi-Yi1, QU Tian-Ge1, LYU Pin-Cang1, YANG Xiao-Lu1, ZHAN Ming-Yue1, ZHANG Xian-Hua1, HE Yu-Chi1, LIU Yu-Hua2, CAI De-Tian1,2,*()
摘要:
本研究以8个四倍体水稻回复二倍体品系为材料, 采用InDel分子标记法鉴定其籼粳属性; 同时以回复二倍体品系为父本, 分别与籼稻光温敏雄性不育系培矮64S、粳稻光温敏雄性不育系农垦58S配制杂交组合, 进行亲本及杂种的遗传距离及聚类分析, 考察杂种及其父本的产量相关性状, 分析杂种的超父本优势、超标优势; 另外, 对亲本遗传距离与杂种优势的相关性进行分析, 探讨利用亲本遗传距离预测杂种优势的可行性。结果表明: (1) 回复二倍体品系的籼型基因频率分布在0.605~0.947之间, 所有品系都兼有籼稻和粳稻遗传成分, 但籼粳成分比例各不相同。(2) 回复二倍体品系和培矮64S之间的遗传距离在0.21~0.42之间, 回复二倍体品系和农垦58S之间的遗传距离在0.68~0.95之间; 籼粳属性相同或相近的材料聚为一类, 清晰显示了材料间的亲缘关系。(3) 回复二倍体品系的杂种优势利用需要广亲和基因的参与, 以具有广亲和基因的培矮64S为母本配制的杂交组合在单株有效穗数、每穗总粒数和每穗实粒数方面超父本优势和超标优势明显; 在综合后的单株产量上8个杂交组合都表现出超父本优势和超标优势, 尤其是杂交组合HYP2单株产量超标优势突出, 高达45.92%。(4) 亲本遗传距离与杂种F1的每穗总粒数和单株产量呈显著正相关, 说明InDel遗传距离可以用于杂种优势预测。研究证实了籼粳亚种间四倍体水稻的回复二倍体品系兼有籼稻和粳稻遗传成分, 遗传多样性丰富, 利用这些回复二倍体品系能够配制出超强杂种优势组合, 为通过以籼粳中间型品系与广亲和光温敏雄性不育系配组实现籼粳亚种间杂种优势利用提供了理论依据和参考; 同时初步证实了“以多倍体为变异载体选育回复二倍体水稻”育种途径的可行性, 为水稻育种提供了新的思路和途径。
[1] |
FAO, IFAD, UNICEF, WFP, WHO. The State of Food Security and Nutrition in the World 2022. FAO, 2022. DOI: https://doi.org/10.4060/cc0639en.
doi: https://doi.org/10.4060/cc0639en |
[2] |
Chen R Z, Deng Y W, Ding Y L, Guo J X, Qiu J, Wang B, Wang C S, Xie Y Y, Zhang Z H, Chen J X, Chen L T, Chu C C, He G C, He Z H, Huang X H, Xing Y Z, Yang S H, Xie D X, Liu Y G, Li J Y. Rice functional genomics: decades’ efforts and roads ahead. Sci China Life Sci, 2022, 65: 33-92.
doi: 10.1007/s11427-021-2024-0 |
[3] |
Karki S, Rizal G, Quick W P. Improvement of photosynthesis in rice (Oryza sativa L.) by inserting the C4 pathway. Rice, 2013, 6: 28-36.
doi: 10.1186/1939-8433-6-28 |
[4] | Khush G S. Strategies for increasing the yield potential of cereals: case of rice as an example. Plant Breed, 2013, 132: 433-436. |
[5] | 孙传清, 王象坤, 吉村淳, 岩田伸夫. 普通野生稻和亚洲栽培稻遗传多样性的研究. 遗传学报, 2000, 27: 227-234. |
Sun C Q, Wang X K, Yoshimura A, Iwata N.A study of the genetic diversity of common wild rice (O. rufipogon Griff.) and cultivated rice (O. sativa L.) by RFLP analysis. Acta Genet Sin, 2000, 27: 227-234. (in Chinese with English abstract) | |
[6] |
Ge S, Sang T, Lu B R, Hong D Y. Phylogeny of rice genomes with emphasis on origins of allotetraploid species. Proc Natl Acad Sci USA, 1999, 96: 14400-14405.
doi: 10.1073/pnas.96.25.14400 pmid: 10588717 |
[7] | Tian C G, Xiong Y Q, Liu T Y, Sun S H, Chen L B, Chen M S. Evidence for an ancient whole-genome duplication event in rice and other cereals. Acta Genet Sin, 2005, 32: 519-527. |
[8] |
Soltis P S. Ancient and recent polyploid in angiosperm. New Phytol, 2005, 166: 1-5.
doi: 10.1111/nph.2005.166.issue-1 |
[9] |
Otto S P. The evolutionary consequences of polyploidy. Cell, 2007, 131: 452-462.
doi: 10.1016/j.cell.2007.10.022 pmid: 17981114 |
[10] |
Jiang W K, Liu Y L, Xia E H, Gao L Z. Prevalent role of gene features in determining evolutionary fates of whole-genome duplication duplicated genes in flowering plants. Plant Physiol, 2013, 161: 1844-1861.
doi: 10.1104/pp.112.200147 |
[11] | Lagudah E S, Appels R. Wheat as a model system. In: Chapman G P, ed. Grass Evolution and Domestication. Cambridge: Cambridge University Press, 1992. pp 225-265. |
[12] | 蔡得田, 袁隆平, 卢兴桂. 二十一世纪水稻育种新战略: II. 利用远缘杂交和多倍体双重优势进行超级稻育种. 作物学报, 2001, 27: 110-116. |
Cai D T, Yuan L P, Lu X G. A new strategy of rice breeding in the 21st century: II. Searching a new pathway of rice breeding by utilization of double heterosis of wide cross and polyploidization. Acta Agron Sin, 2001, 27: 110-116 (in Chinese with English abstract). | |
[13] | Cai D T, Chen J G, Chen D L, Dai B C, Zhang W, Song Z J, Yang Z F, Du C Q, Tang Z Q, He Y C, Zhang D S, He G C, Zhu Y G. The breeding of two polyploid rice lines with the characteristic of polyploid meiosis stability. Sci China (Ser C, Life Sci), 2007, 50: 356-366. |
[14] | 李丽冰, 周晓玲, 王杰, 梅潇, 张献华, 宋兆建, 蔡得田. 多倍体水稻优良回复二倍体品系的米质分析. 农业科学, 2021, 11(3): 184-190. |
Li L B, Zhou X L, Wang J, Mei X, Zhang X H, Song Z J, Cai D T. Analysis of the grain quality of elite diploid rice lines reverted from polyploid rice. Hans J Agric Sci, 2021, 11(3): 184-190. (in Chinese with English abstract) | |
[15] | 宋兆建, 蔡得田, 王维. 利用隔代回交构建多倍体水稻PMeS近等基因系的方法. ZL201510015646.1, (2015-01-13). |
Song Z J, Cai D T, Wang W.The method of breeding PMeS near isogenic line in polyploid rice by alternate-generation backcross.ZL201510015646.1, (2015-01-13) (Chinese Patent). | |
[16] | 卢宝荣, 蔡星星, 金鑫. 籼稻和粳稻的高效分子鉴定方法及其在水稻育种和进化研究中的意义. 自然科学进展, 2009, 19: 628-638. |
Lu B R, Cai X X, Jin X. Efficiently molecular identification method of indica and japonica rice and it’s significance in rice breeding and evolution research. Prog Nat Sci, 2009, 19: 628-638. (in Chinese) | |
[17] |
王林友, 张礼霞, 勾晓霞, 范宏环, 金庆生, 王建军. 利用InDel标记鉴定浙优系列杂交稻籼粳属性和预测杂种优势. 中国农业科学, 2014, 47: 1243-1255.
doi: 10.3864/j.issn.0578-1752.2014.07.001 |
Wang L Y, Zhang L X, Gou X X, Fan H H, Jin Q S, Wang J J. Identification of indica-japonica attribute and prediction of heterosis of Zheyou hybrids rice using InDel molecular markers. Sci Agric Sin, 2014, 47: 1243-1255. (in Chinese with English abstract) | |
[18] |
Nei M, Li W H. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA, 1979, 76: 5269-5273.
doi: 10.1073/pnas.76.10.5269 pmid: 291943 |
[19] | 盖钧镒. 作物育种学各论(第2版). 北京: 中国农业出版社, 2006. pp 47-49 |
Gai J Y. Crop Breeding, 2nd edn. Beijing: China Agriculture Press, 2006. pp 47-49. (in Chinese) | |
[20] |
Ou-Yang Y D, Li X, Zhang Q F. Understanding the genetic and molecular constitutions of heterosis for developing hybrid rice. J Genet Genomics, 2022, 49: 385-393.
doi: 10.1016/j.jgg.2022.02.022 pmid: 35276387 |
[21] | 米甲明, 欧阳亦聃. 水稻籼粳亚种间杂种优势利用的理论与实践. 华中农业大学学报, 2022, 41(1): 40-47. |
Mi J M, Ou-Yang Y D. Theory and practice of utilizing xian-geng inter-subspecific heterosis in rice. J Huazhong Agric Univ, 2022, 41(1): 40-47. (in Chinese with English abstract) | |
[22] | 袁隆平. 杂交水稻的育种战略设想. 杂交水稻, 1987, 2(1): 1-3. |
Yuan L P. Strategy assumption of hybrid rice breeding. Hybrid Rice, 1987, 2(1): 1-3. (in Chinese) | |
[23] | 杨振玉, 高勇, 赵迎春, 魏耀林, 华泽田, 张忠旭, 高日玲. 水稻籼粳亚种间杂种优势利用研究进展. 作物学报, 1996, 22: 422-429. |
Yang Z Y, Gao Y, Zhao Y C, Wei Y L, Hua Z T, Zhang Z X, Gao R L. Progress in research on utilization of vigor in hybrids between indica and japonica rice subspecies. Acta Agron Sin, 1996, 22: 422-429. (in Chinese with English abstract) | |
[24] |
Ikehashi H, Araki H. Varietal screening of compatibility types revealed in F1 fertility of distant crosses in rice. Jpn J Breed, 1984, 34: 304-313.
doi: 10.1270/jsbbs1951.34.304 |
[25] |
吕川根, 邹江石. 两系法杂交稻两优培九育种的理论与实践. 中国农业科学, 2016, 49: 1635-1645.
doi: 10.3864/j.issn.0578-1752.2016.09.001 |
Lyu C G, Zou J S. Theory and practice on breeding of two-line hybrid rice, Liangyoupeijiu. Sci Agric Sin, 2016, 49: 1635-1645. (in Chinese with English abstract) | |
[26] | 沈希宏, 陈深广, 曹立勇, 占小登, 陈代波, 吴伟明, 程式华. 超级杂交稻协优9308重组自交系的分子遗传图谱构建. 分子植物育种, 2008, 6: 861-866. |
Shen X H, Chen S G, Cao L Y, Zhan X D, Chen D B, Wu W M, Cheng S H. Construction of genetic linkage map based on a RIL population derived from super hybrid rice, XY9308. Mol Plant Breed, 2008, 6: 861-866. (in Chinese with English abstract) | |
[27] | 许德海, 王晓燕, 马荣荣, 禹盛苗, 朱练峰, 欧阳由男, 金千瑜. 重穗型籼粳杂交稻甬优6号超高产生理特性. 中国农业科学, 2010, 43: 4796-4804. |
Xu D H, Wang X Y, Ma R R, Yu S M, Zhu L F, Ou-Yang Y N, Jin Q Y.Analysis on physiological properties of the heavy panicle type of indica-japonica inter-subspecific hybrid rice Yongyou 6. Sci Agric Sin, 2010, 43: 4796-4804. (in Chinese with English abstract) | |
[28] |
韦还和, 李超, 张洪程, 孙玉海, 马荣荣, 王晓燕, 杨筠文, 戴其根, 霍中洋, 许轲, 魏海燕, 郭保卫. 水稻甬优12不同产量群体的株型特征. 作物学报, 2014, 40: 2160-2168.
doi: 10.3724/SP.J.1006.2014.02160 |
Wei H H, Li C, Zhang H C, Sun Y H, Ma R R, Wang X Y, Yang J W, Dai Q G, Huo Z Y, Xu K, Wei H Y, Guo B W.Plant-type characteristics in populations with different yield of Yongyou 12. Acta Agron Sin, 2014, 40: 2160-2168. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2014.02160 |
|
[29] | 吴明国, 林建荣, 宋昕蔚, 阮关海. 籼粳亚种间杂交水稻新组合春优84的选育. 杂交水稻, 2014, 29(2): 19-21. |
Wu M G, Lin J R, Song X W, Ruan G H.Breeding of new japonica-indica hybrid rice combination Chunyou 84. Hybrid Rice, 2014, 29(2): 19-21. (in Chinese with English abstract) | |
[30] | 王林友, 王建军, 张礼霞, 金庆生, 阮关海, 洪晓富, 何祖华. 杂交稻浙优18特征特性及栽培技术. 浙江农业科学, 2013, (4): 364-366. |
Wang L Y, Wang J J, Zhang L X, Jin Q S, Ruan G H, Hong X F, He Z H. Characteristics and cultivation techniques of hybrid rice, Zheyou 18. J Zhejiang Agric Sci, 2013, (4): 364-366. (in Chinese) | |
[31] | 宋昕蔚, 林建荣, 吴明国. 水稻籼粳亚种间杂种优势利用研究进展与展望. 科学通报, 2016, 61: 3778-3786. |
Song X W, Lin J R, Wu M G. Review and prospect on utilization of heterosis between indica-japonica rice subspecies. Chin Sci Bull, 2016, 61: 3778-3786. (in Chinese with English abstract)
doi: 10.1360/N972016-01039 |
|
[32] | 赵小燕, 叶胜海, 李小华, 翟荣荣, 余鹏, 金庆生, 张小明. InDel标记鉴定水稻籼粳属性及预测杂种优势. 浙江农业学报, 2015, 27: 1309-1316. |
Zhao X Y, Ye S H, Li X H, Zhai R R, Yu P, Jin Q S, Zhang X M. Identification of indica-japonica attribute and prediction of heterosis using InDel markers in rice. Acta Agric Zhejiang, 2015, 27: 1309-1316. (in Chinese with English abstract) | |
[33] | 杨继. 植物多倍体基因组的形成与进化. 植物分类学报, 2001, 39: 357-371. |
Yang J. The formation and evolution of polyploid genomes in plants. Acta Phytotaxon Sin, 2001, 39: 357-371. (in Chinese with English abstract) | |
[34] |
Conant G C, Birchler J A, Pires J C. Dosage, duplication, and diploidization: clarifying the interplay of multiple models for duplicate gene evolution over time. Curr Opin Plant Biol, 2014, 19: 91-98.
doi: 10.1016/j.pbi.2014.05.008 pmid: 24907529 |
[35] |
Moghe G D, Shiu S H. The causes and molecular consequences of polyploidy in flowering plants. Ann NY Acad Sci, 2014, 1320: 16-34.
doi: 10.1111/nyas.12466 pmid: 24903334 |
[36] |
Wendel J F. Genome evolution in polyploids. Plant Mol Biol, 2000, 42: 225-249.
pmid: 10688139 |
[37] |
Liu B, Wendel J F. Non-Mendelian phenomena in allopolyploid genome evolution. Curr Genomics, 2002, 3: 489-505.
doi: 10.2174/1389202023350255 |
[1] | 徐高峰, 申时才, 张付斗, 杨韶松, 金桂梅, 郑凤萍, 温丽娜, 张云, 吴冉迪. 土壤微生物对长雄野生稻及其化感潜力后代抑草作用的影响[J]. 作物学报, 2023, 49(9): 2562-2571. |
[2] | 胡艳娟, 薛丹, 耿嫡, 朱末, 王天穹, 王晓雪. 水稻OsCDF1基因突变效应及其基因组变异分析[J]. 作物学报, 2023, 49(9): 2362-2372. |
[3] | 刘凯, 陈积金, 刘帅, 陈旭, 赵新茹, 孙尚, 薛超, 龚志云. 低温胁迫下组蛋白H3K18cr在水稻全基因组上的动态变化特征解析[J]. 作物学报, 2023, 49(9): 2398-2411. |
[4] | 唐杰, 龙湍, 吴春瑜, 李新鹏, 曾翔, 吴永忠, 黄培劲. 水稻OsGMS2基因的鉴定及其核不育系种子繁殖体系构建[J]. 作物学报, 2023, 49(8): 2025-2038. |
[5] | 韦新宇, 曾跃辉, 杨旺兴, 肖长春, 候新坡, 黄建鸿, 邹文广, 许旭明. 利用CRISPR-Cas9技术编辑Badh2基因创制优质香型籼稻三系不育系[J]. 作物学报, 2023, 49(8): 2144-2159. |
[6] | 贾璐绮, 孙悠, 田然, 张学菲, 代永东, 崔志波, 李杨羊, 冯新宇, 桑贤春, 王晓雯. 水稻种子快速萌发突变体rgs1的鉴定及调控基因克隆[J]. 作物学报, 2023, 49(8): 2288-2295. |
[7] | 邓艾兴, 李歌星, 吕玉平, 刘猷红, 孟英, 张俊, 张卫建. 齐穗后遮阴时长对西北稻区粳稻产量和品质的影响[J]. 作物学报, 2023, 49(7): 1930-1941. |
[8] | 许娜, 徐铨, 徐正进, 陈温福. 水稻株型生理生态与遗传基础研究进展[J]. 作物学报, 2023, 49(7): 1735-1746. |
[9] | 林孝欣, 黄明江, 韦祎, 朱洪慧, 王子怡, 李忠成, 庄慧, 李彦羲, 李云峰, 陈锐. 水稻籽粒伸长突变体lgdp的鉴定与基因定位[J]. 作物学报, 2023, 49(6): 1699-1707. |
[10] | 丁杰荣, 马雅美, 潘发枝, 江立群, 黄文洁, 孙炳蕊, 张静, 吕树伟, 毛兴学, 于航, 李晨, 刘清. 泛素受体蛋白OsDSK2b负向调控水稻叶瘟和渗透胁迫抗性[J]. 作物学报, 2023, 49(6): 1466-1479. |
[11] | 何永明, 张芳. 生长素调控水稻颖花开放的效应研究[J]. 作物学报, 2023, 49(6): 1690-1698. |
[12] | 陶玥玥, 盛雪雯, 徐坚, 沈园, 王海候, 陆长婴, 沈明星. 长三角水稻-油菜周年两熟温光资源分配与利用特征[J]. 作物学报, 2023, 49(5): 1327-1338. |
[13] | 韦海敏, 陶伟科, 周燕, 闫飞宇, 李伟玮, 丁艳锋, 刘正辉, 李刚华. 硅素穗肥优化滨海盐碱地水稻矿质元素吸收分配提高耐盐性[J]. 作物学报, 2023, 49(5): 1339-1349. |
[14] | 戴文慧, 朱琪, 张小芳, 吕沈阳, 项显波, 马涛, 陈宇杰, 朱世华, 丁沃娜. 一个水稻脆秆突变体bc21的鉴定和基因定位[J]. 作物学报, 2023, 49(5): 1426-1431. |
[15] | 陶顺玉, 吴贝, 刘念, 罗怀勇, 黄莉, 周小静, 陈伟刚, 郭建斌, 喻博伦, 雷永, 廖伯寿, 姜慧芳. 花生InDel标记开发及其在含油量QTL定位中的应用[J]. 作物学报, 2023, 49(5): 1222-1230. |
|