Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2009, Vol. 35 ›› Issue (1): 57-65.doi: 10.3724/SP.J.1006.2009.00057

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

QTL Analysis of Lodging and Related Traits in Soybean

ZHOU Rong1,2,WANG Xian-Zhi2,CHEN Hai-Feng2,ZHANG Xiao-Juan2,SHAN Zhi-Hui2,WU Xue-Jun2,CAI Shu-Ping2,QIU De-Zhen2,ZHOU Xin-An2*,WU Jiang-Sheng1   

  1. 1College of Plant Science and Technology,Huazhong Agricultural University,Wuhan 430070,China;2 Oil Crops Research Institute,Chinese Academy of Agricultural Sciences,Wuhan 430062,China
  • Received:2008-05-07 Revised:2008-07-16 Online:2009-01-12 Published:2008-11-17
  • Contact: ZHOU Xin-An

Abstract:

Lodging is an important agronomical trait in soybean, which has obvious negative effect on yield, seed quality and mechanical harvesting efficiency. The 165 recombinant inbred lines (RIL) derived from a cross between Zhongdou 29 and Zhongdou 32 were used in two years, with the composite interval mapping (CIM) method to identify the QTLs associated with lodging, plant height, stem diameter, nodes on main stem, branch number, shoot weight, root weight and stem intension. On linkage groups A2, C1, C2, D1a, F, G, I, and L, 25 and 19 QTLs for lodging and related traits were detected in 2006 and 2007, respectively, explaining 4.4–50.1% phenotypic variation. One QTL (qLD-15-1) of lodging and one QTL (qPH-15-2) of plant height on F linkage group were both detected in two years; one QTL of nodes on main stem and 2 QTLs of root weight were detected in two years on G and L linkage groups respectively. The positions of some QTLs of plant height, root weight, shoot weight, stem diameter, nodes on main stem and branch number were close to those of lodging, showing that the lodging resistance is associated with the characters in aerial part and underground portion, the results were consistent with the correlation analysis of phenotypic traits, showing the correlation of these morphological traits in genetics. The QTLs of some traits had the same positions, but were not both detected in two years.

Key words: Soybean, Lodging, Culm traits, Root traits, QTL

[1]Keller M, Karutz C, Schmid J E, Stamp P, Winzeler M, Keller B, Messmer M M. Quantitative trait loci for lodging resistance in a segregating wheat × spelt population. Theor Appl Genet, 1999, 98: 1171–1182
[2]Menchey E K, Aycock Jr M K. Anther-derived dihaploids for lodging improvement in tobacco. Crop Sci, 1998, 38: 698–701
[3]Tar’an B, Warkentin T, Somers D J, Miranda D, Vandenberg A, Blade S, Woods S, Bing D, Xue A, DeKoeyer D, Penner G. Quantitative trait loci for lodging resistance, plant height and partial resistance to mycosphaerella blight in field pea (Pisum sativum L.). Theor Appl Genet, 2003, 107: 1482–1491
[4]Inoue M, Gao Z S, Cai H W. QTL analysis of lodging resistance and related traits in Italian ryegrass (Lolium multiflorum Lam.). Theor Appl Genet, 2004, 109: 1576–1585
[5]Mansur L M, Orf J H, Chase K, Jarvik T, Cregan P B, Lark K G. Genetic mapping of agronomic traits using recombinant inbred lines of soybean. Crop Sci, 1996, 36: 1327–1336
[6]Lee S H, Bailey M A, Mian M A R, Carter Jr T E, Ashley D A, Hussey R S, Parrott W A, Boerma H R. Molecular markers associated with soybean plant height, lodging, and maturity across locations. Crop Sci, 1996, 36: 728–735
[7]Orf J H, Chase K, Jarvik T, Mansur L M, Cregan P B, Adler F R, Lark K G. Genetics of soybean agronomic traits: I. Comparison of three related recombinant inbred populations. Crop Sci, 1999, 39: 1642–1651
[8]Specht J E, Chase K, Macrander M, Graef G L, Chung J, Markwell J P, Germann M, Orf J H, Lark K G. Soybean response to water: A QTL analysis of drought tolerance. Crop Sci, 2001, 41: 493–509
[9]Chapman A, Pantalone V R, Ustun A, Allen F L, Landau-Ellis D, Trigiano R N, Gresshoff P M. Quantitative trait loci for agronomic and seed quality traits in an F2 and F4:6 soybean population. Euphytica, 2003, 129: 387–393
[10]Wu X-L(吴晓雷), Wang Y-J(王永军), He C-Y(贺超英), Chen S-Y(陈受宜), Gai J-Y(盖钧镒), Wang X-C(王学臣). QTL mapping of some agronomic traits of soybean. Acta Genet Sin(遗传学报), 2001, 28(10): 947–955(in Chinese with English abstract)
[11]Zhang W K, Wang Y J, Luo G Z, Zhang J S, He C Y, Wu X L, Gai J Y, Chen S Y. QTL mapping of ten agronomic traits on the soybean (Glycine max L. Merr.) genetic map and their association with EST markers. Theor Appl Genet, 2004, 108: 1131–1139
[12]Kabelka E A, Diers B W, Fehr W R, LeRoy A R, Baianu I C, You T, Neece D J, Nelson R L. Putative alleles for increased yield from soybean plant introductions. Crop Sci, 2004, 44: 784–791
[13]Wang D, Graef G L, Procopiuk A M, Diers B W. Identification of putative QTL that underlie yield in interspecific soybean backcross populations. Theor Appl Genet, 2004, 108: 458–467
[14]Brucher E, Niblack T, Kopisch-Obuch F J, Diers B W. The effect of rhg1 on reproduction of Heterodera glycines in the field and greenhouse and associated effects on agronomic traits. Crop Sci, 2005, 45: 1721–1727
[15]Kabelka E A, Carlson S R, Diers B W. Glycine soja PI 468916 SCN resistance loci’s associated effects on soybean seed yield and other agronomic traits. Crop Sci, 2006, 46: 622–629
[16]Guzman P S, Diers B W, Neece D J, Martin S K St, LeRoy A R, Grau C R, Hughes T J, Nelson R L. QTL associated with yield in three backcross-derived populations of soybean. Crop Sci, 2007, 47: 111–122
[17]Qiu L-J(邱丽娟), Chang R-Z(常汝镇). Descriptors and Data Standard for Soybean (Glycine spp.) (大豆种质资源描述规范和数据标准). Beijing: China Agriculture Press, 2006 (in Chinese)
[18]Gai J-Y(盖钧镒). Experimentation Methods (试验统计方法), 3rd edn. Beijing: China Agriculture Press, 2000. pp 248–252 (in Chinese)
[19]Ma Y-H(马育华). Foundation of Statistical Genetics and Plant Breeding (植物育种的数量遗传学基础). Jiangsu: Jiangsu Science & Technology Press, 1984. pp 442–445 (in Chinese)
[20]Song Q J, Marek L F, Shoemaker R C, Lark K G, Concibido V C, Delannay X, Specht J E, Cregan P B. A new integrated genetic linkage map of the soybean. Theor Appl Genet, 2004, 109: 122–128
[21]McCouch S R, Cho Y G, Yano M, Paul E, Blinstrub M, Morishima H, Kinoshita T. Report on QTL nomenclature. Rice Genet Newsl, 1997, 14: 11–13
[22]Wang H-L(王宏林), Yu D-Y(喻德跃), Wang Y-J(王永军), Chen S-Y(陈受宜), Gai J-Y(盖钧镒). Mapping QTL of soybean root weight with RIL population NJRIKY. Hereditas (遗传), 2004, 26(3): 333–336 (in Chinese with English abstract)
[23]Yang Z(杨喆), Guan R-X(关荣霞), Wang Y-J(王跃进), Liu Z-X(刘章雄), Chang R-Z(常汝镇), Wang S-M(王曙明), Qiu L-J(邱丽娟). Construction of genetic map and QTL analysis for some agronomic traits in soybean. J Plant Genet Resour (植物遗传资源学报), 2004, 5(4): 309–314 (in Chinese with English abstract)
[1] CHEN Ling-Ling, LI Zhan, LIU Ting-Xuan, GU Yong-Zhe, SONG Jian, WANG Jun, QIU Li-Juan. Genome wide association analysis of petiole angle based on 783 soybean resources (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1333-1345.
[2] HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356.
[3] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[4] YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102.
[5] LI A-Li, FENG Ya-Nan, LI Ping, ZHANG Dong-Sheng, ZONG Yu-Zheng, LIN Wen, HAO Xing-Yu. Transcriptome analysis of leaves responses to elevated CO2 concentration, drought and interaction conditions in soybean [Glycine max (Linn.) Merr.] [J]. Acta Agronomica Sinica, 2022, 48(5): 1103-1118.
[6] PENG Xi-Hong, CHEN Ping, DU Qing, YANG Xue-Li, REN Jun-Bo, ZHENG Ben-Chuan, LUO Kai, XIE Chen, LEI Lu, YONG Tai-Wen, YANG Wen-Yu. Effects of reduced nitrogen application on soil aeration and root nodule growth of relay strip intercropping soybean [J]. Acta Agronomica Sinica, 2022, 48(5): 1199-1209.
[7] WANG Hao-Rang, ZHANG Yong, YU Chun-Miao, DONG Quan-Zhong, LI Wei-Wei, HU Kai-Feng, ZHANG Ming-Ming, XUE Hong, YANG Meng-Ping, SONG Ji-Ling, WANG Lei, YANG Xing-Yong, QIU Li-Juan. Fine mapping of yellow-green leaf gene (ygl2) in soybean (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(4): 791-800.
[8] LI Rui-Dong, YIN Yang-Yang, SONG Wen-Wen, WU Ting-Ting, SUN Shi, HAN Tian-Fu, XU Cai-Long, WU Cun-Xiang, HU Shui-Xiu. Effects of close planting densities on assimilate accumulation and yield of soybean with different plant branching types [J]. Acta Agronomica Sinica, 2022, 48(4): 942-951.
[9] DU Hao, CHENG Yu-Han, LI Tai, HOU Zhi-Hong, LI Yong-Li, NAN Hai-Yang, DONG Li-Dong, LIU Bao-Hui, CHENG Qun. Improving seed number per pod of soybean by molecular breeding based on Ln locus [J]. Acta Agronomica Sinica, 2022, 48(3): 565-571.
[10] ZHOU Yue, ZHAO Zhi-Hua, ZHANG Hong-Ning, KONG You-Bin. Cloning and functional analysis of the promoter of purple acid phosphatase gene GmPAP14 in soybean [J]. Acta Agronomica Sinica, 2022, 48(3): 590-596.
[11] WANG Juan, ZHANG Yan-Wei, JIAO Zhu-Jin, LIU Pan-Pan, CHANG Wei. Identification of QTLs and candidate genes for 100-seed weight trait using PyBSASeq algorithm in soybean [J]. Acta Agronomica Sinica, 2022, 48(3): 635-643.
[12] HUANG Li, CHEN Yu-Ning, LUO Huai-Yong, ZHOU Xiao-Jing, LIU Nian, CHEN Wei-Gang, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Advances of QTL mapping for seed size related traits in peanut [J]. Acta Agronomica Sinica, 2022, 48(2): 280-291.
[13] ZHANG Yan-Bo, WANG Yuan, FENG Gan-Yu, DUAN Hui-Rong, LIU Hai-Ying. QTLs analysis of oil and three main fatty acid contents in cottonseeds [J]. Acta Agronomica Sinica, 2022, 48(2): 380-395.
[14] ZHANG Guo-Wei, LI Kai, LI Si-Jia, WANG Xiao-Jing, YANG Chang-Qin, LIU Rui-Xian. Effects of sink-limiting treatments on leaf carbon metabolism in soybean [J]. Acta Agronomica Sinica, 2022, 48(2): 529-537.
[15] XU De-Rong, SUN Chao, BI Zhen-Zhen, QIN Tian-Yuan, WANG Yi-Hao, LI Cheng-Ju, FAN You-Fang, LIU Yin-Du, ZHANG Jun-Lian, BAI Jiang-Ping. Identification of StDRO1 gene polymorphism and association analysis with root traits in potato [J]. Acta Agronomica Sinica, 2022, 48(1): 76-85.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!