欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (10): 2698-2704.doi: 10.3724/SP.J.1006.2023.24251

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

花生蔗糖含量与蛋白质和含油量的相关性分析及蔗糖含量QTL定位

郭建斌1(), 成良强2(), 李威涛1, 刘念1, 罗怀勇1, 丁膺宾1, 喻博伦1, 陈伟刚1, 黄莉1, 周小静1, 雷永1, 廖伯寿1, 姜慧芳1()   

  1. 1中国农业科学院油料作物研究所 / 农业农村部油料作物生物学与遗传育种重点实验室, 湖北武汉 430062
    2贵州省农业科学院油料研究所, 贵州贵阳 550006
  • 收稿日期:2022-11-11 接受日期:2023-02-21 出版日期:2023-10-12 网络出版日期:2023-03-01
  • 通讯作者: 姜慧芳, E-mail: peanutlab@oilcrops.cn
  • 作者简介:郭建斌, E-mail: guojianbin1990@163.com;成良强, E-mail: chengliangmei1984@126.com **同等贡献
  • 基金资助:
    贵州省科技计划项目(黔科合基础-ZK[2022]一般290);农业农村部油料作物生物学与遗传育种重点实验室开放课题项目(KF2020008);财政部和农业农村部国家现代农业产业技术体系建设专项(花生, CARS-13-种质资源评价)

Correlation analysis of sucrose content with protein and oil content and QTL mapping of sucrose content in peanut

GUO Jian-Bin1(), CHENG Liang-Qiang2(), LI Wei-Tao1, LIU Nian1, LUO Huai-Yong1, DING Ying-Bin1, YU Bo-Lun1, CHEN Wei-Gang1, HUANG Li1, ZHOU Xiao-Jing1, LEI Yong1, LIAO Bo-Shou1, JIANG Hui-Fang1()   

  1. 1Oil Crops Research Institute, China Academy of Agricultural Sciences / Key Laboratory of Biology and Genetic Improvement of Oil Crops, the Ministry of Agriculture and Rural Affairs, Wuhan 430062, Hubei, China
    2Guizhou Oil Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550006, Guizhou, China
  • Received:2022-11-11 Accepted:2023-02-21 Published:2023-10-12 Published online:2023-03-01
  • Contact: E-mail: peanutlab@oilcrops.cn
  • About author:**Contributed equally to this work
  • Supported by:
    Guizhou Provincial Science and Technology Project (QKHJC-ZK[2022]YB 290);Open Project Program of the Key Laboratory of Biology and Genetic Improvement of Oil Crops, the Ministry of Agriculture and Rural Affairs(KF2020008);China Agriculture Research System of MOF and MARA (Peanut, CARS-13-Germplasm Resource Evaluation)

摘要:

随着食用型花生市场规模的日益扩大, 食用花生的品质特性备受关注。甜味是影响食用花生风味和口感的重要指标, 而花生甜味主要来源于蔗糖。提高蔗糖含量是培育食用型花生的关键, 定位蔗糖含量相关的QTL, 将为花生高糖分子育种奠定基础。但提高蔗糖可能对蛋白质和含油量有影响。本研究以徐花13和中花6号为亲本构建的重组自交系群体(RIL)为材料, 分析了蔗糖与蛋白质和含油量的关系, 并对蔗糖含量进行了QTL定位。结果表明, 蔗糖含量与蛋白质含量无显著相关性, 而与含油量呈极显著负相关; RIL群体中蔗糖含量变异广泛, 变异范围为14.33~61.42 mg g-1; 筛选出2份高蛋白低脂肪中等含糖量的材料。通过该群体的遗传连锁图, 在3个环境下共检测到10个QTL, 分布在6条染色体上, 贡献率为4.56%~12.25%。其中, qSUCA07能在3个环境下被重复检测到。本研究为蔗糖含量精细定位和培育性状优良的食用型花生品种提供了重要信息。

关键词: 花生, 含油量, 蛋白质, 蔗糖, QTL

Abstract:

With the increasing size of edible peanuts market, the quality characteristics of edible peanuts have attracted much attention. Sweetness is an important indicator affecting the flavor and taste of edible peanuts, and it mainly comes from sucrose. Increasing sucrose content is the key to the edible peanuts cultivation, and QTL mapping for sucrose content will lay a foundation for molecular breeding of high sucrose content. However, the increase of sucrose content may affect protein and oil content. In this study, a recombinant inbred line population derived from the cross of Xuhua 13 and Zhonghua 6 was developed. The relationships between sucrose and protein as well as oil content were investigated, and QTLs for sucrose content were mapped. The results showed that sucrose content was not significantly correlated with protein content but there was extremely significantly negatively correlated with the content. Sucrose content presented board phenotypic variations among the RILs, ranging from 14.33 mg g-1 to 61.42 mg g-1. Two lines with high protein, low oil content, and medium sucrose content were observed. Ten QTLs on six chromosomes were detected with 4.56%-12.25% of phenotypic variation explained (PVE) among which qSUCA07 could be repeatedly detected in three environments. The results provide an important information for QTLs fine mapping of sucrose content and cultivating edible peanut varieties with excellent traits.

Key words: peanut, oil content, protein content, sucrose content, quantitative trait locus

表1

RIL群体蛋白质、含油量和蔗糖含量的相关系数"

环境 性状 蛋白质 含油量 蔗糖
Environment Trait Protein content Oil content Sucrose content
2020WH 蛋白质 Protein content 1 -0.597** -0.169
含油量 Oil content 1 -0.299**
蔗糖 Sucrose content 1
2021WH 蛋白质 Protein content 1 -0.643** -0.132
含油量 Oil content 1 -0.178*
蔗糖 Sucrose content 1
2021QZ 蛋白质Protein content 1 -0.576** -0.021
含油量 Oil content 1 -0.255**
蔗糖 Sucrose content 1
平均 Mean 蛋白质 Protein content 1 -0.647** -0.077
含油量 Oil content 1 -0.443**
蔗糖 Sucrose content 1

图1

亲本蔗糖含量差异 **表示在0.01概率水平差异显著。XH13: 徐花13; ZH6: 中花6号。"

表2

RIL群体蔗糖含量统计分析"

环境
Environment
最小值
Min.
最大值
Max.
均值
Mean
标准差
SD
偏度
Skewness
峰度
Kurtosis
夏皮洛-威尔克检验
Shapiro-Wilk test W (sig.)
2020WH 16.87 57.93 31.21 9.00 0.74 0.09 0.959 (0.000)
2021WH 14.33 61.42 31.58 8.70 0.81 0.77 0.953 (0.000)
2021QZ 14.49 51.11 32.37 6.49 0.49 0.17 0.978 (0.008)

图2

3个环境下RIL群体蔗糖含量的表型分布 横坐标为蔗糖含量, 纵坐标为频数; 虚线箭头为中花6号, 实线箭头为徐花13。2020WH: 2020武汉; 2021WH: 2021武汉; 2121QZ: 2021泉州。RIL: 重组自交系。"

表3

3个环境下RIL群体蔗糖含量的方差分析"

变异来源 自由度 平方和 均方 F P
Source DF SS MS F-value P-value
环境 Environment 2 134.050 67.025 1.576 0.208
基因型 Genotype 185 20,709.541 111.943 2.633 <0.0001
误差 Error 354 15,050.897 42.517
总计 Total 542 581,263.608

图3

3个环境下RIL群体蔗糖含量性状的QTL峰值图 2020WH: 2020武汉; 2021WH: 2021武汉; 2121QZ: 2021泉州。RIL: 重组自交系。"

表4

3个环境下RIL群体蔗糖含量QTL"

QTL 染色体
Chromosome
环境
Environment
位置
Position (cM)
置信区间
Confidence interval
LOD值
LOD value
加性效应
Additive effect
贡献率
PVE (%)
qSUCA01.1 A01 2020WH 5.11 4.7-7.0 2.62 -1.94 4.60
qSUCA01.2 A01 2020WH 16.01 14.1-17.5 3.00 -2.09 5.23
qSUCA07 A07 2020WH 1.01 0-3.3 6.81 3.21 12.25
2021WH 0.01 0-2.7 4.23 2.49 7.70
2021QZ 0.01 0-3.0 3.51 1.79 7.05
qSUCA10 A10 2020WH 63.70 56.0-64.7 3.60 -2.10 7.14
qSUCB01 B01 2021WH 3.51 0.8-10.9 2.73 -2.06 4.94
qSUCB03.1 B03.1 2020WH 64.81 60.3-66.1 2.70 2.00 4.81
qSUCB10.1 B10 2021QZ 35.71 34.8-37.5 5.47 -2.29 11.45
qSUCB10.2 B10 2021QZ 45.21 43.2-45.6 4.18 -1.98 8.88
qSUCB10.3 B10 2021WH 60.51 59.5-60.7 2.51 -1.95 4.56
qSUCB10.4 B10 2021WH 68.81 67.5-72.7 3.30 -2.22 6.20
[1] 张立伟, 王辽卫. 我国花生产业发展状况、存在问题及政策建议. 中国油脂, 2020, 45(11): 116-122.
Zhang L W, Wang L W. Development status, existing problems and policy recommendations of peanut industry in China. Chin Oils Fats, 2020, 45(11): 116-122 (in Chinese with English abstract).
[2] 王建文, 李永军, 赵国建, 李绍伟. 鲜食花生的发展前景、存在问题及发展对策探讨. 陕西农业科学, 2009, 55(2): 129-130.
Wang J W, Li Y J, Zhao J G, Li S W. Discussion on the development perspectives, problems and development countermeasures of fresh peanut. Shaanxi J Agric Sci, 2009, 55(2): 129-130. (in Chinese with English abstract)
[3] 房元瑾, 孙子淇, 苗利娟, 齐飞艳, 黄冰艳, 郑峥, 董文召, 汤丰收, 张新友. 花生籽仁外观和营养品质特征及食用型花生育种利用分析. 植物遗传资源学报, 2018, 19: 875-886.
doi: 10.13430/j.cnki.jpgr.20180110001
Fang Y J, Sun Z Q, Miao L J, Qi F Y, Huang B Y, Zheng Z, Dong W Z, Tang F S, Zhang X Y. Characterization of kernel appearance and nutritional quality in peanut accessions and its application for food-use peanut breeding. J Plant Genet Resour, 2018, 19: 875-886. (in Chinese with English abstract)
[4] 王强. 粮油加工适宜性评价及风险监控. 北京: 科学出版社, 2018. pp 71-94.
Wang Q. Suitability Evaluation and Risk Monitoring of Grain and Oil Processing. Beijing: Science Press, 2018. pp 71-94. (in Chinese)
[5] 郭曼莉, 李晓彤, 吴澎, 赵路苹, 丁秀臻, 李向阳. 花生加工副产物的综合利用及精深加工. 粮油食品科技, 2018, 26(3): 27-31.
Guo M L, Li X T, Wu P, Zhao L P, Ding X Z, Li X Y. Comprehensive utilization and intensive processing of by-products during peanut processing. Sci Technol Cereals Oils Foods, 2018, 26(3): 27-31. (in Chinese with English abstract)
[6] Pattee H E, Isleib T G, Giesbrecht F G, McFeeters R F. Relationships of sweet, bitter, and roasted peanut sensory attributes with carbohydrate components in peanuts. J Agric Food Chem, 2000, 48: 757-763.
doi: 10.1021/jf9910741
[7] 雷永, 王志慧, 淮东欣, 高华援, 晏立英, 李建国, 李威涛, 陈玉宁, 康彦平, 刘海龙, 王欣, 薛晓梦, 姜慧芳, 廖伯寿. 花生籽仁蔗糖含量近红外模型构建及在高糖品种培育中的应用. 作物学报, 2021, 47: 332-341.
doi: 10.3724/SP.J.1006.2021.04106
Lei Y, Wang Z H, Huai D X, Gao H Y, Yan L Y, Li J G, Li W T, Chen Y N, Kang Y P, Liu H L, Wang X, Xue X M, Jiang H F, Liao B S. Development and application of a near infrared spectroscopy model for predicting high sucrose content of peanut seed. Acta Agron Sin, 2021, 47: 332-341 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2021.04106
[8] 秦利, 刘华, 杜培, 董文召, 黄冰艳, 韩锁义, 张忠信, 齐飞艳, 张新友. 基于近红外光谱法的花生籽仁中蔗糖含量的测定. 中国油料作物学报, 2016, 38: 666-671.
Qin L. Liu H, Du P, Dong W Z, Huang B Y, Han S Y, Zhang Z X, Qi F Y, Zhang X Y. Determination of sucrose content in peanut seed kernel based on near infrared spectroscopy. Chin J Oil Crop Sci, 2016, 38: 666-671 (in Chinese with English abstract)
[9] 唐月异, 王秀贞, 刘婷, 吴琪, 孙全喜, 王志伟, 张欣, 王传堂, 邵俊飞. 花生自然风干种子蔗糖含量近红外定量分析模型构建. 山东农业科学, 2018, 50(6): 159-162.
Tang Y Y, Wang X Z, Liu T, Wu Q, Sun Q X, Wang Z W, Zhang X, Wang C T, Shao J F. A near infrared spectroscopy model for predicting sucrose content of sun-dried peanut seeds. Shandong Agric Sci, 2018, 50(6): 159-162 (in Chinese with English abstract).
[10] 赵赓九, 胡晖, 刘红芝, 王强. 鲜食花生品质评价和贮藏加工研究进展. 食品科学, 2023, 44: 314-320.
Zhao G J, Hu H, Liu H Z, Wang Q. Progress in quality evaluation, storage and processing of fresh peanut. Foods Sci, 2023, 44: 314-320. (in Chinese with English abstract)
[11] 卞能飞, 孙东雷, 巩佳莉, 王幸, 邢兴华, 金夏红, 王晓军. 花生烘烤食用品质评价及指标筛选. 中国农业科学, 2022, 55: 641-653.
doi: 10.3864/j.issn.0578-1752.2022.04.002
Bian N F, Sun D L, Gong J L, Wang X, Xing X H, Jin X H, Wang X J. Evaluation of edible quality of roasted peanuts and indexes screening. Sci Agric Sin, 2022, 55: 641-653. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2022.04.002
[12] 秦利, 刘华, 张新友, 杜培, 代小冬, 孙子淇, 齐飞艳, 董文召, 黄冰艳, 韩锁义, 张忠信, 徐静. 花生籽仁蔗糖含量多世代联合群体主基因+多基因遗传模型分析. 中国油料作物学报, 2021, 43: 590-599.
Qin L, Liu H, Zhang X Y, Du P, Dai X D, Sun Z Q, Qi F Y, Dong W Z, Huang B Y, Han S Y, Zhang Z X, Xu J. Genetic analysis of sugar content in peanut kernel via mixed major gene plus polygene inheritance model in multi-generation combined population. Chin J Oil Crop Sci, 2021, 43: 590-599. (in Chinese with English abstract)
[13] 李威涛. 花生蔗糖含量QTL定位及相关基因表达分析. 中国农业科学院博士学位论文, 北京, 2021.
Li W T. QTL Mapping and Gene Expression Analysis for Sucrose Content in Peanut. PhD Dissertation of China Academy of Agricultural Sciences, Beijing, China, 2021. (in Chinese with English abstract)
[14] 秦利, 韩锁义, 刘华. 我国食用花生研究现状. 江苏农业科学, 2015, 43 (11): 4-7.
Qin L, Han S Y, Liu H. Research status of edible peanuts in china. Jiangsu Agric Sci, 2015, 43 (11): 4-7. (in Chinese)
[15] Bishi S K, Lokesh K, Dagla M C, Mahatma M K, Rathnakumar A L, Lalwani H B, Misra J B. Characterization of Spanish peanut germplasm (Arachis hypogaea L.) for sugar profiling and oil quality. Ind Crop Prod, 2013, 51: 46-50.
doi: 10.1016/j.indcrop.2013.08.050
[16] Bishi S K, Lokesh K, Mahatma M K, Khatediya N, Chauhan S M, Misra J B. Quality traits of Indian peanut cultivars and their utility as nutritional and functional food. Food Chem, 2015, 167: 107-114.
doi: 10.1016/j.foodchem.2014.06.076 pmid: 25148966
[17] 李威涛, 郭建斌, 喻博伦, 徐思亮, 陈海文, 吴贝, 龚廷锋, 黄莉, 罗怀勇, 陈玉宁, 周小静, 刘念, 陈伟刚, 姜慧芳. 基于HPLC-RID的花生籽仁可溶性糖含量检测方法的建立. 作物学报, 2021, 47: 368-375.
doi: 10.3724/SP.J.1006.2021.04110
Li W T, Guo J B, Yu B L, Xu S L, Chen H W, Wu B, Gong T F, Huang L, Luo H Y, Chen Y N, Zhou X J, Liu N, Chen W G, Jiang H F. Establishment of HPLC-RID method for the determination of soluble sugars in peanut seed. Acta Agron Sin, 2021, 47: 368-375. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2021.04110
[18] 陈淼, 侯名语, 崔顺立, 李振, 穆国俊, 刘盈茹, 李秀坤, 刘立峰. 不同种皮颜色花生糖含量近红外模型的构建. 光谱学与光谱分析, 2022, 42: 2896-2902.
Chen M, Hou M Y, Cui S L, Li Z, Mu G J, Liu Y R, Li X K, Liu L F. Construction of near-infrared model of peanut sugar content in different seed coat colors. Spectrosc Spect Anal, 2022, 42: 2896-2902. (in Chinese with English abstract)
[19] 张晓军, 赵瑞华, 于晓娜, 司彤, 邹小霞, 王月福, 王铭伦. 花生籽仁可溶性糖含量相关位点的分子标记方法及其应用. 中国专利: 202010304681.6, 2020-06-26.
Zhang X J, Zhao R H, Yu X N, Si T, Zou X X, Wang Y F, Wang M L. Identification and application molecular markers of soluble sugar content in peanut seeds. China patent: 202010304681.6, 2020-06-26. (in Chinese)
[20] 郭建斌, 李威涛, 罗怀勇, 陈伟刚, 喻博伦, 黄莉, 刘念, 周小静, 姜慧芳. 花生种子大小相关性状QTL定位及与出仁率的关系. 植物遗传资源学报, 2022, 23: 1465-1473.
doi: 10.13430/j.cnki.jpgr.20220323002
Guo J B, Li W T, Luo H Y, Chen W G, Yu B L, Huang L, Liu N, Zhou X J, Jiang H F. QTL mapping for seed size related traits and its relationship with shelling percentage in peanut. J Plant Genet Resour, 2022, 23: 1465-1473. (in Chinese with English abstract)
[21] Liu N, Guo J, Zhou X, Wu B, Huang L, Luo H, Chen Y, Chen W, Lei Y, Huang Y, Liao B, Jiang H. High-resolution mapping of a major and consensus quantitative trait locus for oil content to a ~0.8-Mb region on chromosome A08 in peanut (Arachis hypogaea L.). Theor Appl Genet, 2020, 133: 37-49.
doi: 10.1007/s00122-019-03438-6
[22] Wang S D, Liu S L, Wang J, Kengo Y, Zhou B, Yu Y C, Liu Z, Wolf B F, Ma J F, Chen L Q, Guan Y F, Shou H X, Tian Z X. Simultaneous changes in seed size, oil content and protein content driven by selection of SWEET homologues during soybean domestication. Nat Sci Rev, 2020, 7: 1776-1786.
doi: 10.1093/nsr/nwaa110
[1] 胡美玲, 郅晨阳, 薛晓梦, 吴洁, 王瑾, 晏立英, 王欣, 陈玉宁, 康彦平, 王志慧, 淮东欣, 姜慧芳, 雷永, 廖伯寿. 单粒花生蔗糖含量近红外预测模型的建立[J]. 作物学报, 2023, 49(9): 2498-2504.
[2] 王菲菲, 张胜忠, 胡晓辉, 崔凤高, 钟文, 赵立波, 张天雨, 郭进涛, 于豪谅, 苗华荣, 陈静. 比较转录组分析花生种子休眠调控网络[J]. 作物学报, 2023, 49(9): 2446-2461.
[3] 徐扬, 张岱, 康涛, 温赛群, 张冠初, 丁红, 郭庆, 秦斐斐, 戴良香, 张智猛. 盐胁迫对花生幼苗离子动态及耐盐基因表达的影响[J]. 作物学报, 2023, 49(9): 2373-2384.
[4] 黄莉, 陈伟刚, 李威涛, 喻博伦, 郭建斌, 周小静, 罗怀勇, 刘念, 雷永, 廖伯寿, 姜慧芳. 花生根部结瘤性状QTL定位[J]. 作物学报, 2023, 49(8): 2097-2104.
[5] 李星, 杨会, 骆璐, 李华东, 张昆, 张秀荣, 李玉颖, 于海洋, 王天宇, 刘佳琪, 王瑶, 刘风珍, 万勇善. 栽培种花生单仁重QTL定位分析[J]. 作物学报, 2023, 49(8): 2160-2170.
[6] 宋毅, 李静, 谷贺贺, 陆志峰, 廖世鹏, 李小坤, 丛日环, 任涛, 鲁剑巍. 氮肥用量对冬油菜籽粒产量和品质的影响[J]. 作物学报, 2023, 49(7): 2002-2011.
[7] 刘亭萱, 谷勇哲, 张之昊, 王俊, 孙君明, 邱丽娟. 基于高密度遗传图谱定位大豆蛋白质含量相关的QTL[J]. 作物学报, 2023, 49(6): 1532-1541.
[8] 陶顺玉, 吴贝, 刘念, 罗怀勇, 黄莉, 周小静, 陈伟刚, 郭建斌, 喻博伦, 雷永, 廖伯寿, 姜慧芳. 花生InDel标记开发及其在含油量QTL定位中的应用[J]. 作物学报, 2023, 49(5): 1222-1230.
[9] 孙全喜, 苑翠玲, 牟艺菲, 闫彩霞, 赵小波, 王娟, 王奇, 孙慧, 李春娟, 单世华. 花生SWEET基因全基因组鉴定及表达分析[J]. 作物学报, 2023, 49(4): 938-954.
[10] 杨俊芳, 王宙, 乔麟轶, 王亚, 赵宜婷, 张宏斌, 申登高, 王宏伟, 曹越. 基于高密度遗传图谱的蓖麻种子大小性状QTL定位[J]. 作物学报, 2023, 49(3): 719-730.
[11] 向思茜, 李儒香, 徐光益, 邓岢莉, 余金琎, 李苗苗, 杨正林, 凌英华, 桑贤春, 何光华, 赵芳明. 基于水稻长大粒染色体片段代换系Z66的粒型QTL的鉴定及其聚合分析[J]. 作物学报, 2023, 49(3): 731-743.
[12] 杨斌, 乔玲, 赵佳佳, 武棒棒, 温宏伟, 张树伟, 郑兴卫, 郑军. 小麦旗叶叶绿素含量的QTL定位及验证[J]. 作物学报, 2023, 49(3): 744-754.
[13] 许加波, 吴鹏昊, 黄博文, 陈占辉, 马月虹, 任姣姣. 利用F2:3家系来源单倍体定位玉米雄穗相关性状QTL及全基因组选择[J]. 作物学报, 2023, 49(3): 622-633.
[14] 纪红昌, 胡畅丽, 邱晓臣, 吴兰荣, 李晶晶, 李鑫, 李晓婷, 刘雨函, 唐艳艳, 张晓军, 王晶珊, 乔利仙. 花生籽仁品质性状高通量表型分析模型的构建[J]. 作物学报, 2023, 49(3): 869-876.
[15] 高春华, 冯波, 李国芳, 李宗新, 李升东, 曹芳, 慈文亮, 赵海军. 施氮量对花后高温胁迫下冬小麦籽粒淀粉合成的影响[J]. 作物学报, 2023, 49(3): 821-832.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .