欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (10): 2777-2792.doi: 10.3724/SP.J.1006.2023.24248

• 耕作栽培·生理生化 • 上一篇    下一篇

迟播和密度对不同油菜品种抗倒伏及产量的影响

巩若琳(), 宋波, 杨志叶, 路丽静, 董军刚()   

  1. 西北农林科技大学农学院, 陕西杨凌 712100
  • 收稿日期:2022-11-07 接受日期:2023-02-21 出版日期:2023-10-12 网络出版日期:2023-02-28
  • 通讯作者: 董军刚, E-mail: djg1101@aliyun.com
  • 作者简介:E-mail: gongrl_827@163.com
  • 基金资助:
    陕西省重点研发计划项目(2022NY-155)

Effects of sowing date and density on lodging resistance and yield of different rapeseed cultivars

GONG Ruo-Lin(), SONG Bo, YANG Zhi-Ye, LU Li-Jing, DONG Jun-Gang()   

  1. College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
  • Received:2022-11-07 Accepted:2023-02-21 Published:2023-10-12 Published online:2023-02-28
  • Contact: E-mail: djg1101@aliyun.com
  • Supported by:
    Key Research and Development Program Project of Shaanxi Province(2022NY-155)

摘要:

研究迟播和密度对油菜抗倒伏及产量的影响, 为油菜机械化生产提供理论及技术支撑。以陕油28、秦优28及秦优7号为供试品种, 分别设置3个播期(T1: 9月24日、T2: 10月1日、T3: 10月8日)和3个密度(D1: 22.5万株 hm-2、D2: 45.0万株 hm-2、67.5万株 hm-2)处理, 分析其产量及构成因素、倒伏相关指标、茎秆主要成分含量及显微结构等指标。结果表明: (1) T1、T2下, 随种植密度增加, 3个品种单株产量均下降, 群体产量均先增后降, 倒伏指数均先降后增, 维管束与茎秆横截面积均下降, 维管束面积/茎秆横截面积、茎秆木质素与纤维素含量均先增后降, D2时群体产量最大, 倒伏指数最小, 产量与抗倒伏能力协同增加。迟播条件(T3)下, 随密度增加, 3个品种单株产量、倒伏指数、茎秆木质素及纤维素含量、地上部鲜重、维管束面积及茎秆横截面积及二者之比均显著下降, 群体产量及抗倒性增强, 木质素含量与茎秆抗倒伏能力显著正相关, 群体产量及材料抗倒能力在D3时达最大值。与正常播期(T1)相比, 迟播条件(T3)下, 各密度下, 3个品种单株角果数、每角粒数、单株产量及群体产量、地上鲜重、倒伏指数均显著下降, 但抗倒伏能力增强。(2) 正常播期(T1)下, 3个品种群体产量最高时, 种植密度均为45.0万株 hm-2。迟播(T3)后, 密度67.5万株 hm-2时3个品种产量均最高, 其中陕油28的耐密性与耐迟播性最佳。综上所述, 迟播条件下, 选择耐密及耐迟播品种, 并适度增加密度, 可弥补单产不足, 显著提高茎秆木质素及纤维素含量、增强油菜抗倒伏能力, 有效协调高产与倒伏间的矛盾, 通过以密补迟实现迟播油菜高产抗倒。

关键词: 油菜, 播期, 密度, 产量, 抗倒性

Abstract:

To study the effects of late sowing and density on the lodging resistance and yield of rapeseed, and to provide the theoretical and technical support for the mechanized production of rapeseed, using three canola varieties (Shaanyou 28, Qinyou 28, and Qinyou 7) as the experimental materials, three sowing dates (T1: September 24, T2: October 1, and T3: October 8), and three densities (D1: 225,000 plants hm-2, D2: 450,000 plants hm-2, and D3: 675,000 plants hm-2) were set up to analyze the yield and constituent factors, the indexes related to lodging, the main components of the stem and the microstructure of the stem. The results showed that: (1) Under T1 and T2 treatments, with the increase of plant density, the yield of each plant of the three varieties decreased, the group yield increased first and then decreased, the lodging index decreased first and then increased, the vascular bundle and stem cross-sectional area decreased, the vascular bundle area/stem cross-sectional area, stem lignin, and cellulose content increased first and then decreased, the group yield was the largest at D2, while the lodging index was the smallest, and the yield and lodging resistance increased synergistically. Under the late sowing condition (T3), with the increase of density, the yield, lodging index, stem lignin, and cellulose content, above-ground fresh weight, vascular bundle area, stem cross-sectional area, and their ratios of the three cultivars decreased significantly, the group yield and lodging resistance increased, the lignin content was significantly positively correlated with the lodging resistance of stems, and the population yield and material resistance reached the maximum at D3. Compared with the normal sowing period (T1), the effective pods per plant, seeds per pod, yield per plant, population yield, and above-ground fresh weight the lodging index of each plant decreased significantly under the late sowing condition (T3), but the lodging resistance was enhanced. (2) Under the normal sowing period (T1), when the yield of the three variety groups was the highest, planting density was 450,000 plants hm-2. When the sowing date was delayed from T1 to T3, the yield of the three varieties was the highest at the density of 675,000 plants hm-2, among which Shaanyou 28 had the best density tolerance and late sowing resistance. In conclusion, under the late sowing condition, selecting dense and late sowing tolerant varieties and moderately increasing the density can compensate for the lack of yield, significantly increase the lignin and cellulose content of the stem, enhance the lodging resistance of rapeseed, effectively coordinate the contradiction between high yield and lodging, and achieve high yield and lodging resistance of late sowing rapeseed by compensating late with dense.

Key words: rapeseed, sowing date, planting density, yield, lodging resistance

表1

2019-2021年油菜生育期及气象数据"

品种
Variety
播期
Sowing date
密度
Density
2019-2020 2020-2021
生育期
Growth
days (d)
有效积温
Effective
accumulated
temperature (℃)
降雨量
Rainfall
(mm)
生育期
Growth
days (d)
有效积温
Effective
accumulated
temperature (℃)
降雨量
Rainfall
(mm)
S28 T1 D1 248 2860.4 109.6 248 2111.7 116.8
D2 246 2806.1 109.6 246 2067.2 116.8
D3 244 2759.2 66.4 244 2025.3 116.8
T2 D1 239 2677.5 109.6 239 1942.8 115.8
D2 238 2650.4 109.6 238 1921.9 115.8
D3 237 2626.1 66.4 237 1900.6 115.8
T3 D1 231 2521.7 109.6 231 1825.1 108.1
D2 229 2470.5 109.6 229 1787.2 108.1
D3 228 2443.1 66.4 227 1751.1 107.1
Q28 T1 D1 240 2677.6 109.6 240 1930.3 115.8
D2 238 2521.9 109.6 238 1805.7 114.8
D3 237 2375.3 66.4 237 1692.5 107.1
T2 D1 233 2635.3 109.6 233 1892.6 115.8
D2 231 2479.6 109.6 231 1786.6 114.8
D3 230 2350.5 66.4 230 1675.2 107.1
T3 D1 225 2610.5 109.6 225 1875.3 115.8
D2 224 2454.8 109.6 224 1768.0 114.8
D3 222 2296.6 66.4 222 1643.9 107.1
Q7 T1 D1 250 2942.7 109.6 250 2163.2 117.8
D2 248 2886.5 109.6 248 2111.7 116.8
D3 246 2833.2 66.4 246 2067.2 116.8
T2 D1 241 2730.8 109.6 241 1987.1 115.8
D2 240 2704.7 109.6 240 1964.4 115.8
D3 238 2650.4 66.4 237 1900.7 115.8
T3 D1 236 2654.7 109.6 237 1963.1 109.1
D2 235 2626.5 109.6 235 1911.6 108.1
D3 234 2600.4 66.4 234 1888.8 108.1

图1

2019-2021年油菜生育期太阳辐射日变化"

表2

不同播期和密度对油菜农艺性状的影响"

品种
Variety
播期
Sowing date
密度
Density
根颈粗
Thick
rhizome (mm)
株高
Plant
height (cm)
分枝高度Branch
height (cm)
主花序长度
Main
inflorescence length (cm)
地下干重Underground dry weight
(g)
地上干重
Dry weight above ground (g)
2019-2020
S28 T1 D1 25.37 ab 183.85 c 78.31 j 58.28 f 5.42 a 112.17 b
D2 23.92 cd 178.35 de 79.81 hi 54.89 hi 5.07 ab 100.30 de
D3 23.17 def 174.47 f 82.40 ef 53.41 j 4.90 abc 96.99 e
T2 D1 24.17 cd 168.92 gh 77.85 j 53.96 ij 4.71 abcde 105.22 c
D2 23.31 cde 166.42 hi 78.26 j 51.41 kl 4.36 bcdefg 101.66 d
D3 23.30 cde 159.12 j 80.74 gh 50.49 lm 4.00 efghi 97.44 e
T3 D1 19.27 i 153.02 k 78.87 ij 49.88 m 3.99 efghi 88.56 g
D2 22.30 efgh 149.30 l 82.45 ef 51.83 k 4.36 bcdefg 92.53 f
D3 23.74 cd 141.13 n 84.16 cd 52.17 k 4.62 cde 98.88 de
Q28 T1 D1 25.70 a 188.20 b 75.09 l 64.06 c 5.10 ab 115.81 a
D2 24.39 bc 184.58 c 76.28 k 58.80 ef 4.84 abcd 97.78 e
D3 23.35 cde 176.89 ef 79.76 hi 55.77 gh 4.39 bcdefg 85.80 g
T2 D1 24.17 cd 171.26 g 78.57 j 59.68 e 4.75 abcde 100.60 de
D2 24.05 cd 168.07 hi 80.76 gh 56.07 g 4.48 bcdefg 92.60 f
D3 21.69 gh 165.16 i 81.66 fg 53.91 ij 4.24 cdefgh 88.82 g
T3 D1 19.75 i 152.68 k 79.74 hi 51.01 kl 4.07 defghi 72.14 j
D2 21.30 h 149.20 l 83.20 de 52.19 k 4.35 bcdefg 77.92 i
D3 22.07 fgh 142.51 mn 85.11 bc 55.30 gh 4.56 bcdef 80.51 hi
Q7 T1 D1 25.46 ab 193.15 a 81.71 fg 66.36 b 5.12 ab 115.14 ab
D2 24.39 bc 185.98 bc 80.90 gh 67.54 a 4.77 abcde 97.23 e
D3 23.10 def 180.95 d 83.48 de 63.77 c 4.25 cdefgh 81.53 h
T2 D1 24.01 cd 176.07 ef 80.05 h 63.21 c 4.05 defghi 97.48 e
D2 23.93 cd 152.69 k 82.66 ef 61.45 d 3.81 fghi 85.65 g
D3 23.28 cde 144.29 m 85.96 b 57.99 f 3.56 hi 70.17 jk
T3 D1 22.38 efgh 160.89 j 83.77 d 53.48 j 3.33 i 68.62 k
D2 22.52 efg 143.67 mn 85.81 b 54.00 ij 3.49 hi 70.93 jk
D3 22.34 efgh 134.41 o 89.06 a 53.90 ij 3.61 ghi 79.37 hi
2020-2021
S28 T1 D1 22.44 a 180.17 bc 76.25 fghij 58.23 def 4.67 a 94.65 b
D2 21.41 b 174.62 def 78.12 bcde 55.65 ghij 4.37 bc 85.66 efg
D3 20.79 c 164.71 hi 78.41 bcd 52.81 l 3.81 fg 80.60 hij
T2 D1 21.49 b 169.46 fgh 75.64 ghijk 57.77 def 4.69 a 87.23 def
D2 20.54 c 162.69 i 76.50 efghi 54.51 ijk 4.50 ab 74.69 k
D3 18.90 e 156.47 j 76.61 defghi 53.25 kl 3.92 ef 67.86 m
T3 D1 19.00 e 148.23 kl 75.37 hijk 53.21 kl 3.72 fgh 72.85 kl
D2 20.51 c 152.76 jk 75.92 ghijk 54.08 jkl 4.17 cd 77.75 j
D3 21.17 b 147.74 kl 76.51 efghi 55.80 ghi 4.53 ab 86.52 efg
Q28 T1 D1 19.64 d 183.12 ab 74.25 kl 60.26 b 4.21 cd 96.02 b
D2 18.63 ef 176.89 cd 75.43 hijk 57.93 def 3.83 fg 84.69 fg
D3 17.89 g 173.74 def 76.83 defgh 56.67 fgh 3.59 hij 78.07 ij
Q28 T2 D1 18.74 e 172.03 defg 71.31 m 58.46 cde 3.83 fg 90.54 c
D2 17.49 h 163.84 i 73.60 l 56.71 fgh 3.66 ghi 86.13 efg
D3 16.76 jk 156.13 j 74.53 jkl 55.22 hij 3.52 ijk 70.82 lm
T3 D1 17.04 ij 149.04 kl 71.56 m 54.50 ijk 3.31 lm 64.20 n
D2 17.54 h 152.58 jk 73.21 l 55.37 ghij 3.65 ghi 72.84 kl
D3 18.34 f 156.28 j 74.82 ijkl 56.11 ghi 3.87 efg 83.56 gh
Q7 T1 D1 17.18 hi 187.28 a 78.14 bcde 63.40 a 4.05 de 101.31 a
D2 17.09 ij 175.70 cde 78.67 bc 60.42 c 3.73 fgh 90.92 c
D3 15.90 mn 171.08 efg 80.66 a 58.44 cde 3.74 fgh 80.94 hi
T2 D1 16.87 ij 167.52 ghi 77.30 cdefg 60.49 b 3.85 efg 96.56 b
D2 16.22 lm 156.54 j 78.34 bcde 59.82 bc 3.70 fghi 88.32 cde
D3 15.92 mn 152.35 jk 79.49 ab 58.13 def 3.38 kl 68.68 m
T3 D1 15.43 o 146.33 l 75.65 ghijk 56.93 efg 3.15 m 70.23 lm
D2 15.72 no 150.00 kl 77.75 bcdef 59.05 bcd 3.40 jkl 81.03 hi
D3 16.43 kl 155.90 j 78.01 bcdef 60.43 b 3.79 fgh 90.27 cd
品种V ** ** ** ** ** **
播期T ** ** ** ** ** **
种植密度D ** ** ** ** NS **
V×T ** ** ** ** * **
V×D ** ** NS ** NS **
T×D ** ** ** ** ** **
V×T×D ** ** ** ** NS **
品种V ** ** ** ** ** **
播期T ** ** ** ** ** **
种植密度D ** ** ** ** ** **
V×T ** ** NS * ** **
V×D ** * NS NS ** **
T×D ** ** NS ** ** **
V×T×D ** NS NS NS ** **

表3

不同播期和密度对油菜产量及产量构成的影响"

年份
Year
品种
Variety
播期
Sowing date
密度
Density
单株角果数Effective pods per plant 每角果粒数
Seeds per pod
千粒重
1000-seed weight (g)
单株产量
Yield per plant (g)
实收产量
Yield
(kg hm-2)
2019-2020 S28 T1 D1 266.05 a 21.73 a 4.37 a 23.08 a 3766.47 b
D2 191.04 g 20.90 b 4.07 b 14.58 d 4271.16 a
D3 105.97 n 20.27 cd 3.97 bc 7.67 h 3290.40 c
T2 D1 257.88 b 20.79 b 3.98 bc 19.20 b 2951.13 de
D2 175.49 i 20.08 de 3.80 cde 12.06 e 3246.03 c
D3 100.51 opq 19.41 ghij 3.72 defg 6.61 ij 2647.15 fgh
T3 D1 189.50 g 19.66 efg 3.56 ghij 12.09 e 1906.04 klm
D2 144.53 k 19.43 fghi 3.38 ijklm 8.52 g 2372.30 hi
D3 96.33 q 18.49 lm 3.36 jklmn 5.46 kl 2503.15 ghi
Q28 T1 D1 250.45 c 21.41 a 3.99 bc 19.55 b 3071.99 cd
D2 196.24 f 20.05 de 3.96 bc 14.22 d 3959.96 b
D3 101.26 op 19.58 fgh 3.90 bcd 6.96 hi 2916.53 def
T2 D1 243.15 d 19.88 def 3.86 bcd 17.16 c 2744.31 efg
D2 172.86 i 19.36 ghij 3.55 ghij 10.74 f 3235.41 c
D3 98.73 pq 18.78 klm 3.48 hijkl 6.01 jk 2280.73 ij
T3 D1 176.70 hi 19.44 fghi 3.26 lmno 10.26 f 1653.44 m
D2 126.63 l 18.98 jkl 3.16 no 6.95 hi 1900.72 klm
D3 96.43 q 17.91 m 3.10 o 4.91 lm 2058.85 jk
Q7 T1 D1 229.48 e 20.86 b 3.79 cdef 16.61 c 2560.91 ghi
D2 180.15 h 20.63 bc 3.59 efghi 12.23 e 3314.77 c
D3 103.60 no 19.44 fghi 3.40 ijklm 6.19 ijk 2531.39 ghi
T2 D1 187.37 g 20.59 bc 3.57 fghij 12.57 e 1917.35 klm
D2 142.59 k 19.74 efg 3.50 ghijk 9.04 g 2497.28 ghi
D3 91.38 r 19.14 hijk 3.32 klmn 5.22 lm 2043.14 jk
T3 D1 164.39 j 19.10 ijk 3.63 efgh 10.60 f 1676.16 m
D2 115.35 m 18.58 lm 3.47 hijkl 6.55 ij 1739.68 lm
D3 87.02 s 18.00 m 3.25 mno 4.54 m 1976.85 kl
2020-2021 S28 T1 D1 242.70 a 20.58 a 4.26 a 19.28 a 3062.74 a
D2 172.11 cd 19.58 de 3.81 bc 11.38 d 3284.82 a
D3 94.89 ij 18.74 gh 3.80 bc 6.02 hij 2415.76 bc
T2 D1 239.71 a 19.85 cd 3.69 d 15.64 b 2376.56 bc
D2 159.16 e 19.24 ef 3.53 ef 9.60 ef 2558.25 b
D3 90.48 jk 18.48 ghi 3.47 g 5.19 jkl 2005.97 def
T3 D1 180.18 c 19.42 e 3.26 j 10.33 e 1636.10 hijk
D2 139.24 f 18.19 ijk 3.16 lm 6.71 h 1826.40 fghi
2020-2021 D3 86.29 jkl 17.56 m 3.14 m 4.29 mno 1975.98 defg
Q28 T1 D1 232.13 ab 20.25 ab 3.81 b 16.18 b 2568.00 b
D2 177.51 c 19.28 ef 3.76 bc 11.37 d 3281.50 a
D3 93.02 jk 18.56 ghi 3.75 cd 5.75 ij 2367.90 bc
T2 D1 232.63 ab 19.19 ef 3.80 bc 15.50 b 2503.75 b
D2 158.22 e 18.60 ghi 3.38 hi 8.98 fg 2611.15 b
D3 88.33 jkl 17.86 klm 3.33 i 4.84 klm 2087.25 de
T3 D1 162.40 de 18.87 fg 3.12 m 8.68 g 1348.63 lm
D2 116.39 gh 17.98 jkl 2.93 o 5.50 jk 1400.61 klm
D3 83.08 jkl 17.02 n 2.83 p 3.63 o 1637.36 hijk
Q7 T1 D1 223.22 b 20.02 bc 3.58 e 14.52 c 2222.13 cd
D2 162.93 de 19.17 ef 3.40 h 9.61 ef 2613.72 b
D3 84.29 jkl 18.61 ghi 3.25 jk 4.55 lmn 1861.85 efgh
T2 D1 172.50 cd 19.30 e 3.26 j 9.77 ef 1431.02 klm
D2 123.12 g 18.38 hij 3.13 m 6.45 hi 1745.68 ghij
D3 80.55 kl 17.66 lm 3.06 n 3.86 no 1518.82 jklm
T3 D1 152.99 e 18.22 ijk 3.49 fg 8.96 fg 1307.36 m
D2 106.15 hi 17.45 m 3.25 jk 5.19 jkl 1433.84 klm
D3 75.87 l 16.95 n 3.20 kl 3.69 o 1595.42 ijkl
2019-2020 品种V ** ** ** ** **
播期T ** ** ** ** **
种植密度D ** ** ** ** **
V×T ** ** ** ** **
V×D ** NS NS ** NS
T×D ** NS NS ** **
V×T×D ** * NS ** *
2020-2021 品种V ** ** ** ** **
播期T ** ** ** ** **
种植密度D ** ** ** ** **
V×T ** ** ** ** **
V×D ** NS NS ** NS
T×D ** NS * ** **
V×T×D ** NS ** ** NS

图2

不同播期和密度对油菜茎秆抗折力、鲜重和倒伏指数的影响 不同小写字母表示在0.05概率水平差异显著。*、**表示在0.05和0.01概率水平差异显著, NS表示差异不显著。T: 播期; V: 品种; D: 种植密度; V×T、V×D、T×D和V×T×D分别表示因素间互作。缩写同表1。"

图3

不同播期和密度下S28成熟期茎秆横截面 a~c: 密度为D1时, 不同播期处理的茎秆横截面; a: T1, b: T2, c: T3。d~f: 播期为T1时, 不同密度处理下的茎秆横截面; d: D1, e: D2, f: D3。ph: 韧皮部; pi: 髓部; ve: 导管; xy: 木质部。缩写同图1。"

图4

密度和播期对茎秆截面、维管束面积及其占比的影响 A: 密度为D1 (22.5万株 hm-2)时播期对茎秆截面、维管束面积及其占比的影响; B: 播期为T1 (9月24日)时密度对茎秆截面、维管束面积及其占比的影响。缩写同表1。不同小写字母表示在0.05概率水平差异显著。"

图5

密度为D3 (67.5万株 hm-2)、播期为T3 (10月8日)处理下各品种成熟期茎秆横切面图 a, d: 秦优7号; b, e: 秦优28; c, f: 陕油28; ph: 韧皮部; pi: 髓部; ve: 导管; xy: 木质部。"

图6

不同播期和密度对油菜茎秆主要成分的影响 FB、FF、SS和MS分别表示初花期、终花期、角果期、成熟期。*、**表示在0.05和0.01概率水平差异显著。缩写同表1。"

表4

不同时期油菜茎秆成分的方差分析"

处理
Treatment
木质素Lignin 纤维素Cellulose
初花期
Initial blooming stage
终花期
Final flowering stage
角果期
Silique
stage
成熟期
Maturity stage
初花期
Initial blooming stage
终花期
Final
flowering
stage
角果期
Silique stage
成熟期
Maturity stage
2019-2020 品种V ** ** ** ** ** ** ** **
播期T ** ** ** ** ** ** ** **
种植密度D ** ** ** ** NS ** ** **
V×T NS NS NS NS NS NS NS NS
V×D NS NS NS ** NS * NS NS
T×D * ** NS * NS * NS *
V×T×D NS NS NS NS NS NS NS NS
2020-2021 品种V ** ** ** ** ** ** ** **
播期T ** ** ** ** ** ** ** **
种植密度D ** ** ** ** ** ** ** **
V×T ** NS NS NS ** ** NS NS
V×D ** ** ** ** ** ** NS **
T×D ** ** ** ** ** ** ** **
V×T×D ** ** ** NS NS ** NS *

表5

木质素、纤维素含量与倒伏指数、茎秆抗折力的关系"

相关系数
Correlation index
木质素
Lignin
纤维素
Cellulose
倒伏指数
Lodging index
茎秆抗折力
Stem mechanical strength
木质素Lignin 1.000
纤维素Cellulose 0.821 1.000
倒伏指数Lodging index 0.766** -0.404** 1.000
茎秆抗折力Stem mechanical strength 0.813** 0.766** -0.791** 1.000
[1] 中华人民共和国国家统计局. 中国统计年鉴. 北京: 中国统计出版社, 2021. p 261.
National Bureau of Statistics of the People's Republic of China. China Statistical Yearbook. Beijing: National Bureau of Statistics of the People's Republic of China, 2021. p 261. (in Chinese)
[2] 蒯婕, 王积军, 左青松, 陈红琳, 高建芹, 汪波, 周广生, 傅廷栋. 长江流域直播油菜密植效应及其机理研究进展. 中国农业科学, 2018, 51: 4625-4632.
doi: 10.3864/j.issn.0578-1752.2018.24.004
Kuai J, Wang J J, Zuo Q S, Chen H L, Gao J Q, Wang B, Zhou G S, Fu T D. Effects and mechanism of higher plant density on directly-sown rapeseed in the Yangtze river basin of China. Sci Agric Sin, 2018, 51: 4625-4632. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2018.24.004
[3] 李小勇, 周敏, 王涛, 张兰, 周广生, 蒯婕. 种植密度对油菜机械收获关键性状的影响. 作物学报, 2018, 44: 278-287.
doi: 10.3724/SP.J.1006.2018.00278
Li X Y, Zhou M, Wang T, Zhang L, Zhou G S, Kuai J. Effects of planting density on the mechanical harvesting characteristics of semi-winter rapeseed. Acta Agron Sin, 2018, 44: 278-287. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2018.00278
[4] 费维新, 王淑芬, 李强生, 吴晓芸, 陈凤祥, 侯树敏, 荣松柏, 郝仲萍, 高智谋, 胡宝成. 冬油菜适当迟播有效减轻油菜根肿病. 中国油料作物学报, 2016, 38: 502-507.
Fei W X, Wang S F, Li Q S, Wu X Y, Chen F X, Hou S M, Rong S B, Hao Z P, Gao Z M, Hu B C. Reducing clubroot disease by late sowing of winter rapeseed. Chin J Oil Crop Sci, 2016, 38: 502-507. (in Chinese with English abstract)
[5] 袁圆, 汪波, 周广生, 刘芳, 黄俊生, 蒯婕. 播期和种植密度对油菜产量和茎秆抗倒性的影响. 中国农业科学, 2021, 54: 1613-1626.
doi: 10.3864/j.issn.0578-1752.2021.08.004
Yuan Y, Wang B, Zhou G S, Liu F, Huang J S, Kuai J. Effects of different sowing dates and planting densities on the yield and stem lodging resistance of rapeseed. Sci Agric Sin, 2021, 54: 1613-1626. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2021.08.004
[6] 蒯婕, 孙盈盈, 左青松, 廖庆喜, 冷锁虎, 程雨贵, 曹石, 吴江生, 周广生. 机械收获模式下直播冬油菜密度与行距的优化. 作物学报, 2016, 42: 898-908.
Kuai J, Sun Y Y, Zuo Q S, Liao Q X, Leng S H, Cheng Y G, Cao S, Wu J S, Zhou G S. Optimization of plant density and row spacing for mechanical harvest in winter rapeseed (Brassica napus L.). Acta Agron Sin, 2016, 42: 898-908. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2016.00898
[7] Stamp P, Kiel C. Root morphology of maize and its relationship to root lodging. J Agron Crop Sci, 1992, 168: 113-118.
doi: 10.1111/j.1439-037X.1992.tb00987.x
[8] 刘唐兴, 官春云. 油菜倒伏指数和茎秆生化成分及农艺性状的灰色关联分析. 中国油料作物学报, 2008, 30: 152-156.
Liu T X, Guan C Y. Grey relational analysis between lodging index and biochemistry components of stem, agronomic characteristics in rapeseed (Brassica napus L.). Chin J Oil Crop Sci, 2008, 30: 152-156. (in Chinese with English abstract)
[9] Alain M B, Shinya K, Jacqueline G P, Deborah G. Lignins and lignocellulosics: a better control of synthesis for new and improved uses. Trends Plant Sci, 2003, 8: 576-581.
pmid: 14659706
[10] Guo D, Chen F, Inoue K, Blount J W, Dixon R A. Downregulation of caffeic acid 3-O-methyltransferase and caffeoyl CoA 3-O-methyltransferase in transgenic alfalfa: impacts on lignin structure and implications for the biosynthesis of G and S lignin. Am Soc Plant Biol, 2001, 13: 73-88.
[11] Wang J, Zhu J M, Lin X J, Li X J, Teng N J, Li Z S, Li B, Zhang A M, Lin J X. Effects of stem structure and cell wall components on bending strength in wheat. Chin Sci Bull, 2006, 51: 815-823.
[12] Kaack K, Schwarz K U, Brander P E. Variation in morphology, anatomy and chemistry of stems of Miscanthus genotypes differing in mechanical properties. Ind Crops Prod, 2003, 17: 131-142.
doi: 10.1016/S0926-6690(02)00093-6
[13] 卢昆丽, 尹燕枰, 王振林, 李勇, 彭佃亮, 杨卫兵, 崔正勇, 杨东清, 江文文. 施氮期对小麦茎秆木质素合成的影响及其抗倒伏生理机制. 作物学报, 2014, 40: 1686-1694.
doi: 10.3724/SP.J.1006.2014.01686
Lu K L, Yin Y P, Wang Z L, Li Y, Peng D L, Yang W B, Cui Z Y, Yang D Q, Jiang W W. Effect of nitrogen fertilization timing on lignin synthesis of stem and physiological mechanism of lodging resistance in wheat. Acta Agron Sin, 2014, 40: 1686-1694. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2014.01686
[14] Song X, Liu F L, Zheng P Y, Zhang X K, Lu G Y, Fu G P, Cheng Y. Correlation analysis between agronomic traits and yield of rapeseed (Brassica napus L.) for high-density planting. Sci Agric Sin, 2010, 43: 1800-1806.
[15] Ozer H. Sowing date and nitrogen rate effects on growth, yield and yield components of two summer rapeseed cultivars. Eur J Agron, 2003, 19: 453-463.
doi: 10.1016/S1161-0301(02)00136-3
[16] Matinfar M, Matinfar M, Mahjoor M, Shirani R A H, Mahmodi R. Effect of plant density on yield and yield seed components of rapeseed (Brassica napus) cultivars. J Crop Ecophysiol, 2013, 6: 405-414.
[17] Li H G, Cheng X, Zhang L P, Hu J H, Zhang F G, Chen B Y, Xu K, Gao G Z, Li H, Li L X, Huang Q, Li Z Y, Yan G X, Wu X M. An integration of genome-wide association study and geneco-expression network analysis identifies candidate genes of stem lodging-related traits in Brassica napus. Front Plant Sci, 2018, 9: 796.
doi: 10.3389/fpls.2018.00796
[18] 张喜娟, 李红娇, 李伟娟, 徐正进, 陈温福, 张文忠, 王嘉宇. 北方直立穗型粳稻抗倒性的研究. 中国农业科学, 2009, 42: 2305-2313.
doi: 10.3864/j.issn.0578-1752.2009.07.007
Zhang X J, Li H J, Li W J, Xu Z J, Chen W F, Zhang W Z, Wang J Y. The lodging resistance of erect panicle japonica rice in northern China. Sci Agric Sin, 2009, 42: 2305-2313. (in Chinese with English abstract)
[19] Fukushima R S, Kerley M S, Ramos M H, Porter J H, Kallenbach R L. Comparison of acetyl bromide lignin with acid detergent lignin and Klason lignin and correlation with in vitro forage degradability. Anim Feed Sci Technol, 2015, 201: 25-37.
doi: 10.1016/j.anifeedsci.2014.12.007
[20] 王玉万, 徐文玉. 木质纤维素固体基质发酵物中半纤维素、纤维素和木质素的定量分析程序. 微生物学通报, 1987, 14(2): 81-84.
Wang Y W, Xu W Y. Procedures for quantitative analysis of hemicellulose, cellulose and lignin in lignocellulose solid substrate fermentation products. Microbiol China, 1987, 14(2): 81-84. (in Chinese with English abstract)
[21] Willemse M T M, Outer R W D. Stem anatomy and cell wall autofluorescence during growth of three maize (Zea mays L.) cultivars. Plant Biol, 1988, 37: 39-47.
[22] Chen W Y, Liu Z M, Deng G B, Pan Z F, Liang J J, Zeng X Q, Tashi N M, Long H, Yu M Q. Genetic relationship between lodging and lodging components in barley (Hordeum vulgare) based on unconditional and conditional quantitative trait locus analyses. Genet Mol Res, 2014, 13: 1909-1925.
doi: 10.4238/2014.March.17.19 pmid: 24668679
[23] Kong E, Liu D, Guo X, Yang W, Sun J, Li X, Zhan K, Cui D, Lin J, Zhang A. Anatomical and chemical characteristics associated with lodging resistance in wheat. Crop J, 2013, 1: 43-49.
doi: 10.1016/j.cj.2013.07.012
[24] Ookawa T, Inoue K, Matsuoka M, Ebitani T, Takarada T, Yamamoto T, Ueda T, Yokoyama T, Sugiyama C, Nakaba, Satoshi, Funada R, Kato H, Kanekatsu M, Toyota K, Motobayashi T, Vazirzanjani, Mehran, Tojo S, Hirasawa T. Increased lodging resistance in long-culm, low-lignin gh2 rice for improved feed and bioenergy production. Sci Rep, 2014, 4: 6567.
doi: 10.1038/srep06567
[25] 姜海杨, 孙万仓, 曾秀存, 方彦, 陈姣荣, 史鹏辉, 赵彩霞, 何丽. 播期对北方白菜型冬油菜生长发育及产量的影响. 中国油料作物学报, 2012, 34: 620-626.
Jiang H Y, Sun W C, Zeng X C, Fang Y, Chen J R, Shi P H, Zhao C X, He L. Effect of sowing date on Brassica rapa growth and yield in northern China. Chin J Oil Crop Sci, 2012, 34: 620-626. (in Chinese with English abstract)
[26] 张晓龙, 何俊龙, 宋海星, 荣湘民, 官春云. 播期、密度和施肥量对直播油菜重要农艺性状与产量的影响. 中国土壤与肥料, 2014, (5): 70-74.
Zhang X L, He J L, Song H X, Rong X M, Guan C Y. Effects of seeding date, plant density and fertilizer amount on correlation between agronomic traits and yield of rapeseed. Soil Fert Sci China, 2014, (5): 70-74. (in Chinese with English abstract)
[27] 李荣田, 姜廷波, 秋太权, 崔成焕, 龚振平. 水稻倒伏对产量影响及倒伏和株高关系的研究. 黑龙江农业科学, 1996, (1): 13-17.
Li R T, Jiang T B, Qiu T Q, Cui C H, Gong Z P. Study on the effect of lodging on rice yield and the relationship between lodging and plant height. Heilongjiang Agric Sci, 1996, (1): 13-17. (in Chinese)
[28] 胡焕焕, 刘丽平, 李瑞奇, 李慧玲, 李雁鸣. 播种期和密度对冬小麦品种河农822产量形成的影响. 麦类作物学报, 2008, 28: 490-495.
Hu H H, Liu L P, Li R Q, Li H L, Li Y M. Effect of sowing date and planting density on the yield formation of a winter wheat cultivar Henong 822. J Triticease Crops, 2008, 28: 490-495. (in Chinese with English abstract)
[29] 王慧, 朱冬梅, 王君婵, 陈明, 张晓, 高德荣. 扬麦16耐迟播早熟特性研究. 麦类作物学报, 2016, 36: 1657-1666.
Wang H, Zhu D M, Wang J C, Chen M, Zhang X, Gao D R. Study on the early maturing characteristics of Yangmai 16 under late planting. J Triticeae Crops, 2016, 36: 1657-1666. (in Chinese with English abstract)
[30] Liu W G, Yang W Y, Luo L, Yuan X Q, Deng Y C. Relationship between cellulose accumulation and lodging resistance in the stem of relay intercropped soybean [Glycine max (L.) Merr.]. Field Crops Res, 2016, 196: 261-267.
doi: 10.1016/j.fcr.2016.07.008
[31] 崔海岩, 靳立斌, 李波, 张吉旺, 赵斌, 董树亭, 刘鹏. 遮阴对夏玉米茎秆形态结构和倒伏的影响. 中国农业科学, 2012, 45: 3497-3505.
doi: 10.3864/j.issn.0578-1752.2012.17.005
Cui H Y, Jin L B, Li B, Zhang J W, Zhao B, Dong S T, Liu P. Effects of shading on stalks morphology, structure and lodging of summer maize in field. Sci Agric Sin, 2012, 45: 3497-3505. (in Chinese with English abstract)
[32] 佘恒志, 聂姣, 李英双, 刘星贝, 胡丹, 马珊, 次仁卓嘎, 汪灿, 吴东倩, 阮仁武, 易泽林. 不同抗倒伏能力甜荞品种茎秆木质素及其单体合成特征. 中国农业科学, 2017, 50: 1202-1209.
doi: 10.3864/j.issn.0578-1752.2017.07.003
She H Z, Nie J, Li Y S, Liu X B, Hu D, Ma S, Cirenzhuoga, Wang C, Wu D Q, Ruan R W, Yi Z L. Lignin and lignin monomer synthetic characteristics of culm in common buckwheat with different lodging resistance capabilities. Sci Agric Sin, 2017, 50: 1202-1209. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2017.07.003
[33] 李国辉, 钟旭华, 田卡, 黄农荣, 潘俊峰, 何庭蕙. 施氮对水稻茎秆抗倒伏能力的影响及其形态和力学机理. 中国农业科学, 2013, 46: 1323-1334.
doi: 10.3864/j.issn.0578-1752.2013.07.003
Li G H, Zhong X H, Tian K, Huang N R, Pan J F, He T H. Effect of nitrogen application on stem lodging resistance of rice and its morphological and mechanical mechanisms. Sci Agric Sin, 2013, 46: 1323-1334. (in Chinese with English abstract)
[34] 董晓芳, 田保明, 姚永芳, 张艳, 张京涛, 孙弋媛, 刘云霞, 申龙, 苏彦华. 密度对油菜品种机械化收获特性的影响. 中国农学通报, 2012, 28(3): 71-74.
Dong X F, Tian B M, Yao Y F, Zhang Y, Zhang J T, Sun Y Y, Liu Y X, Shen L, Su Y H. Effects of the density on the characteristics of the mechanization harvest in Brassica napus L. Chin Agric Sci Bull, 2012, 28(3): 71-74. (in Chinese with English abstract)
[35] 勾玲, 黄建军, 张宾, 李涛, 孙锐, 赵明. 群体密度对玉米茎秆抗倒力学和农艺性状的影响. 作物学报, 2007, 33: 1688-1695.
Gou L, Huang J J, Zhang B, Li T, Sun R, Zhao M. Effects of population density on stalk lodging resistant mechanism and agronomic characteristics of maize. Acta Agron Sin, 2007, 33: 1688-1695. (in Chinese with English abstract)
[36] Kuai J, Sun Y Y, Zhou M, Zhang P P, Zuo Q S, Wu J S, Zhou G S. The effect of nitrogen application and planting density on the radiation use efficiency and the stem lignin metabolism in rapeseed (Brassica napus L.). Field Crops Res, 2016, 199: 89-98.
doi: 10.1016/j.fcr.2016.09.025
[37] Wang C, Hu D, Liu X B, She H Z, Ruan R W, Yang H, Yi Z L, Wu D Q. Effects of uniconazole on the lignin metabolism and lodging resistance of culm in common buckwheat (Fagopyrum esculentum M.). Filed Crops Res, 2015, 180: 46-53.
[38] 南铭, 李晶, 赵桂琴, 柴继宽, 刘彦明. 茎秆基部节间特性和木质素合成与燕麦抗倒伏的关系. 草业学报, 2022, 31(11): 172-180.
doi: 10.11686/cyxb2021416
Nan M, Li J, Zhao G Q, Chai J K, Liu Y M. Relationship between lodging resistance of oats and the basal internode stem characteristics and lignin synthesis. Acta Pratac Sin, 2022, 31(11): 172-180. (in Chinese with English abstract)
[39] 周海宇, 江禹奉, 杨明冲, 程伟东, 覃兰秋, 谢小东, 谢和霞, 覃宝祥, 王令强. 玉米茎秆强度与维管束数目及纤维含量的关系和评价. 植物遗传资源学报, 2022, 23: 1636-1643.
doi: 10.13430/j.cnki.jpgr.20220419004
Zhou H Y, Jiang Y F, Yang M C, Cheng W D, Qin L Q, Xie X D, Xie H X, Qin B X, Wang L Q. Relationship and evaluation of stalk strength, vascular bundle and fiber content in maize. J Plant Genet Resour, 2022, 23: 1636-1643. (in Chinese with English abstract)
[1] 胡艳娟, 薛丹, 耿嫡, 朱末, 王天穹, 王晓雪. 水稻OsCDF1基因突变效应及其基因组变异分析[J]. 作物学报, 2023, 49(9): 2362-2372.
[2] 房孟颖, 任粱, 卢霖, 董学瑞, 武志海, 闫鹏, 董志强. 乙矮合剂对粒用高粱根系建构和产量的影响[J]. 作物学报, 2023, 49(9): 2528-2538.
[3] 李亦扬, 李远, 赵子胥, 张鼎顺, 杜嘉宁, 吴淑娟, 孙思琦, 陈媛, 张祥, 陈德华, 刘震宇. 土壤增氮对棉铃对位叶Bt杀虫蛋白含量影响及氮代谢机制[J]. 作物学报, 2023, 49(9): 2505-2516.
[4] 张丽华, 张经廷, 董志强, 侯万彬, 翟立超, 姚艳荣, 吕丽华, 赵一安, 贾秀领. 不同降水年型水分运筹对冬小麦产量及其构成的影响[J]. 作物学报, 2023, 49(9): 2539-2551.
[5] 张刁亮, 杨昭, 胡发龙, 殷文, 柴强, 樊志龙. 复种绿肥在不同灌水水平下对小麦籽粒品质和产量的影响[J]. 作物学报, 2023, 49(9): 2572-2581.
[6] 杨毅, 何志强, 林佳慧, 李洋, 陈飞, 吕长文, 唐道彬, 周全卢, 王季春. 椰糠施用量对土壤理化性状和甘薯产量的影响[J]. 作物学报, 2023, 49(9): 2517-2527.
[7] 曹玉军, 刘志铭, 兰天娇, 刘小丹, 魏雯雯, 姚凡云, 吕艳杰, 王立春, 王永军. 吉林省不同年代玉米品种光合生理特性对施氮量的响应[J]. 作物学报, 2023, 49(8): 2183-2195.
[8] 杨晓慧, 王碧胜, 孙筱璐, 侯靳锦, 徐梦杰, 王志军, 房全孝. 冬小麦对水分胁迫响应的模型模拟与节水滴灌制度优化[J]. 作物学报, 2023, 49(8): 2196-2209.
[9] 李宇星, 马亮亮, 张月, 秦博雅, 张文静, 马尚宇, 黄正来, 樊永惠. 外源海藻糖对灌浆期高温胁迫下小麦旗叶生理特性和产量的影响[J]. 作物学报, 2023, 49(8): 2210-2224.
[10] 刘世洁, 杨习文, 马耕, 冯昊翔, 韩志栋, 韩潇杰, 张晓燕, 贺德先, 马冬云, 谢迎新, 王丽芳, 王晨阳. 灌水和施氮对冬小麦根系特征及氮素利用的影响[J]. 作物学报, 2023, 49(8): 2296-2307.
[11] 韦金贵, 郭瑶, 柴强, 殷文, 樊志龙, 胡发龙. 水氮减量密植玉米的产量及产量构成[J]. 作物学报, 2023, 49(7): 1919-1929.
[12] 张振, 石玉, 张永丽, 于振文, 王西芝. 土壤水分含量对小麦耗水特性和旗叶/根系衰老特性的影响[J]. 作物学报, 2023, 49(7): 1895-1905.
[13] 张露露, 张学美, 牟文燕, 黄宁, 郭子糠, 罗一诺, 魏蕾, 孙利谦, 王星舒, 石美, 王朝辉. 我国主要麦区小麦籽粒锰含量: 品种与土壤因素的影响[J]. 作物学报, 2023, 49(7): 1906-1918.
[14] 董志强, 吕丽华, 姚艳荣, 张经廷, 张丽华, 姚海坡, 申海平, 贾秀领. 水氮互作下强筋小麦师栾02-1产量和品质[J]. 作物学报, 2023, 49(7): 1942-1953.
[15] 邓艾兴, 李歌星, 吕玉平, 刘猷红, 孟英, 张俊, 张卫建. 齐穗后遮阴时长对西北稻区粳稻产量和品质的影响[J]. 作物学报, 2023, 49(7): 1930-1941.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .