欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (10): 2705-2716.doi: 10.3724/SP.J.1006.2023.24261

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

田间条件下不同棉花品种叶片响应化学脱叶剂噻苯隆的转录组分析

朱继杰1(), 王士杰1, 赵红霞1, 贾晓昀1(), 李妙1(), 王国印2   

  1. 1河北省农林科学院粮油作物研究所 / 河北省作物遗传育种实验室 / 河北省作物栽培生理和绿色生产重点实验室, 河北石家庄 050035
    2河北省农林科学院, 河北石家庄 050031
  • 收稿日期:2022-11-22 接受日期:2023-02-21 出版日期:2023-10-12 网络出版日期:2023-03-06
  • 通讯作者: 贾晓昀, E-mail: jiaxiaoyun1987@163.com; 李妙, E-mail: limiao2003@sina.com
  • 作者简介:E-mail: nkyzhujj@163.com
  • 基金资助:
    河北省现代农业产业技术体系创新团队建设专项-机采品种选育项目(HBCT2018040202);河北省农林科学院科技创新专项(2022KJCXZX-LYS-14);河北省农林科学院粮油作物研究所青年基金项目(2020LYS04)

Transcriptome analysis of different cotton varieties' leaves in response to chemical defoliant agent thidiazuron under field conditions

ZHU Ji-Jie1(), WANG Shi-Jie1, ZHAO Hong-Xia1, JIA Xiao-Yun1(), LI Miao1(), WANG Guo-Yin2   

  1. 1Institution of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences / Hebei Laboratory of Crop Genetics and Breeding / Hebei Key Laboratory of Crop Cultivation Physiology and Green Production, Shijiazhuang 050035, Hebei, China
    2Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050031, Hebei, China
  • Received:2022-11-22 Accepted:2023-02-21 Published:2023-10-12 Published online:2023-03-06
  • Contact: E-mail: jiaxiaoyun1987@163.com; E-mail: limiao2003@sina.com
  • Supported by:
    Hebei Modern Agricultural Industry Technology System Innovation Team Construction Project-Mechanic Picked Variety Breeding(HBCT2018040202);HAAFS Science and Technology Innovation Special Project(2022KJCXZX-LYS-14);Youth Fund Project of Institute of Grain and Oil Crops of HAAFS(2020LYS04)

摘要:

噻苯隆是棉花脱叶的主要化学药剂, 在实现棉花机械采收中发挥了关键作用。目前, 噻苯隆在大田环境下诱导棉花叶片脱落的分子调控机制研究较少。本研究以噻苯隆敏感型品种(冀丰914)和不敏感型株系(04-1685)为材料, 测定叶片的乙烯、细胞分裂素和脱落酸含量, 同时利用RNA-seq技术, 分析噻苯隆处理后0 d、1 d、3 d、5 d叶片的基因表达变化, 利用WGCNA (Weighted gene coexpression network analysis)分析筛选基因共表达模块, 利用GO和KEGG分析基因功能。结果表明, 冀丰914的乙烯、细胞分裂素和脱落酸含量在处理后1 d达到最高, 04-1685的激素含量在处理后3 d达到最高。通过RNA-seq筛选到33,283个差异表达基因(differentially expressed genes, DEGs), 通过WGCNA分析, 分别筛选到2个和3个与激素和样本高度相关的模块, 模块内的基因主要参与非生物胁迫响应、昼夜节律、物质代谢等过程。通过分析植物激素、胁迫响应、昼夜节律等主要过程相关基因的表达量发现, 激素相关基因在敏感型品种冀丰914中的表达量更高, 其中乙烯信号响应基因在处理后5 d内均保持在较高的表达水平, 脱落酸信号响应基因在处理后1 d内保持较高的表达水平, 细胞分裂素代谢相关基因在处理后1 d内表达量很低, 处理后3 d和5 d的表达量急剧增加。处理后1 d和3 d, 热激蛋白基因(HSP70HSP90ATJ3)、钙稳态调控基因(CRT3NCL)和节律基因(LNK2APRR9CCA1)显著下调表达, 节律基因(ARR8)上调表达。大田环境下喷施噻苯隆, 在引起激素含量变化的同时, 可能破坏了植物的昼夜节律、降低对非生物胁迫的应激能力, 从而加速叶片衰老和脱落。本研究为丰富噻苯隆诱导叶片脱落的分子调控机制提供了更多思路。

关键词: 陆地棉, 噻苯隆, 转录组, 植物激素, 非生物胁迫, 昼夜节律

Abstract:

Thidiazuron (TDZ) is the main chemical agent for cotton defoliation, which plays a key role in realizing cotton mechanical harvesting. At present, there are few studies on the molecular regulation mechanism of TDZ induced cotton leaf abscission in the field environment. In this study, TDZ sensitive variety (Jifeng 914) and non-sensitive line (04-1685) were used as the experimental materials. Ethylene, cytokinin, and abscisic acid contents in leaves were determined. RNA-seq was used to analyze the changes of gene expression in leaves at 0, 1, 3, and 5 d after TDZ treatment. WGCNA (Weighted gene coexpression network analysis), GO and KEGG were used to analyze and screen gene coexpression modules and gene functions, respectively. The results showed that the ethylene, cytokinin, and abscisic acid contents of Jifeng 914 reached the highest level at 1 d after treatment, and the hormone contents of 04-1685 reached the highest level at 3 d after treatment. A total of 33,283 differentially expressed genes (DEGs) were screened by RNA-seq. Through WGCNA analysis, 2 and 3 modules highly related to hormone and samples were screened respectively. The genes in the modules mainly participate in abiotic stress response, circadian rhythm, and material metabolism. By analyzing the relative expression of plant hormone, stress response, and circadian rhythm related genes, the expression of hormone related genes in sensitive variety Jifeng 914 was higher, among which ethylene signal response genes were kept at a higher expression level within 5 days after treatment, abscisic acid signal response genes were kept at a higher expression level within 1 day after treatment, and cytokinin metabolism related genes expressed very low within 1 day after treatment and increased sharply at 3 d and 5 d after treatment. At 1 d and 3 d after treatment, heat shock protein genes (HSP70, HSP90, and ATJ3), calcium homeostasis regulating genes (CRT3, NCL), and circadian rhythm genes (LNK2, APRR9, CCA1) were significantly down regulated, while circadian rhythm genes (ARR8) were up regulated. Spraying TDZ in the field environment, while causing changes in hormone content, may damage the plant's circadian rhythm and reduce the stress ability to abiotic stress, and thus accelerating leaf senescence and abscission. This study provides more ideas for enriching the molecular regulation mechanism of TDZ induced leaf abscission.

Key words: upland cotton, thidiazuron, RNA-seq, plant hormone, abiotic stress, circadian rhythm

表1

qRT-PCR所用基因及其引物序列"

基因 Gene 正向引物 Forward primer (5°-3°) 反向引物 Reverse primer (5°-3°)
GhHis3 TCAAGACTGATTTGCGTTTCCA GCGCAAAGGTTGGTGTCTTC
Ghir_D07G009830 CAATCAGACAAGCCAACA CTAAACCGACTTCTATGC
Ghir_D08G005270 CAAGGCTCGTCGTAAGGG TTGGCATAGTTGACTTTGTTGA
Ghir_A01G018610 AAGTTCACCACCGTCAGA CTCAAAGGACCATCAATC
Ghir_D08G001540 GGCTAACGCTGACCCTAC ATCCTCCGTGACTCCAAG
Ghir_D07G008630 AGGGTTGGAATCTTGGTA CCAGGTTTCGCTTGAATA
Ghir_D11G029010 ATCCAACAATAGGCAAGG TCAAACTCCGACCACTCT
Ghir_A05G006740 GAACACTTGCCTCCTTCT CTTAATAGCCTGTGGGTC
Ghir_A04G002920 CTCCTCTGGATTGGGTTTA GGTTCCTTGGCAGTTGGT
Ghir_D08G020190 GCAACATCCTCCTTCACC AAGCCCTCCAATACCAAT
Ghir_A06G003210 CAATAGCCAGGCAAGCGG GGGCAATAGCAAACAGCA

图1

噻苯隆处理后的脱叶率和激素含量变化 JF914: 冀丰914; CK: 对照。"

附表1

测序数据质量的统计量"

样品
Sample
原始数据
Raw data (bp)
干净数据
Clean data (bp)
Q30 (%) GC含量
GC content (%)
总比对率
Total mapped (%)
特异比对率 Uniquely mapped (%)
JF914-0d_1 7.52×109 7.11×109 93.78 45.01 92.83 84.09
JF914-0d_2 7.85×109 7.57×109 93.79 44.42 94.72 87.9
JF914-0d_3 7.46×109 7.19×109 93.55 44.45 95.47 88.46
JF914-1d_1 7.31×109 7.11×109 93.88 44.22 95.62 89.28
JF914-1d_2 7.92×109 7.73×109 93.79 44.19 95.68 89.6
JF914-1d_3 7.07×109 6.88×109 93.76 44.24 94.48 88.34
JF914-3d_1 6.97×109 6.83×109 93.87 43.87 94.42 88.06
JF914-3d_2 7.69×109 7.50×109 93.84 44.08 95.31 88.84
JF914-3d_3 6.96×109 6.80×109 93.47 43.83 95.18 88.84
JF914-5d_1 7.34×109 7.16×109 93.47 43.99 95.19 88.99
JF914-5d_2 7.03×109 6.86×109 93.89 44.12 95.4 89.32
JF914-5d_3 6.37×109 6.24×109 93.03 43.92 95.16 89.37
04-1685-0d_1 7.67×109 7.40×109 93.24 44.25 95.04 88.39
04-1685-0d_2 7.98×109 7.60×109 93.42 43.99 95.42 88.26
04-1685-0d_3 7.10×109 6.82×109 93.12 44.19 94.8 88.09
04-1685-1d_1 7.07×109 6.85×109 93.91 44.33 95.61 88.98
04-1685-1d_2 6.35×109 6.21×109 93.78 44.24 95.61 89.61
04-1685-1d_3 7.22×109 7.05×109 93.51 44.28 95.58 89.49
04-1685-3d_1 7.41×109 7.23×109 93.75 44.02 94.06 86.81
04-1685-3d_2 7.85×109 7.67×109 93.82 43.88 95.82 89.12
04-1685-3d_3 6.94×109 6.79×109 93.57 44.06 94.01 86.79
04-1685-5d_1 7.53×109 7.35×109 93.44 44.17 94.64 88.69
04-1685-5d_2 6.92×109 6.74×109 93.43 44.1 93.8 87.47
04-1685-5d_3 6.67×109 6.49×109 93.29 44.09 93.49 86.86

图2

基于转录组测序数据的样本主成分分析 JF914: 冀丰914。"

表2

不同取样时期及材料间的差异表达基因数量"

比较
Comparison
所有DEGs
Total DEGs
上调
Up regulated
下调
Down regulated
JF914-0d vs JF914-1d 2151 1180 971
JF914-1d vs JF914-3d 20,189 8045 12,144
JF914-3d vs JF914-5d 5039 2476 2563
JF914-0d vs 04-1685-0d 644 269 375
JF914-1d vs 04-1685-1d 539 218 321
JF914-3d vs 04-1685-3d 339 133 206
JF914-5d vs 04-1685-5d 1971 740 1231
04-1685-0d vs 04-1685-1d 3355 1892 1463
04-1685-1d vs 04-1685-3d 22,461 9019 13,442
04-1685-3d vs 04-1685-5d 5790 2520 3270

图3

荧光定量与RNA-seq结果比对 A: 冀丰914; B: 04-1685; 1: 0 d; 2: 1 d; 3: 3 d; 4: 5 d。"

图4

样品和激素的共表达模块 JF914: 冀丰914。"

表3

每个模块内的基因主要富集到的GO条目"

性状
Trait
模块
Module
GO号
GO ID
描述
Description
条目类型 Term type 基因数量
Gene number
校正PP-adjust
激素
Hormone
棕色 Brown GO:0003913 DNA光解酶活性 DNA photolyase activity MF 5 0
GO:0016703 氧化还原酶活性, 作用于结合分子氧的单个供体, 结合一个氧原子(内部单加氧酶或内部混合作用氧化酶)
Oxidoreductase activity, acting on single donors with incorporation of molecular oxygen, incorporation of one atom of oxygen (internal monooxygenases or internal mixed function oxidases)
MF 6 0.002
GO:0010277 叶绿素a加氧酶[总]活性
Chlorophyllide a oxygenase [overall] activity
MF 6 0.002
GO:0005372 水跨膜转运子活性
Water transmembrane transporter activity
MF 6 0.003
GO:0042044 液体转运 Fluid transport BP 6 0
GO:0006833 水分转运 Water transport BP 6 0
GO:0009628 响应非生物刺激 Response to abiotic stimulus BP 31 0.007
GO:0007623 昼夜节律 Circadian rhythm BP 6 0.017
GO:0048511 节律过程 Rhythmic process BP 6 0.017
品红
Magenta
GO:0042752 昼夜节律调控 Regulation of circadian rhythm BP 4 0.001
GO:0042753 昼夜节律正向调控
Positive regulation of circadian rhythm
BP 3 0.009
样品
Sample
棕色 Brown GO:0005198 结构分子活性 Structural molecule activity MF 59 0.013
GO:0003735 核糖体结构组分
Structural constituent of ribosome
MF 53 0.020
GO:0047334 二磷酸果糖-6-磷酸-1-磷酸转移酶活性Diphosphate-fructose-6-phosphate- 1-phosphotransferase activity MF 4 0.043
GO:0005840 核糖体 Ribosome CC 55 0.011
GO:0043228 无膜包裹的细胞器
Non-membrane-bounded organelle
CC 67 0.038
GO:0043232 细胞内部无膜包裹的细胞器
Intracellular non-membrane-bounded organelle
CC 67 0.038
GO:0006412 翻译 Translation BP 49 0.044
品红Magenta GO:0003951 NAD+激酶活性 NAD+ kinase activity MF 3 0.938
粉色
Pink
GO:0042752 昼夜节律调控 Regulation of circadian rhythm BP 4 0.008
GO:0042753 昼夜节律正向调控
Positive regulation of circadian rhythm
BP 3 0.066

表4

每个模块内的基因主要富集到的KEGG通路"

性状
Trait
模块
Module
KEGG通路号
KEGG pathway ID
描述
Description
基因数量
Gene number
校正PP-adjust
激素
Hormone
棕色 Brown map04712 昼夜节律-植物
Circadian rhythm-plant
13 3.02E-06
map00760 烟酸和烟酰胺代谢
Nicotinate and nicotinamide metabolism
5 0.079
map04141 内质网中的蛋白质加工
Protein processing in endoplasmic reticulum
18 0.162
map04146 过氧化物酶体
Peroxisome
9 0.494
map03060 蛋白质外排
Protein export
6 0.647
map04120 泛素介导的蛋白水解
Ubiquitin mediated proteolysis
11 0.698
品红
Magenta
map04075 植物激素信号转导
Plant hormone signal transduction
5 0.006
map00230 嘌呤代谢
Purine metabolism
2 0.168
map00400 苯丙氨酸、酪氨酸和色氨酸生物合成
Phenylalanine, tyrosine, and tryptophan biosynthesis
1 0.769
map00240 嘧啶代谢
Pyrimidine metabolism
1 0.992
样品
Sample
棕色
Brown
map00010 糖酵解/糖异生
Glycolysis/Gluconeogenesis
18 0.062
map03010 核糖体
Ribosome
38 0.088
map00520 氨基糖和核苷酸唐代谢
Amino sugar and nucleotide sugar metabolism
17 0.170
map04145 噬菌体
Phagosome
14 0.586
map00030 戊糖磷酸途径
Pentose phosphate pathway
8 0.830
map00600 鞘磷脂代谢
Sphingolipid metabolism
6 0.867
品红
Magenta
map00730 硫胺素代谢
Thiamine metabolism
2 0.195
map04144 内吞作用
Endocytosis
4 0.426
map04145 吞噬体
Phagosome
3 0.527
粉色
Pink
map04075 植物激素信号转导
Plant hormone signal transduction
5 0.420
map00900 萜类主链生物合成
Terpenoid backbone biosynthesis
2 0.740

附表2

模块内基因的表达量"

基因
Genes
模体
Symbol
JF914-0d JF914-1d JF914-3d JF914-5d 04-1685-0d 04-1685-1d 04-1685-3d 04-1685-5d
Ghir_A01G008930 - 17.0 20.2 12.3 7.5 20.8 19.8 16.7 8.8
Ghir_A01G010550 - 0.5 0.2 0.4 0.4 0.6 0.3 0.3 0.3
Ghir_A01G016940 - 8.3 8.7 6.4 4.3 8.1 7.7 7.6 4.0
Ghir_A02G005410 - 16.2 6.9 7.0 9.2 12.4 6.8 7.4 9.6
Ghir_A02G007670 ATCAO, CAO, CH1 20.5 13.2 8.2 28.4 23.3 13.8 6.4 24.9
Ghir_A02G009880 - 20.4 29.8 39.1 15.0 18.2 22.2 30.5 9.4
Ghir_A02G012150 ATSKP2;2,SKP2B 7.3 4.8 4.1 6.9 5.7 4.7 3.8 6.5
Ghir_A02G012620 AtCRT3,CRT3,EBS2,PSL1 269.8 121.8 123.9 95.2 204.6 88.7 188.8 66.5
Ghir_A02G013520 ARA-7,ARA7,atARA7,ATRAB-F2B,ATRAB5B,ATRABF2B,RAB-F2B,RABF2B 12.1 15.0 10.1 9.3 6.9 13.1 9.7 9.1
Ghir_A02G014320 AtRABA4a,RABA4a 2.5 2.2 3.6 2.1 2.5 2.0 4.5 1.7
Ghir_A02G017730 SUVR5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Ghir_A02G019660 AtACER,ATCES1 2.0 2.8 2.1 1.5 2.3 2.2 2.3 1.5
Ghir_A03G001740 - 3.1 1.7 0.8 1.9 3.4 2.2 0.5 2.7
Ghir_A03G004650 - 16.7 18.3 12.7 7.4 18.4 16.1 17.3 8.1
Ghir_A03G008550 ENO1 6.6 9.8 5.3 3.8 6.0 8.0 6.5 3.2
Ghir_A03G011460 - 0.1 0.0 0.1 0.0 0.1 0.1 0.0 0.0
Ghir_A03G014410 GAPC-2,GAPC2 0.1 0.2 0.0 0.0 0.0 0.1 0.0 0.0
Ghir_A03G020480 - 4.3 6.9 5.2 4.2 5.8 6.9 5.4 3.1
Ghir_A04G005850 - 1.6 2.3 1.6 0.9 2.1 2.5 1.5 0.9
Ghir_A04G011920 AGAL1,AtAGAL1 8.7 12.5 11.1 3.0 6.5 9.9 6.2 5.0
Ghir_A04G012800 TUA2 9.0 10.2 20.2 3.2 7.1 9.4 22.0 4.8
Ghir_A05G006080 ALDH11A3 3.7 5.6 4.5 3.0 1.7 3.3 3.0 1.9
Ghir_A05G006290 ACD1,LLS1,PAO 32.3 16.4 5.8 25.9 31.4 19.5 5.4 22.3
Ghir_A05G006740 ABC1K1,ACDO1,AtACDO1,PGR6 9.9 7.6 2.6 6.6 10.3 8.5 2.0 6.0
Ghir_A05G007340 AGT,AGT1,SGAT 63.9 39.5 22.6 44.2 64.1 46.1 16.5 70.0
Ghir_A05G008440 BIC1 51.6 11.1 1.3 22.1 62.0 16.3 0.8 27.4
Ghir_A05G012590 APT5 1.4 4.9 2.4 2.3 1.1 2.3 3.2 1.8
Ghir_A05G019810 ATHAL3B,HAL3,HAL3B 2.0 1.7 1.7 1.8 2.1 1.6 1.3 1.8
Ghir_A05G021970 TUA2 2.5 3.3 2.7 1.6 2.4 3.1 4.0 1.3
Ghir_A05G027740 ATRABG3B,RAB7,RAB75,RABG3B 1.1 1.8 2.2 1.0 1.4 1.6 2.7 1.0
Ghir_A05G028660 LNK2 24.9 13.8 6.8 18.2 27.2 14.2 6.9 14.6
Ghir_A05G030390 UBC19 1.4 1.3 1.0 1.9 1.7 1.8 1.3 1.7
Ghir_A05G041300 ARR8,ATRR3,RR3 2.4 24.9 14.9 4.7 1.5 17.4 12.9 8.6
Ghir_A06G001750 COR27 2.3 11.4 6.0 4.6 1.5 11.3 5.5 4.7
Ghir_A06G004640 LACS9 3.1 2.2 0.9 2.7 3.1 2.1 0.8 2.0
Ghir_A06G005970 - 15.1 19.9 13.6 6.5 14.1 18.4 16.0 7.9
Ghir_A06G006470 ATRAB-F2A,ATRAB5A,ATRABF2A,RAB-F2A,RAB5A,RABF2A,RHA1 3.4 4.0 3.3 2.5 3.0 3.7 3.8 2.2
Ghir_A06G010230 - 5.5 6.4 6.8 3.8 5.3 6.0 6.8 3.3
Ghir_A06G012540 CRY3 10.8 3.8 2.2 8.7 12.5 4.8 1.6 10.6
Ghir_A06G016380 - 23.7 30.6 26.6 14.3 18.0 25.3 21.3 11.2
Ghir_A06G017580 CRY3 6.1 19.2 18.3 11.6 5.0 19.8 17.7 10.1
Ghir_A06G018020 AT-HSC70-1,AtHsp70-1,HSC70,HSC70-1,HSP70-1 251.1 101.9 51.0 145.5 276.6 94.0 82.0 149.5
Ghir_A06G020430 - 27.0 28.9 21.5 11.9 27.8 29.7 25.1 13.6
Ghir_A06G021400 RPL16A 5.1 5.4 5.0 3.3 4.4 5.8 5.5 5.1
Ghir_A06G022650 UVR3 18.4 14.3 7.2 15.6 21.0 15.2 6.1 16.8
Ghir_A07G002950 - 10.5 17.9 21.9 6.5 11.6 15.4 17.5 12.4
Ghir_A07G007580 ATDGK1,DGK1 3.4 2.9 3.6 3.1 4.0 3.0 4.5 2.5
Ghir_A07G007590 UGD3 1.4 2.9 2.0 1.1 3.2 2.6 2.2 0.3
Ghir_A07G012010 atENP1,ENP1 5.2 5.3 3.3 1.2 5.8 5.3 4.8 1.5
Ghir_A07G012630 TUB6 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.1
Ghir_A07G015600 GAE3 0.8 0.8 1.0 0.4 1.3 0.9 1.4 0.5
Ghir_A07G016260 PALE1,TH-2,TH2 2.2 2.6 3.3 2.6 2.8 2.2 4.2 2.0
Ghir_A07G017020 ATCHIP,CHIP 5.5 5.5 4.3 5.8 6.6 5.2 4.1 6.4
Ghir_A07G018990 GAUT9 2.0 2.9 1.7 0.9 2.1 2.8 1.9 0.8
Ghir_A07G023100 GAUT9 0.7 1.2 1.5 0.2 0.6 1.5 1.9 0.2
Ghir_A08G000130 - 3.3 3.2 3.1 3.8 2.7 3.6 2.5 4.0
Ghir_A08G001580 ACD1-LIKE,PTC52,TIC55-IV 15.8 10.0 6.2 18.3 19.1 9.0 9.4 19.0
Ghir_A08G003090 AtHsp90.2,ERD8,HSP81-2,HSP81.2,HSP90.2 369.6 136.9 30.6 116.6 326.4 122.5 58.2 131.7
Ghir_A08G005550 ARS27A,RS27A 9.3 10.7 7.8 5.6 12.1 10.0 10.5 5.1
Ghir_A08G009530 ARS27A,RS27A 3.2 3.5 3.2 1.8 2.4 3.2 3.3 1.3
Ghir_A08G011680 PGY2 36.1 39.6 28.7 16.5 37.4 41.4 37.4 17.8
Ghir_A08G014320 GAE3 1.1 1.7 1.8 1.0 1.3 1.9 1.8 1.2
Ghir_A08G017930 - 9.4 8.2 9.4 8.0 8.9 6.7 11.9 6.3
Ghir_A08G019290 ATGID1B,GID1B 2.0 6.7 4.2 3.5 1.7 3.3 4.3 2.8
Ghir_A08G021740 RPL18 0.0 0.0 0.0 0.0 0.1 0.0 0.1 0.1
Ghir_A08G022220 - 8.5 11.9 5.6 1.6 9.5 11.8 5.4 1.1
Ghir_A08G023180 - 11.8 10.4 4.9 15.1 9.7 13.1 3.1 9.5
Ghir_A08G023710 - 4.0 6.8 2.5 1.3 2.3 3.2 2.4 0.9
Ghir_A09G002690 - 7.9 9.1 7.6 4.7 10.1 8.9 10.6 4.8
Ghir_A09G006240 - 1.9 3.4 1.3 0.5 2.1 3.8 1.6 0.5
Ghir_A09G010800 - 6.7 7.6 6.1 4.0 6.4 7.8 7.4 4.7
Ghir_A09G014710 AHP5,AHP5 33.2 32.2 27.0 13.2 31.4 32.4 33.1 16.5
Ghir_A09G015860 RPL12C 2.9 3.0 3.2 2.5 3.3 2.7 3.5 2.2
Ghir_A09G015880 PIP2;2,PIP2B 27.8 3.6 1.3 9.6 23.3 3.3 0.4 5.8
Ghir_A09G016580 AT-HSC70-1,AtHsp70-1,HSC70,HSC70-1,HSP70-1 14.3 5.0 1.5 4.4 15.6 3.7 2.5 7.1
Ghir_A09G018290 EFO2,RUP2 9.1 2.9 0.2 4.1 8.8 4.8 0.3 3.3
Ghir_A09G018820 ATRBL3,RBL3 1.3 3.3 3.0 0.7 1.1 2.9 2.8 0.8
Ghir_A09G022090 BBX24,BBX24,STO 88.0 53.3 25.6 64.9 113.4 64.4 17.8 55.6
Ghir_A10G016320 - 0.3 0.4 0.2 0.4 0.5 0.5 0.3 0.3
Ghir_A10G018160 RPL10B 1.2 2.4 1.6 0.4 1.3 1.7 0.3 0.3
Ghir_A10G018930 - 8.9 38.9 24.6 17.5 11.7 40.0 29.3 25.2
Ghir_A10G020390 - 2.1 1.6 2.0 1.3 1.9 1.6 1.8 1.2
Ghir_A10G023690 ATHH2,PIP1;2,PIP1B,TMP-A 49.3 3.8 1.3 7.5 26.0 2.7 0.8 7.0
Ghir_A10G024010 ATHH2,PIP1;2,PIP1B,TMP-A 0.5 21.6 13.8 0.9 0.4 11.5 10.9 0.5
Ghir_A11G001650 APRR5,PRR5 8.0 6.1 3.6 7.5 9.6 5.9 2.3 6.9
Ghir_A11G003880 RGP,RGP3 14.5 18.6 24.4 12.7 24.7 16.9 36.9 10.0
Ghir_A11G003900 GAUT11 2.2 2.2 2.0 1.4 2.2 1.7 2.5 1.4
Ghir_A11G005950 - 10.6 14.2 11.2 7.7 12.5 12.2 14.9 9.2
Ghir_A11G006660 - 4.5 2.9 1.5 10.8 3.6 5.2 4.5 6.3
Ghir_A11G007090 - 9.4 11.4 7.9 4.9 8.0 11.5 7.3 5.0
Ghir_A11G010130 RRP41 8.9 9.3 7.5 4.3 6.7 7.9 6.1 3.6
Ghir_A11G010230 SPA1 4.3 2.5 1.4 3.6 4.2 2.9 1.7 3.7
Ghir_A11G010900 APRR9,PRR9,TL1 9.9 2.7 0.5 3.8 8.9 3.5 0.4 2.6
Ghir_A11G012240 ATMHX,ATMHX1,MHX,MHX1 16.7 20.7 12.9 7.6 16.2 17.9 14.7 6.7
Ghir_A11G013550 - 2.3 3.2 2.6 3.7 3.6 2.7 2.6 3.3
Ghir_A11G017790 AtPERK8,PERK8 2.9 4.0 2.3 2.1 2.4 3.8 2.9 1.8
Ghir_A11G017880 - 4.2 5.3 4.0 3.3 4.1 3.6 5.5 4.2
Ghir_A11G024630 RPS2 5.9 7.2 6.7 1.5 5.6 6.3 6.8 1.7
Ghir_A11G031350 AtNCL,NCL 7.0 1.5 0.5 1.9 6.2 2.4 0.5 1.6
Ghir_A11G035290 ABCI20,ATNAP9,NAP9 1.8 1.4 1.6 1.8 1.4 1.5 1.2 1.7
Ghir_A12G001470 LNK1 15.1 4.4 3.3 6.1 17.5 5.0 3.6 5.2
Ghir_A12G004550 - 0.4 0.2 0.2 0.2 0.3 0.5 0.3 0.4
Ghir_A12G008430 EMB3010,RPS6B 0.5 0.6 0.2 0.0 0.6 0.5 0.2 0.4
Ghir_A12G012130 SINAT3 1.3 1.3 1.2 1.3 1.4 1.0 0.9 1.4
Ghir_A12G012650 AtCCA1,CCA1 1.3 0.4 0.0 1.2 1.8 1.0 0.0 0.6
Ghir_A12G022310 - 4.7 12.9 7.3 6.2 6.0 10.0 6.4 3.8
Ghir_A12G022870 ACX1,ATACX1 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0
Ghir_A12G025940 APRR5,PRR5 15.0 9.1 3.5 11.1 14.8 10.2 3.3 8.7
Ghir_A13G006290 - 0.5 3.9 0.8 0.3 0.7 2.3 1.9 0.4
Ghir_A13G006750 APRR5,PRR5 13.2 3.3 2.6 5.5 14.0 4.0 3.6 5.2
Ghir_A13G008670 SAC56 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Ghir_A13G009930 ATNADK2,NADK2 2.6 2.2 1.2 2.7 2.6 2.3 1.3 2.9
Ghir_A13G021180 ATNUDT19,ATNUDX19,NUDX19 12.8 9.2 5.8 13.2 13.4 9.2 7.2 13.9
Ghir_A13G023720 DDB2 3.5 2.8 2.0 4.5 4.5 2.6 1.7 6.7
Ghir_D01G007810 ATEHD1,EHD1 4.8 4.9 4.7 9.1 5.9 5.6 4.3 7.4
Ghir_D01G008810 AtHsp90.2,ERD8,HSP81-2,HSP81.2,HSP90.2 71.3 20.6 4.6 20.9 76.9 20.5 10.2 24.3
Ghir_D01G009340 - 23.4 24.0 16.7 10.7 26.1 24.2 21.8 11.6
Ghir_D01G010350 - 14.1 10.6 9.2 22.8 13.6 8.4 5.6 40.8
Ghir_D01G011590 - 4.0 2.5 3.1 3.3 4.0 2.7 2.9 3.8
Ghir_D01G015500 ATRPAC43,RPAC43 0.0 0.2 0.1 0.7 0.4 0.3 0.0 0.3
Ghir_D02G000260 VHA-E2 2.4 2.2 1.7 0.9 1.1 1.9 1.1 0.6
Ghir_D02G001270 VHA-E2 0.9 1.2 1.5 0.1 1.4 1.7 1.4 1.2
Ghir_D02G001290 VHA-E2 0.5 0.8 1.3 0.2 0.5 0.5 1.4 0.5
Ghir_D02G001350 VHA-E2 5.4 9.0 5.1 1.1 8.2 8.7 6.3 2.7
Ghir_D02G002390 GAE6 6.0 6.8 4.8 2.0 4.0 5.7 9.1 4.9
Ghir_D02G002560 AtACER,ATCES1 1.5 2.0 1.4 1.0 1.8 1.6 1.6 1.0
Ghir_D02G002620 DAYSLEEPER 0.8 1.2 1.0 0.2 1.4 1.0 1.2 0.6
Ghir_D02G007380 ADH,ADH1,ATADH,ATADH1 10.4 9.8 10.0 6.1 10.3 9.4 11.8 11.0
Ghir_D02G008120 ATCAO,CAO,CH1 16.6 10.0 7.4 19.3 18.3 12.0 5.8 18.1
Ghir_D02G008760 AtTIFY1,GATA25,TIFY1,ZIM 4.6 4.5 3.6 5.0 4.1 3.8 3.4 4.9
Ghir_D02G012890 AtSBH2,SBH2 138.7 326.3 31.0 22.9 90.9 200.7 17.2 6.9
Ghir_D02G012900 SBH1 4.0 4.7 4.2 2.9 4.6 4.5 5.5 3.1
Ghir_D02G021570 - 9.3 14.0 13.7 5.7 9.0 10.8 8.3 10.0
Ghir_D03G006610 SKP2A 9.9 5.0 3.9 7.2 7.5 4.8 3.2 6.1
Ghir_D03G007190 ARA-7,ARA7,atARA7,ATRAB-F2B,ATRAB5B,ATRABF2B,RAB-F2B,RABF2B 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Ghir_D03G007840 - 0.7 1.0 0.4 0.7 0.5 0.9 0.9 0.5
Ghir_D03G008510 Nog1-1 12.4 12.9 8.4 5.9 13.6 12.4 11.2 5.9
Ghir_D03G010330 - 2.5 1.0 4.2 0.1 1.7 2.3 1.0 0.1
Ghir_D03G011050 ENO1 7.7 12.0 9.0 3.9 7.2 9.3 8.8 3.7
Ghir_D03G012330 GOX1 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0
Ghir_D03G012450 - 2.8 7.3 9.5 0.1 1.1 13.0 12.0 10.4
Ghir_D03G017250 - 5.5 3.7 1.4 5.7 6.7 4.3 1.2 5.2
Ghir_D04G003680 AtSRT2,SRT2 6.1 4.9 0.8 4.5 8.1 6.5 0.6 4.5
Ghir_D04G006910 CYT1,EMB101,GMP1,SOZ1,VTC1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Ghir_D04G008340 - 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Ghir_D04G014000 AIRP2,AtAIRP2 2.0 1.3 1.3 2.3 1.4 1.6 1.0 1.8
Ghir_D04G014250 - 0.9 0.6 0.2 1.0 1.1 0.7 0.2 0.9
Ghir_D04G014510 - 3.0 3.0 4.4 2.4 3.2 3.0 3.9 1.9
Ghir_D04G015550 ATRMA1,RMA1 12.7 10.2 5.0 12.2 13.6 10.7 2.5 8.9
Ghir_D04G016690 LNK1 5.4 0.9 1.8 3.4 5.8 1.1 2.5 3.5
Ghir_D04G020270 PGM3 10.0 10.1 10.0 6.4 8.8 11.1 11.0 6.0
Ghir_D05G001960 ARRS1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Ghir_D05G004490 SQD1 42.7 71.7 29.8 17.5 34.4 66.9 29.0 12.5
Ghir_D05G006370 ACD1,LLS1,PAO 1.7 0.7 0.2 1.8 0.9 0.5 0.1 1.4
Ghir_D05G016900 - 8.7 8.8 7.3 3.7 9.2 10.3 7.1 3.9
Ghir_D05G019180 ARF5,IAA24,MP,MP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Ghir_D05G021900 TUA2 9.8 13.4 11.7 3.6 8.6 13.5 14.9 2.6
Ghir_D05G027740 ATRABG3B,RAB7,RAB75,RABG3B 1.6 1.6 2.1 1.1 1.5 2.0 2.5 1.6
Ghir_D05G028650 - 11.8 13.8 15.5 8.9 18.5 17.8 18.2 9.4
Ghir_D05G029680 - 1.7 3.9 1.6 1.9 0.5 1.8 3.4 0.9
Ghir_D05G030330 UBC19 5.1 5.9 3.1 6.3 6.0 5.7 3.0 7.3
Ghir_D05G039710 - 2.3 3.4 2.9 2.4 3.1 2.6 2.9 2.0
Ghir_D06G003560 - 0.4 2.5 1.2 0.1 0.8 1.6 1.1 0.1
Ghir_D06G004700 LACS9 0.1 0.1 0.1 0.6 0.3 0.2 0.0 0.0
Ghir_D06G009240 HSP17.6II 1.0 1.1 2.2 3.2 1.2 1.1 1.3 2.4
Ghir_D06G011830 CRY3 11.2 3.7 1.9 7.6 12.6 4.5 1.7 9.1
Ghir_D06G012390 AtSBH2,SBH2 3.7 3.2 3.3 2.5 3.4 2.9 3.5 1.8
Ghir_D06G015060 AtRABA1c,RABA1c 8.1 8.8 12.8 7.7 10.2 7.9 15.1 6.8
Ghir_D06G016860 ADT1,AtADT1 1.6 2.8 2.6 2.1 1.4 2.7 2.2 1.8
Ghir_D06G017240 - 23.8 32.3 32.2 17.8 18.5 25.5 24.3 12.9
Ghir_D06G017430 - 9.1 8.7 5.7 8.7 8.4 6.5 3.2 13.0
Ghir_D06G018900 AT-HSC70-1,AtHsp70-1,HSC70,HSC70-1,HSP70-1 302.1 106.9 48.7 130.6 306.0 98.0 75.9 125.3
Ghir_D06G022590 ATNUDT15,ATNUDX15,NUDX15 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Ghir_D07G006200 OLD5,QS,SUFE3 16.5 11.9 4.6 15.4 19.3 13.0 4.2 13.9
Ghir_D07G007590 ATDGK1,DGK1 2.9 2.6 3.0 2.5 2.9 2.2 4.0 2.3
Ghir_D07G011020 HSP17.6B 2.2 0.7 1.5 1.0 1.2 0.6 0.8 1.0
Ghir_D08G001600 ACD1-LIKE,PTC52,TIC55-IV 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Ghir_D08G003190 AtHsp90.2,ERD8,HSP81-2,HSP81.2,HSP90.2 43.1 27.8 10.4 37.9 60.3 28.9 15.4 29.5
Ghir_D08G003210 AtHsp90.2,ERD8,HSP81-2,HSP81.2,HSP90.2 88.6 40.3 15.9 42.4 84.9 42.8 20.3 38.1
Ghir_D08G009200 L18aB,RPL18aB 0.5 0.2 0.3 0.0 0.0 0.3 0.1 0.1
Ghir_D08G012060 BIP,BIP2 23.3 5.4 4.9 17.4 23.2 4.0 8.7 17.9
Ghir_D08G015210 GAE3 1.3 1.4 1.2 0.5 1.3 1.5 1.7 0.9
Ghir_D08G017160 ATSYP22,ATVAM3,SGR3,SYP22,VAM3 6.3 5.5 5.2 5.2 5.3 5.6 6.1 3.9
Ghir_D08G022110 RPT2 60.6 25.3 15.1 25.8 49.5 30.0 13.2 25.8
Ghir_D08G022550 - 4.1 8.2 6.5 3.0 5.5 8.0 5.6 2.9
Ghir_D08G022910 - 2.5 3.2 2.0 0.6 1.9 2.5 2.1 0.7
Ghir_D08G024630 - 3.4 7.2 3.7 2.1 2.9 4.0 3.0 2.0
Ghir_D08G025270 DECR,SDRB 23.5 12.5 1.9 14.9 27.0 16.0 1.1 13.4
Ghir_D08G025770 HY5,TED 5 7.9 3.8 1.4 3.9 6.6 4.2 1.3 3.8
Ghir_D09G004530 TUB8 37.3 59.0 46.9 22.6 37.9 63.7 42.2 22.7
Ghir_D09G010540 - 6.1 7.0 5.9 4.2 7.3 6.7 6.8 4.1
Ghir_D09G010620 ATJ,ATJ3,J3 89.9 21.7 12.6 28.6 74.2 17.0 18.9 28.2
Ghir_D09G011610 ATNADK-1,NADK1 3.8 2.6 1.1 1.5 3.2 2.5 1.0 0.9
Ghir_D09G014410 - 4.6 5.8 3.8 0.4 3.6 6.8 4.5 0.5
Ghir_D09G015310 - 0.3 0.1 0.0 0.2 0.2 0.1 0.0 0.1
Ghir_D09G015320 PIP2;2,PIP2B 5.3 1.0 0.2 2.1 7.9 1.1 0.2 1.6
Ghir_D09G017780 EFO2,RUP2 8.4 3.5 0.5 4.3 9.9 5.5 0.2 3.5
Ghir_D09G022230 RPS24B 21.8 21.7 22.3 7.9 25.5 27.0 32.2 11.1
Ghir_D09G025630 - 0.2 1.3 1.6 0.6 1.0 1.1 1.8 0.7
Ghir_D10G001380 - 0.8 2.5 0.9 0.2 0.5 1.5 1.2 0.4
Ghir_D10G004090 - 1.6 2.1 2.2 1.7 1.9 2.0 2.5 1.7
Ghir_D10G008440 ATTSO2,TSO2 0.7 1.8 1.8 0.9 0.5 2.2 1.6 1.6
Ghir_D10G010460 - 1.8 2.0 1.9 1.5 2.5 1.9 2.2 1.4
Ghir_D10G019760 RPS26e 22.6 27.3 24.3 11.3 27.2 24.6 26.7 13.2
Ghir_D10G020440 ARR9,ATRR4 10.6 42.9 33.4 17.9 12.9 45.9 46.1 29.7
Ghir_D10G026150 ATHH2,PIP1;2,PIP1B,TMP-A 11.2 0.7 0.2 1.8 6.8 0.2 0.1 3.2
Ghir_D10G026160 ATHH2,PIP1;2,PIP1B,TMP-A 0.8 0.0 0.0 0.1 0.3 0.1 0.0 0.1
Ghir_D10G026170 ATHH2,PIP1;2,PIP1B,TMP-A 23.2 6.8 1.8 7.5 18.0 4.9 0.9 6.6
Ghir_D10G026440 - 0.9 34.4 22.7 4.7 0.2 18.4 24.5 2.0
Ghir_D11G002530 ATOXA1,OXA1,OXA1a,OXA1AT 0.5 0.0 0.1 0.0 0.3 0.6 0.1 0.3
Ghir_D11G004470 - 42.6 55.2 38.2 23.1 46.4 57.7 45.9 16.6
Ghir_D11G010190 SPA1 1.8 1.4 1.0 1.7 2.7 1.3 1.1 1.8
Ghir_D11G010820 APRR9,PRR9,TL1 6.8 1.8 0.4 4.7 7.2 3.2 0.6 3.2
Ghir_D11G010920 LHY,LHY,LHY1 0.5 0.1 0.0 0.6 0.5 0.4 0.0 0.5
Ghir_D11G013600 - 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Ghir_D11G013840 AtcPT1,cPT1 1.1 1.9 1.5 1.2 0.5 1.9 1.5 1.2
Ghir_D11G016270 ATCOP1,COP1,DET340,EMB168,FUS1 7.8 7.7 5.0 7.5 9.6 8.4 4.3 5.2
Ghir_D11G019410 - 26.2 40.9 17.4 16.4 18.4 34.8 13.6 9.7
Ghir_D11G023570 - 0.3 1.3 1.6 0.1 1.1 1.3 1.5 0.9
Ghir_D11G024810 AtUGP1,UGP,UGP1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Ghir_D11G027800 GSDA 22.3 23.7 18.0 10.3 19.9 22.5 21.4 12.1
Ghir_D11G029450 - 1.7 1.0 1.1 0.0 2.2 3.6 3.2 2.5
Ghir_D11G030550 - 2.0 1.2 2.2 1.2 1.2 2.3 1.1 0.9
Ghir_D11G032310 GAPCP-2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Ghir_D11G032690 ATSNF4,SNF4 3.6 9.4 4.5 2.6 3.3 7.1 6.2 2.2
Ghir_D11G035310 - 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.0
Ghir_D11G035370 RPL20 7.3 8.9 7.0 6.5 6.1 7.8 8.6 6.4
Ghir_D11G036090 AT-HSC70-1,AtHsp70-1,HSC70,HSC70-1,HSP70-1 45.7 22.9 20.7 43.9 46.8 18.8 29.2 54.0
Ghir_D11G036150 ABCI20,ATNAP9,NAP9 6.5 4.5 3.2 10.0 7.8 5.5 2.6 10.7
Ghir_D12G001500 LNK1 5.8 1.4 1.0 2.5 5.7 1.3 1.1 1.9
Ghir_D12G004770 DECR,SDRB 4.9 2.6 1.5 4.5 3.3 2.0 1.1 4.5
Ghir_D12G012900 LHY,LHY,LHY1 8.7 3.2 1.1 11.4 13.3 3.8 1.0 9.5
Ghir_D12G018990 - 10.3 11.5 10.7 6.7 11.2 13.2 13.3 7.2
Ghir_D12G023930 ATUGE1,UGE1 1.5 2.0 0.0 0.0 0.4 0.8 0.0 0.0
Ghir_D12G026480 ATSIG5,SIG5,SIGE 64.4 9.8 6.4 28.1 75.6 15.4 5.6 24.0
Ghir_D13G001020 AtSEC23C 1.9 1.4 1.6 2.2 2.2 2.0 1.4 2.0
Ghir_D13G005430 FLL2 0.0 0.0 0.3 0.1 0.1 0.1 0.0 0.1
Ghir_D13G006450 FLL2 1.6 1.7 1.9 0.9 1.5 1.7 1.7 1.0
Ghir_D13G010310 SAC56 13.8 12.2 12.6 7.5 13.8 11.1 18.5 7.3
Ghir_D13G017060 RGP5,RGP5 5.3 6.9 4.0 2.6 4.3 6.4 4.2 2.2
Ghir_D13G022040 ATNUDT19,ATNUDX19,NUDX19 12.4 7.9 5.4 13.3 14.6 7.7 6.0 14.0
Ghir_D13G024440 DDB2 2.7 2.7 1.4 3.9 3.1 2.6 1.4 4.0

附表3

激素相关基因的表达量"

基因Gene JF914-0d JF914-1d JF914-3d JF914-5d 04-1685-0d 04-1685-1d 04-1685-3d 04-1685-5d
Ghir_A05G018480 3.35 0.35 0.97 0.71 1.05 0.21 1.01 0.64
Ghir_D01G010310 0.36 1.00 9.87 9.04 0.38 0.65 9.54 8.21
Ghir_D05G018480 6.67 0.51 0.80 1.65 4.70 0.51 0.95 3.70
Ghir_A06G022780 0.90 12.83 0.10 0.05 0.49 13.31 1.13 0.06
Ghir_A05G004020 0.59 12.38 684.35 342.12 0.71 4.44 624.00 319.09
Ghir_A06G007640 0.06 24.90 47.09 7.50 0.13 6.82 59.38 3.16
Ghir_A07G001250 0.00 20.27 432.61 403.08 0.26 28.52 578.43 344.64
Ghir_D06G007800 0.06 23.61 30.62 4.46 0.04 5.32 72.94 3.22
Ghir_D06G009100 7.69 7.64 2.81 2.74 7.43 10.80 3.03 1.86
Ghir_D07G001260 0.06 42.18 923.40 796.81 0.42 8.75 892.12 607.89
Ghir_A12G023980 1.12 4.40 67.96 64.17 0.65 0.76 36.46 51.44
Ghir_D12G023960 51.54 74.85 1468.21 1527.31 14.41 12.06 1073.61 1389.37
Ghir_D02G013160 24.30 23.66 0.27 1.44 14.73 22.58 0.58 0.52
Ghir_D03G018940 20.59 14.36 0.27 1.12 31.30 18.19 0.37 0.87
Ghir_D11G011550 0.96 2.53 2.90 1.20 0.62 0.31 3.61 2.03
Ghir_D05G036790 4.96 4.08 26.36 28.09 4.57 2.65 20.39 51.20
Ghir_A11G004510 7.74 12.81 0.40 3.16 5.01 12.71 1.00 0.28
Ghir_D11G004410 13.00 32.39 0.72 4.99 7.73 27.73 0.92 0.56
Ghir_D13G007620 2.64 3.38 1.07 1.61 4.80 4.09 0.45 0.45
Ghir_A04G003200 202.97 177.83 125.29 146.35 174.05 168.09 106.68 86.76
Ghir_D05G036360 2.70 2.10 2.17 1.08 2.77 2.29 1.35 0.17
Ghir_A12G024510 0.47 2.63 3.41 0.25 1.06 0.62 16.73 1.52
Ghir_A03G010240 5.79 5.08 0.13 0.34 8.27 4.43 0.00 0.01
Ghir_D12G027950 81.66 69.07 0.58 2.42 72.95 64.66 1.08 0.23
Ghir_A09G020320 0.24 0.45 0.34 0.39 0.23 0.69 0.62 0.20
Ghir_A09G014150 4.65 4.19 0.51 2.46 6.22 4.45 1.13 0.45
Ghir_D09G013610 7.96 6.79 1.02 3.90 9.77 6.27 1.58 0.67
Ghir_A11G032930 5.25 4.98 0.57 0.71 6.21 6.44 0.46 0.21
Ghir_A05G003480 145.13 219.18 0.08 0.92 219.04 222.37 0.90 0.13
Ghir_A05G010280 148.27 68.77 42.13 52.75 158.04 84.90 53.31 30.03
Ghir_D05G010000 202.78 89.17 86.89 89.03 203.65 110.99 113.36 51.42
Ghir_A09G023900 1.26 2.81 24.07 20.89 0.94 1.41 24.59 34.80
[1] Jin D, Xu Y, Gui H, Zhang H, Dong Q, Sikder R K, Wang X, Yang G, Song M. Evaluation of cotton (Gossypium hirsutum L.) leaf abscission sensitivity triggered by thidiazuron through membership function value. Plants, 2021, 10: 49.
doi: 10.3390/plants10010049
[2] 田景山, 张煦怡, 张丽娜, 徐守振, 祁炳琴, 随龙龙, 张鹏鹏, 杨延龙, 张旺锋, 勾玲. 新疆机采棉花实现叶片快速脱落需要的温度条件. 作物学报, 2019, 45: 613-620.
doi: 10.3724/SP.J.1006.2019.84068
Tian J S, Zhang X Y, Zhang L N, Xu S Z, Qi B Q, Sui L L, Zhang P P, Yang Y L, Zhang W F, Gou L. Temperatures of promoting rapid leaf abscission of cotton in Xinjiang region. Acta Agron Sin, 2019, 45: 613-620. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2019.84068
[3] 聂军军, 代建龙, 杜明伟, 张艳军, 田晓莉, 李召虎, 董合忠. 我国现代植棉理论与技术的新发展: 棉花集中成熟栽培. 中国农业科学, 2021, 54: 4286-4298.
doi: 10.3864/j.issn.0578-1752.2021.20.004
Nie J J, Dai J L, Du M W, Zhang Y J, Tian X L, Li Z H, Dong H Z. New development of modern cotton farming theory and technology in China: concentrated maturation cultivation of cotton. Sci Agric Sin, 2021, 54: 4286-4298. (in Chinese with English abstract)
[4] 高丽丽, 李淦, 康正华, 李健伟, 王蜜蜂, 马云珍, 张巨松. 脱叶剂对棉花叶片叶绿素荧光动力学参数的影响. 棉花学报, 2016, 28: 345-352.
Gao L L, Li G, Kang Z H, Li J W, Wang M F, Ma Y Z, Zhang J S. Effect of defoliants on chlorophyll fluorescence of cotton leaves. Cotton Sci, 2016, 28: 345-352. (in Chinese with English abstract)
[5] 宋兴虎, 徐东永, 孙璐, 赵文超, 曹龙龙, 张祥, 唐纪元, 韩焕勇, 王洪这, 陈洪章, 王林, 赵冰梅, 杜明伟, 田晓莉, 李召虎. 在不同棉区噻苯隆和乙烯利用量及配比对脱叶催熟效果影响. 棉花学报, 2020, 32: 247-257.
Song X H, Xu D Y, Sun L, Zhao W C, Cao L L, Zhang X, Tang J Y, Han H Y, Wang H Z, Chen H Z, Wang L, Zhao B M, Du M W, Tian X L, Li Z H. Effect of thidiazuron and ethylene use and ratio on defoliation ripening in different cotton area. Cotton Sci, 2020, 32: 247-257. (in Chinese with English abstract)
[6] 张大伟, 魏鑫, 徐海江, 刘忠山, 李春平, 马清倩, 徐建辉. 不同棉花品种对脱叶剂的响应. 新疆农业科学, 2019, 56(1): 146-153.
doi: 10.6048/j.issn.1001-4330.2019.01.018
Zhang D W, Wei X, Xu H J, Liu Z S, Li C P, Ma Q Q, Xu J H. Study on the response of cotton varieties with different genotypes to defoliants. Xinjiang Agric Sci, 2019, 56(1): 146-153. (in Chinese with English abstract)
[7] 王天友. 南疆陆地棉种质资源遗传多样性及对脱叶剂的敏感性分析. 塔里木大学硕士学位论文,新疆阿拉尔, 2020.
Wang T Y. Analysis of Genetic Diversity and Sensitivity to Sefoloant of Upland Cotton Germplasm Resources in Southern Xinjiang. MS Thesis of Tarim University, Aral, Xinjiang, China, 2020. (in Chinese with English abstract)
[8] 周先林, 覃琴, 王龙, 李璐, 胡成成, 洪秀春, 王伟, 朱海勇. 脱叶剂对两种机采模式下棉花脱叶效果及纤维品质的影响. 中国农业科技导报, 2020, 22(11): 144-152.
doi: 10.13304/j.nykjdb.2019.0628
Zhou X L, Qin Q, Wang L, Li L, Hu C C, Hong X C, Wang W, Zhu H Y. Influence of defoliant on defoliation effect and fiber quality of cotton under two kinds of mechanical harvesting modes. J Agric Sci Technol, 2020, 22(11): 144-152. (in Chinese with English abstract)
[9] Suttle J C. Disruption of the polar auxin transport system in cotton seedlings following treatment with the defoliant thidiazuron. Plant Physiol, 1988, 86: 241-245.
doi: 10.1104/pp.86.1.241 pmid: 16665874
[10] Li F, Wu Q, Liao B, Yu K, Huo Y, Meng L, Wang S, Wang B, Du M, Tian X, Li Z. Thidiazuron promotes leaf abscission by regulating the crosstalk complexities between ethylene, auxin, and cytokinin in cotton. Int J Mol Sci, 2022, 23: 2696.
doi: 10.3390/ijms23052696
[11] 廖宝鹏, 王崧嫚, 杜明伟, 李芳军, 田晓莉, 李召虎. 棉花不同部位主茎叶对脱叶剂噻苯隆的响应及机理. 棉花学报, 2020, 32: 418-424.
Liao B P, Wang S M, Du M W, Li F J, Tian X L, Li Z H. Responses and underlying mechanisms of different mainstem leaves on cotton to defoliant thidiazuron. Cotton Sci, 2020, 32: 418-424. (in Chinese with English abstract)
[12] 高瑜, 徐娇, 张冰, 孙伟男, 杨细燕. 机采棉化学脱叶伴随着剧烈的乙烯及细胞分裂素信号响应. 棉花学报, 2020, 32: 491-500.
Gao Y, Xu J, Zhang B, Sun W N, Yang X Y. Chemical defoliation of machine-harvested cotton was accompanied by intense ethylene and cytokinin signal responses. Cotton Sci, 2020, 32: 491-500. (in Chinese with English abstract)
[13] Xu J, Chen L, Sun H, Wusiman N, Sun W, Li B, Gao Y, Kong J, Zhang D, Zhang X, Xu H, Yang X. Crosstalk between cytokinin and ethylene signaling pathways regulates leaf abscission in cotton in response to chemical defoliants. J Exp Bot, 2019, 70: 1525-1538.
doi: 10.1093/jxb/erz036 pmid: 30715415
[14] Jin D, Wang X, Xu Y, Gui H, Zhang H, Dong Q, Sikder R K, Yang G, Song M. Chemical defoliant promotes leaf abscission by altering ROS metabolism and photosynthetic efficiency in Gossypium hirsutum. Int J Mol Sci, 2020, 21: 2738.
doi: 10.3390/ijms21082738
[15] 王晓婧, 李思嘉, 刘瑞显, 张国伟, 杨长琴, 倪万潮. 棉花施用脱叶剂对相邻未着药叶片生理活性的影响. 棉花学报, 2019, 31: 64-71.
Wang X J, Li S J, Liu R X, Zhang G W, Yang C Q, Ni W C. Effect of defoliants application on physiological characters of cotton leaf without defoliants. Cotton Sci, 2019, 31: 64-71. (in Chinese with English abstract)
[16] 高丽丽. 脱叶剂喷施时间对棉花生理调节效应的研究. 新疆农业大学硕士学位论文, 新疆乌鲁木齐, 2016.
Gao L L. Study of Defoliants Spraying Time on Cotton Physiological Mechanism. MS Thesis of Xinjiang Agricultural University, Urumqi, Xinjiang, China, 2016. (in Chinese with English abstract)
[17] 朱继杰, 王士杰, 赵红霞, 李妙, 王国印, 聂俊杰, 牛立强, 闫丽丽. 适宜河北省机械采摘的棉花品种筛选研究. 河北农业科学, 2018, 22(4): 60-62.
Zhu J J, Wang S J, Zhao H X, Li M, Wang G Y, Nie J J, Niu L L, Yan L L. Study on screening cotton varieties suitable for mechanical harvest in Hebei province. J Hebei Agric Sci, 2018, 22(4): 60-62. (in Chinese with English abstract)
[18] 朱继杰, 赵红霞, 王士杰, 李妙, 王国印. 不同棉花品种对脱叶剂敏感性研究. 中国棉花, 2018, 45(4): 15-18.
Zhu J J, Zhao H X, Wang S J, Li M, Wang G Y. Study on the sensitivity of different cotton cultivars to defoliant. China Cotton, 2018, 45(4): 15-18. (in Chinese with English abstract)
[19] Xu X, Yuan L, Yang X, Zhang X, Wang L, Xie Q. Circadian clock in plants: linking timing to fitness. J Integr Plant Biol, 2022, 64: 792-811.
doi: 10.1111/jipb.13230
[20] Creux N, Harmer S. Circadian rhythms in plants. Cold Spring Harb Perspect Biol, 2019, 11: a034611.
doi: 10.1101/cshperspect.a034611
[21] Srivastava D, Shamim M, Kumar M, Mishra A, Maurya R, Sharma D, Pandey P, Singh K N. Role of circadian rhythm in plant system: an update from development to stress response. Environ Exp Bot, 2019, 162: 256-271.
doi: 10.1016/j.envexpbot.2019.02.025
[22] Wahid A, Gelani S, Ashraf M, Foolad M. Heat tolerance in plants: an overview. Environ Exp Bot, 2007, 61: 199-223.
doi: 10.1016/j.envexpbot.2007.05.011
[23] Xu Y, Zhan C, Huang B. Heat Shock Proteins in association with heat tolerance in grasses. Int J Proteom, 2011, 2011: 529648.
[24] Hasanuzzaman M, Nahar K, Alam M, Roychowdhury R, Fujita M. Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int J Mol Sci, 2013, 14: 9643-9684.
doi: 10.3390/ijms14059643 pmid: 23644891
[25] Hanano S, Domagalska M A, Nagy F, Davis S J. Multiple phytohormones influence distinct parameters of the plant circadian clock. Genes Cells, 2006, 11: 1381-1392.
pmid: 17121545
[26] Covington M F, Maloof J N, Straume M, Kay S A, Harmer S L. Global transcriptome analysis reveals circadian regulation of key pathways in plant growth and development. Genom Biol, 2008, 9: R130.
doi: 10.1186/gb-2008-9-8-r130
[27] Song Q, Ando A, Xu D, Fang L, Zhang T, Hu E, Qiao H, Deng X W, Chen Z J. Diurnal down-regulation of ethylene biosynthesis mediates biomass heterosis. Proc Natl Acad Sci USA, 2018, 115: 5606-5611.
doi: 10.1073/pnas.1722068115 pmid: 29735680
[28] Haydon M J, Mielczarek O, Frank A, Román Á, Webb A A. Sucrose and ethylene signaling interact to modulate the circadian clock. Plant Physiol, 2017, 175: 947-958.
doi: 10.1104/pp.17.00592 pmid: 28778922
[29] Mockler T C, Michael T P, Priest H D, Shen R, Sullivan C M, Givan S A, McEntee C, Kay S A, Chory J. The DIURNAL project: DIURNAL and circadian expression profiling, model-based pattern matching, and promoter analysis. Cold Spring Harb Symp Quant Biol, 2007, 72: 353-363.
doi: 10.1101/sqb.2007.72.006 pmid: 18419293
[30] Kou X, Zhao X, Wu B, Wang C, Wu C, Yang S, Zhou J, Xue Z. Auxin response factors are ubiquitous in plant growth and development, and involved in crosstalk between plant hormones: a review. Appl Sci, 2022, 12: 1360.
doi: 10.3390/app12031360
[31] Kamal N M, Gorafi Y S A, Abdelrahman M, Abdellatef E, Tsujimoto H. Stay-green trait: a prospective approach for yield potential, and drought and heat stress adaptation in globally important cereals. Int J Mol Sci, 2019, 20: 5837.
doi: 10.3390/ijms20235837
[32] Ahanger M A, Ashraf M, Bajguz A, Ahmad P. Brassinosteroids regulate growth in plants under stressful environments and crosstalk with other potential phytohormones. J Plant Growth Regul, 2018, 37: 1007-1024.
doi: 10.1007/s00344-018-9855-2
[1] 王菲菲, 张胜忠, 胡晓辉, 崔凤高, 钟文, 赵立波, 张天雨, 郭进涛, 于豪谅, 苗华荣, 陈静. 比较转录组分析花生种子休眠调控网络[J]. 作物学报, 2023, 49(9): 2446-2461.
[2] 胡鑫, 罗正英, 李纯佳, 吴转娣, 李旭娟, 刘新龙. 基于二代和三代转录组测序揭示甘蔗重要亲本对黑穗病菌侵染的响应机制[J]. 作物学报, 2023, 49(9): 2412-2432.
[3] 左春阳, 李亚玮, 李焱龙, 金双侠, 朱龙付, 张献龙, 闵玲. 陆地棉漆酶基因家族成员表达模式分析[J]. 作物学报, 2023, 49(9): 2344-2361.
[4] 文利超, 熊涛, 邓智超, 刘涛, 郭存, 李伟, 郭永峰. 烟草转录因子NtNAC080在非生物胁迫下的表达分析及功能鉴定[J]. 作物学报, 2023, 49(8): 2171-2182.
[5] 陈力, 王靖, 邱晓, 孙海莲, 张文浩, 王天佐. 不同耐旱性紫花苜蓿干旱胁迫下生理响应和转录调控的差异研究[J]. 作物学报, 2023, 49(8): 2122-2132.
[6] 丁洪艳, 冯晓溪, 汪柏宇, 张积森. 甘蔗割手密种LRRII-RLK基因家族演化和表达分析[J]. 作物学报, 2023, 49(7): 1769-1784.
[7] 王会伟, 张向歌, 李春鑫, 许欣然, 胡海燕, 朱雅婧, 王艳, 张新友. 油莎豆耐盐性评估及盐胁迫下幼苗根系转录组学分析[J]. 作物学报, 2023, 49(7): 1882-1894.
[8] 李凌雨, 周琦锐, 李洋, 张安民, 王贝贝, 马尚宇, 樊永惠, 黄正来, 张文静. 外源6-BA调控孕穗期低温后小麦幼穗发育的转录组分析[J]. 作物学报, 2023, 49(7): 1808-1817.
[9] 王雁楠, 陈金金, 卞倩倩, 胡琳琳, 张莉, 尹雨萌, 乔守晨, 曹郭郑, 康志河, 赵国瑞, 杨国红, 杨育峰. 转录组与代谢组联合分析揭示遮阴胁迫下甘薯的代谢响应途径[J]. 作物学报, 2023, 49(7): 1785-1798.
[10] 马春敏, 李维希, 李芳军, 田晓莉, 李召虎. 陆地棉硝酸盐转运体NRT基因家族鉴定及表达分析[J]. 作物学报, 2023, 49(6): 1496-1517.
[11] 张小红, 彭琼, 鄢铮. 盐胁迫下不同甘薯品种的转录组测序分析[J]. 作物学报, 2023, 49(5): 1432-1444.
[12] 孙全喜, 苑翠玲, 牟艺菲, 闫彩霞, 赵小波, 王娟, 王奇, 孙慧, 李春娟, 单世华. 花生SWEET基因全基因组鉴定及表达分析[J]. 作物学报, 2023, 49(4): 938-954.
[13] 周宾寒, 杨竹, 王书平, 方正武, 胡赞民, 徐兆师, 张迎新. 小麦幼苗活性LTR反转录转座子筛选及其对非生物胁迫的响应[J]. 作物学报, 2023, 49(4): 966-977.
[14] 徐子寅, 于晓玲, 邹良平, 赵平娟, 李文彬, 耿梦婷, 阮孟斌. 木薯MYB转录因子基因MeMYB60表达特征分析及其互作蛋白筛选[J]. 作物学报, 2023, 49(4): 955-965.
[15] 郭宏, 于霁雯, 裴文锋, 关永虎, 李航, 李长喜, 刘金伟, 王伟, 王宝全, 梅拥军. 南疆陆地棉杂种F2的遗传分析及遗传主效聚类[J]. 作物学报, 2023, 49(3): 608-621.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[3] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[4] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[5] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[6] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[7] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[8] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[9] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .
[10] 邢光南, 周斌, 赵团结, 喻德跃, 邢邯, 陈受宜, 盖钧镒. 大豆抗筛豆龟蝽Megacota cribraria (Fabricius)的QTL分析[J]. 作物学报, 2008, 34(03): 361 -368 .