欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (8): 2051-2063.doi: 10.3724/SP.J.1006.2023.24208

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

大豆叶型调控基因Ln及其同源基因单倍型分析

李刚1,3(), 周彦辰1, 熊亚俊1, 陈伊洁1, 郭庆元1, 高杰1, 宋健2, 王俊1,*(), 李英慧3,*(), 邱丽娟3,*()   

  1. 1 长江大学农学院, 湖北荆州 434025
    2 长江大学生命科学学院, 湖北荆州 434025
    3 中国农业科学院作物科学研究所, 北京 100081
  • 收稿日期:2022-09-10 接受日期:2023-02-21 出版日期:2023-08-12 网络出版日期:2023-03-01
  • 通讯作者: 王俊,李英慧,邱丽娟
  • 作者简介:李刚, E-mail: 1073855911@qq.com第一联系人:**同等贡献
  • 基金资助:
    云南省重大科技专项(202202AE090014)

Haplotype analysis of soybean leaf type regulator gene Ln and its homologous genes

LI Gang1,3(), ZHOU Yan-Chen1, XIONG Ya-Jun1, CHEN Yi-Jie1, GUO Qing-Yuan1, GAO Jie1, SONG Jian2, WANG Jun1,*(), LI Ying-Hui3,*(), QIU Li-Juan3,*()   

  1. 1 College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
    2 College of Life Science, Yangtze University, Jingzhou 434025, Hubei, China
    3 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2022-09-10 Accepted:2023-02-21 Published:2023-08-12 Published online:2023-03-01
  • Contact: WANG Jun,LI Ying-Hui,QIU Li-Juan
  • About author:First author contact:**Contributed equally to this work
  • Supported by:
    Key Science and Technology Project of Yunnan Province(202202AE090014)

摘要:

大豆叶型是理想株型的重要构成部分, 对大豆品种选育具有重要意义。本研究通过对来自中国不同地区的598份材料进行Ln及其同源基因(Glyma.10G273800)单倍型分析发现, Ln基因和同源基因均分别包含3种单倍型(Hap1~Hap3)。Ln基因3种单倍型之间除了叶长没有显著差异外, Hap2在叶宽、叶面积和叶长宽比中均与Hap1/Hap3差异显著。Ln同源基因的Hap3与Hap2在不同叶型表型中均有显著差异, Hap1和Hap2之间的叶长宽比没有差异, 叶宽在第4节叶位点没有显著差异, 第5节叶位点Hap1显著低于Hap2。叶长、叶面积、叶周长Hap1均显著低于Hap2。从地理分布来看, Ln基因的Hap2主要分布在高纬度和高海拔地区, 其同源基因的3种单倍型分布未发现明显地域倾向性。遗传分析表明仅Ln基因中Hap2的D9H存在人工选择的信号, Ln基因中的另外2个突变位点和同源基因中的2个突变位点则没有人工选择的信号。本研究为大豆叶型育种提供理论依据, 同时对提高大豆产量具有积极意义。

关键词: 大豆, 叶型, 单倍型, Ln基因

Abstract:

Soybean leaf type is an important component of ideal plant type, which is of great significance for the breeding of soybean varieties. In this study, we analyzed the haplotype of Ln and its homologous gene (Glyma.10G273800) in 598 materials from different regions of China. Ln gene and homologous gene contained three haplotypes (Hap1-Hap3), respectively. There was no significant difference in leaf length between the three haplotypes of Ln gene, and Hap2 was significantly different from Hap1/Hap3 in leaf width, leaf area, and leaf length width ratio. There were significant differences between Hap3 and Hap2 of Ln homologous gene in different leaf types. There was no difference in the ratio of leaf length to width between Hap1 and Hap2. There was no significant difference in leaf width phenotype at the 4th leaf site, and Hap1 at the 5th leaf site was significantly lower than Hap2. Leaf length, leaf area, and leaf circumference Hap1 were significantly lower than Hap2. In terms of geographical distribution, Hap2 of Ln gene was mainly distributed in high latitude and high altitude regions, and no obvious regional bias was detected in the distribution of the three haplotypes of its homologous genes. Genetic analysis showed that only D9H of Hap2 in Ln gene had artificial selection signal, while the other two mutation sites in Ln gene and two mutation sites in homologous gene had no artificial selection signal. This study provides the theoretical basis for soybean leaf type breeding and has positive significance for increasing soybean yield.

Key words: soybean, leaf type, haplotype, Ln gene

表1

598份大豆资源材料来源表、分类及地理信息"

来源
Origin
数量
Number
改良品种
Improved
地方品种
Landrace
经度
Longitude
纬度
Latitude
安徽Anhui 21 6 15 117.17E 31.52N
北京Beijing 25 22 3 116.28E 39.54N
福建Fujian 6 2 4 118.04E 24.26N
广东Guangdong 11 1 10 113.18E 23.10N
甘肃Gansu 6 0 6 103.50E 36.03N
广西Guangxi 10 1 9 108.21E 22.47N
贵州Guizhou 33 0 33 106.72E 26.57N
海南Hainan 1 0 1 111.10E 20.03N
河北Hebei 48 7 41 114.26E 38.03N
河南Henan 24 11 13 113.40E 34.46N
黑龙Heilongjiang 76 59 17 126.64E 45.76N
湖北Hubei 28 5 23 115.32E 30.52N
湖南Hunan 15 3 12 112.59E 28.12N
吉林Jilin 45 17 28 125.18E 43.55N
江苏Jiangsu 27 10 17 118.75E 32.04N
江西Jiangxi 6 0 6 115.53E 28.42N
辽宁Liaoning 39 12 27 123.23E 41.48N
内蒙古Inner Mongolia 6 2 4 111.65E 40.82N
宁夏Ningxia 3 0 3 106.13E 38.28N
陕西Shaanxi 18 0 18 108.55E 34.15N
四川Sichuan 44 3 41 104.06E 30.67N
山东Shandong 29 9 20 120.18E 36.03N
上海Shanghai 2 0 2 121.43E 34.50N
山西Shanxi 56 11 45 112.33E 37.51N
台湾Taiwan 1 1 0 121.31E 25.02N
新疆Xinjiang 1 1 0 87.36E 43.46N
云南Yunnan 11 0 11 102.42E 25.03N
浙江Zhejiang 6 4 2 120.10E 30.15N

表2

598份材料不同叶型性状描述性统计"

性状
Trait
节点
Node
均值
Mean
标准差
SD
最小值
Min.
最大值
Max.
正态性检验显著性a
Normality test for significance a
叶面积Leaf area (cm2) 4 42.517 13.851 13.329 80.056 <0.001
5 45.803 13.486 16.780 81.826 <0.001
叶长Leaf length (cm) 4 10.206 1.421 6.294 14.009 >0.100
5 10.405 1.331 6.562 13.879 >0.100
叶长宽比Leaf length to width ratio 4 1.808 0.266 1.243 2.876 <0.001
5 1.685 0.279 1.130 2.634 <0.001
叶周长Leaf perimeter (cm) 4 27.817 4.161 16.584 40.053 >0.100
5 28.698 3.990 16.992 39.039 >0.100
叶宽Leaf width (cm) 4 5.950 1.346 3.077 9.693 <0.001
5 6.324 1.337 3.132 10.139 <0.001

表3

不同叶型性状相关性分析"

性状
Trait
叶面积
Leaf area
叶长
Leaf length
叶长宽比
Leaf length to width ratio
叶周长
Leaf perimeter
叶宽
Leaf width
叶面积Leaf area 1
叶长Leaf length 0.777*** 1
叶长宽比Leaf length to width ratio -0.463*** 0.003 1
叶周长Leaf perimeter 0.801*** 0.772*** -0.231*** 1
叶宽Leaf width 0.956*** 0.612*** -0.654** 0.721*** 1

图1

Glyma.20G116200和Glyma.10G273800基因结构图"

表4

种质资源中Ln (Glyma.20G116200)及其同源基因(Glyma.10G273800)单倍型品种类型频率分布"

基因
Gene name
单倍型
Haplotype
类型
Class
基因型
Genotype
频率
Frequency
改良品种
Improved
地方品种
Landrace
Glyma.20G116200 Hap1 参考Reference GTA 429 92 337
Hap2 特定Specific CTA 59 55 4
Hap3 特定Specific GGT 92 34 58
Glyma.10G273800 Hap1 特定Specific TG 253 92 161
Hap2 参考Reference GG 206 82 124
Hap3 特定Specific GT 116 11 105

图2

Ln基因单倍型分析 A: 单倍型演化图; B: 突变类型及位点; C~F: 分别为第4节中间叶(C)、侧叶(D)、第5节中间叶(E)和侧叶(F)长宽比。显著性检验采用K-W检验, P < 0.01和P < 0.001分别为显著和极显著; G: Ln基因单倍型地理分布图。"

附图1

Ln基因不同单倍型叶型表型差异比较 A~D: 分别为第4节中间叶(A)、侧叶(B)、第5节中间叶(C)、侧叶(D)叶长比较; E~H: 分别为第4节中间叶(E)、侧叶(F)、第5节中间叶(G)、侧叶(H)叶宽比较; I~L: 分别为第4节中间叶(I)、侧叶(J)、第5节中间叶(K)、侧叶(L)叶面积比较; M~P: 分别为第4节中间叶(M)、侧叶(N)、第5节中间叶(O)、侧叶(P)叶周长比较。"

图3

Glyma.10G273800基因单倍型分析 A: 单倍型演化图; B: 突变类型及位点; C~F: 分别为第4节中间叶(C)、侧叶(D)、第5节中间叶(E)和侧叶(F)长宽比。显著性检验采用K-W检验, P < 0.01和P < 0.001分别为显著和极显著; G: Glyma.10G273800单倍型地理分布图。"

附图2

Glyma.10G273800不同单倍型叶型表型差异比较 A~D: 分别为第4节中间叶(A)、侧叶(B)、第5节中间叶(C)、侧叶(D)叶长比较; E~H: 分别为第4节中间叶(E)、侧叶(F)、第5节中间叶(G)、侧叶(H)叶宽比较; I~L: 分别为第4节中间叶(I)、侧叶(J)、第5节中间叶(K)、侧叶(L)叶面积比较; M~P: 分别为第4节中间叶(M)、侧叶(N)、第5节中间叶(O)、侧叶(P)叶周长比较。"

图4

Ln基因及同源基因遗传分化分析 A: Ln基因群体间遗传分化指数; B: Ln基因中性检验; C: Ln基因种群核苷酸多样性分析; D: Glyma.10G273800群体间遗传分化指数; E: Glyma.10g273800中性检验; F: Glyma.10g273800种群核苷酸多样性分析。Fst: 群体间遗传分化指数; Tajima’s D: 中性检验; π: 种群核苷酸多样性分析。"

[1] Heath O V S, Gregory F G. The constancy of the mean net assimilation rate and its ecological importance. Ann Bot (London) 1938, 2: 811-818.
doi: 10.1093/oxfordjournals.aob.a084036
[2] Board J E, Harville B G. Explanations for greater light interception in narrow-vs. wide-row. Crop Sci, 1992, 32: 198-202.
doi: 10.2135/cropsci1992.0011183X003200010041x
[3] Srinivasan V, Kumar P, Long S P. Decreasing, not increasing, leaf area will raise crop yields under global atmospheric change. Global Change Biol, 2017, 23: 1626-1635.
doi: 10.1111/gcb.13526 pmid: 27860122
[4] 陈磊.大豆叶形调控基因的图位克隆与功能分析. 南京农业大学博士学位论文, 江苏南京, 2014.
Chen L.Atlas Cloning and Functional Analysis of Soybean Leaf Shape Regulatory Genes. PhD Dissertation of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2014. (in Chinese with English abstract)
[5] Baldocchi D D, Verma S B, Rosenberg N J, Blad B L, Specht J E. Microclimate-plant architectural interactions: influence of leaf width on the mass and energy exchange of a soybean canopy. Agric Forest Meteorol, 1985, 35: 1-20.
doi: 10.1016/0168-1923(85)90070-X
[6] Takahashi N. Linkage relation between the genes for the forms of leaves and the number of seeds per pod of soybeans. Jpn J Genet, 1934, 9: 208-225.
doi: 10.1266/jjg.9.208
[7] Johnson H W, Bernard R L. Soybean genetics and breeding. Adv Agron, 1962, 14: 149-221.
[8] Jeong N, Moon J K, Kim H S, Kim C G, Jeong S C. Fine genetic mapping of the genomic region controlling leaflet shape and number of seeds per pod in the soybean. Theor Appl Genet, 2011, 122: 865-874.
doi: 10.1007/s00122-010-1492-5 pmid: 21104397
[9] Sayama T, Tanabata T, Saruta M, Yamada T, Anai T, Kaga A, Ishimoto M. Confirmation of the pleiotropic control of leaflet shape and number of seeds per pod by the Ln gene in induced soybean mutants. Breed Sci, 2017: 16201.
[10] Mandl F A, Buss G R. Comparison of narrow and broad leaflet isolines of soybean. Crop Sci, 1981, 21: 25-27.
doi: 10.2135/cropsci1981.0011183X002100010007x
[11] Robinson J M. Leaflet photosynthesis rate and carbon metabolite accumulation patterns in nitrogen-limited, vegetative soybean plants. Photosynth Res, 1996, 50: 133-148.
doi: 10.1007/BF00014884
[12] Sung F J M, Chen J J. Changes in photosynthesis and other chloroplast traits in lanceolate leaflet isoline of soybean. Plant Physiol, 1989, 90: 773-777.
doi: 10.1104/pp.90.2.773 pmid: 16666842
[13] 田佩占. 大豆育种的叶形问题. 遗传学报, 1977, 4: 22-30.
Tian P Z. Leaf shape problems in soybean breeding. Acta Genet Sin, 1977, 4: 22-30. (in Chinese with English abstract)
[14] 游明安, 马国荣, 刘佑斌, 盖钧镒, 邱家驯. 大豆叶形、短叶柄近等基因系的选育与利用. 中国油料, 1995, 17(4): 7-9.
You A M, Ma G R, Liu Y B, Gai J Y, Qiu J X. Selection and utilization of soybean leaf-shaped, short petiole proximal and other gene lines. Chin J Oil Crop Sci, 1995, 17(4): 7-9. (in Chinese with English abstract)
[15] 周勋波, 吴海燕. 关于大豆理想株型的探讨. 大豆通报, 2002, (5): 4-5.
Zhou X B, Wu H Y. Discussion on the ideal plant type of soybean. Soybean Sci Technol, 2002, (5): 4-5. (in Chinese with English abstract)
[16] Yamanaka N, Ninomiya S, Hoshi M, Tsubokura Y, Yano M, Nagamura Y, Sasaki T, Harada K. An informative linkage map of soybean reveals QTLs for flowering time, leaflet morphology and regions of segregation distortion. DNA Res, 2001, 8: 61-72.
doi: 10.1093/dnares/8.2.61 pmid: 11347903
[17] Kim H K, Kang S T, Suh D Y. Analysis of quantitative trait loci associated with leaflet types in two recombinant inbred lines of soybean. Plant Breed, 2005, 124: 582-589.
doi: 10.1111/pbr.2005.124.issue-6
[18] Jun T H, Freewalt K, Michel A P, Mian R. Identification of novel QTL for leaf traits in soybean. Plant Breed, 2014, 133: 61-66.
doi: 10.1111/pbr.2014.133.issue-1
[19] Vieira A J D, Oliveira D A, Soares T C B, Schuster I, Piovesan N D, Martinez C A, Barros E G, Moreira M A. Use of the QTL approach to the study of soybean trait relationships in two populations of recombinant inbred lines at the F7 and F8 generations. Braz J Plant Physiol, 2006, 18: 281-290.
doi: 10.1590/S1677-04202006000200004
[20] Mian M A R, Ashley D A, Boerma H R. An additional QTL for water use efficiency in soybean. Crop Sci, 1998, 38: 390-393.
doi: 10.2135/cropsci1998.0011183X003800020020x
[21] Orf J H, Chase K, Jarvik T, Mansur L M, Cregan P B, Adler F R, Lark K G.Genetics of soybean agronomic traits: I. Comparison of three related recombinant inbred populations. Crop Sci, 1999, 39: 1642-1651.
doi: 10.2135/cropsci1999.3961642x
[22] Mansur L M, Lark K G, Kross H, Oliveira A. Interval mapping of quantitative trait loci for reproductive, morphological, and seed traits of soybean (Glycine max L.). Theor Appl Genet, 1993, 86: 907-913.
doi: 10.1007/BF00211040 pmid: 24193996
[23] Mansur L M, Orf J H, Chase K, Jarvik T, Cregan P B, Lark K G. Genetic mapping of agronomic traits using recombinant inbred lines of soybean. Crop Sci, 1996, 36: 1327-1336.
doi: 10.2135/cropsci1996.0011183X003600050042x
[24] Keim P, Diers B W, Olson T C, Shoemaker R C. RFLP mapping in soybean: association between marker loci and variation in quantitative traits. Genetics, 1990, 126: 735-742.
doi: 10.1093/genetics/126.3.735 pmid: 1979039
[25] Chen Q S, Zhang Z C, Liu C Y, Xin D W, Qiu H M, Shan C P, Shan C Y, Hu G H. QTL analysis of major agronomic traits in soybean. Agric Sci China, 2007, 6: 399-405.
doi: 10.1016/S1671-2927(07)60062-5
[26] Bernard R L, Weiss M G. Qualitative genetics. In: Boerma H R, Specht J E, eds. Soybeans: Improvement, Production, and Uses. Madison: American Society of Agronomy, 1973. pp 117-154.
[27] Jeong N, Suh S J, Kim M H, Lee S, Moon J K, Kim H S, Jeong S C. Ln is a key regulator of leaflet shape and number of seeds per pod in soybean. Plant Cell, 2012, 24: 4807-4818.
doi: 10.1105/tpc.112.104968
[28] Fang C, Li W Y, Li G Q, Wang Z, Zhou Z K, Ma Y M, Shen Y T, Li C C, Wu Y W, Zhu B G, Yang W C, Tian Z X. Cloning of Ln gene through combined approach of map-based cloning and association study in soybean. J Genet Genomics, 2013, 40: 93-96.
doi: 10.1016/j.jgg.2013.01.002
[29] Li Y H, Qin C, Wang L, Jiao C Z, Hong H L, Tian Y, Li Y F, Xing G N, Wang J, Gu Y Z, Gao X P, Li D L, Li H Y, Liu Z X, Jing X, Feng B B, Zhao T, Guan R X, Guo Y, Liu J, Yan Z, Zhang L J, Ge T L, Li X K, Wang X B, Qiu H M, Zhang W H, Luan X Y, Han Y P, Han D Z, Chang R Z, Guo Y L, Reif J C, Jackson S A, Liu B, Tian S L, Qiu L J. Genome-wide signatures of the geographic expansion and breeding of soybean. Sci China Life Sci, 2022, 66: 350-365.
doi: 10.1007/s11427-022-2158-7
[30] Schmutz J, Cannon S B, Schlueter J, Ma J X, Mitros T, Nelson W, Hyten, D L, Song Q J, Telen J J, Cheng J L, Xu D, Hellsten U, May G D, Yu Y, Sakurai T, Umezawa T, Bhattacharyya M K, Sandhu D, Valliyodan B, Lindquist E, Peto M, Grant D, Shu S Q, Goodstein D. Genome sequence of the palaeopolyploid soybean. Nature, 2010, 463: 178-183.
doi: 10.1038/nature08670
[31] 张洪映, 毛新国, 景蕊莲, 谢惠民, 昌小平. 小麦 TaPK7 基因单核苷酸多态性与抗旱性的关系. 作物学报, 2008, 34: 1537-1543.
doi: 10.3724/SP.J.1006.2008.01537
Zhang H Y, Mao X G, Jing R L, Xie H M, Chang X P. Relationship between single nucleotide polymorphisms and drought resistance in TaPK7 gene in wheat. Acta Agron Sin, 2008, 34: 1537-1543. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2008.01537
[32] Stephens J C, Schneider J A, Tanguay D A, Choi J, Acharya T, Stanley S E, Jiang R, Messer C J, Chew A, Han J H, Duan J, Carr J L, Lee M S, Koshy B, Kumar A M, Zhang G, Newell W R, Windemuth A, Xu C B, Kalbflesch T S, Shaner S L, Arnold K, Schulz V, Drysdale C M, Nandabalan K, Judson R S, Ruano G, Vovis G F. Haplotype variation and linkage disequilibrium in 313 human genes. Science, 2001, 293: 489-493.
doi: 10.1126/science.1059431 pmid: 11452081
[33] 张乐, 李英慧, 刘章雄, 邱丽娟. 栽培大豆(G. max)和野生大豆(G. soja)的Glyma13g21630基因多样性. 作物学报, 2011, 37: 1724-1734.
doi: 10.3724/SP.J.1006.2011.01724
Zhang L, Li Y H, Liu Z X, Qiu L J. Glyma13g21630 genetic diversity of cultivated soybeans (G. max) and wild soybeans (G. soja). Acta Agron Sin, 2001 37: 1724-1734. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2011.01724
[1] 胡艳娟, 薛丹, 耿嫡, 朱末, 王天穹, 王晓雪. 水稻OsCDF1基因突变效应及其基因组变异分析[J]. 作物学报, 2023, 49(9): 2362-2372.
[2] 刘亭萱, 谷勇哲, 张之昊, 王俊, 孙君明, 邱丽娟. 基于高密度遗传图谱定位大豆蛋白质含量相关的QTL[J]. 作物学报, 2023, 49(6): 1532-1541.
[3] 李慧, 路依萍, 汪小凯, 王璐瑶, 邱婷婷, 张雪婷, 黄海燕, 崔晓玉. CBL互作蛋白激酶GmCIPK10增强大豆耐盐性[J]. 作物学报, 2023, 49(5): 1272-1281.
[4] 吴宗声, 徐彩龙, 李瑞东, 徐一帆, 孙石, 韩天富, 宋雯雯, 吴存祥. 麦秸覆盖还田对大豆耕层物理性状及产量形成的影响[J]. 作物学报, 2023, 49(4): 1052-1064.
[5] 朱治, 李龙, 李超男, 毛新国, 郝晨阳, 朱婷, 王景一, 常建忠, 景蕊莲. 小麦转录因子TaMYB5-3B与株高和千粒重相关[J]. 作物学报, 2023, 49(4): 906-916.
[6] 舒泽兵, 罗万宇, 蒲甜, 陈国鹏, 梁冰, 杨文钰, 王小春. 基于高产与高效条件下鲜食玉米鲜食大豆带状间作田间配置技术优化[J]. 作物学报, 2023, 49(4): 1140-1150.
[7] 刘姗姗, 庞婷, 袁晓婷, 罗凯, 陈平, 付智丹, 王小春, 杨峰, 雍太文, 杨文钰. 种间距对不同结瘤特性套作大豆根瘤生长及固氮潜力的影响[J]. 作物学报, 2023, 49(3): 833-844.
[8] 杨硕, 武阳春, 刘鑫磊, 唐晓飞, 薛永国, 曹旦, 王婉, 刘亭萱, 祁航, 栾晓燕, 邱丽娟. 大豆蛋白含量主效位点qPRO-20-1的精细定位[J]. 作物学报, 2023, 49(2): 310-320.
[9] 才晓溪, 胡冰霜, 沈阳, 王研, 陈悦, 孙明哲, 贾博为, 孙晓丽. GsERF6基因过表达对水稻耐盐碱性的影响[J]. 作物学报, 2023, 49(2): 561-569.
[10] 王慧, 吴志医, 张玉娥, 喻德跃. 应用RNA重测序分析低硫条件下大豆基因表达谱[J]. 作物学报, 2023, 49(1): 105-118.
[11] 梁政, 柯美玉, 陈志威, 陈栩, 高震. 大豆GmPIN2家族基因调控根系发育功能初探[J]. 作物学报, 2023, 49(1): 24-35.
[12] 白智媛, 陈向阳, 郑阿香, 张力, 邹军, 张大同, 陈阜, 尹小刚. 1991—2019年美国大豆区试品种(系)农艺和品质性状时空变化特征[J]. 作物学报, 2023, 49(1): 177-187.
[13] 徐凯, 郑兴飞, 张红燕, 胡中立, 宁子岚, 李兰芝. 基于NCII遗传交配设计的籼稻抽穗期全基因组关联分析[J]. 作物学报, 2023, 49(1): 86-96.
[14] 齐阳阳, 窦汝娜, 赵彩桐, 张帜, 李文滨, 姜振峰. 大豆生长节间响应温度和外源GA诱导的赤霉素途径关键基因分析[J]. 作物学报, 2023, 49(1): 62-72.
[15] 丁浦洋, 周界光, 赵聪豪, 唐华苹, 牟杨, 唐力为, 邓梅, 魏育明, 兰秀锦, 马建. 小麦小穗数调控基因WAPO1的单倍型、遗传效应、地理分布及育种利用分析[J]. 作物学报, 2022, 48(9): 2196-2209.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .