Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2010, Vol. 36 ›› Issue (3): 376-384.doi: 10.3724/SP.J.1006.2010.00376


Comparison between QTLs for Chlorophyll Content and Genes Controlling Chlorophyll Biosynthesis and Degradation in Japonica Rice (Oryza sativa L.)

JIANG Shu-Kun1,ZHANG Xi-Juan2,XU Zheng-Jin1,*,CHEN Wen-Fu1   

  1. 1Key Laboratory of Crop Physiology,Ecology,Genetics and Breeding,Ministry of Agriculture/Shenyang Agricultural University,Shenyang 110161,China;2Dandong Academy of Agricultural Sciences,Fengcheng 118109,China
  • Received:2009-10-15 Revised:2009-12-08 Online:2010-03-12 Published:2010-01-22
  • Contact: XU Zheng-JIn, E-mail: xuzhengjin@126.com


To understand the expression patterns of chlorophyll content related genes at different stages and genetic mechanisms of stay-green at later stage, we analyzed the QTLs controlling chlorophyll content at the stages of tillering, heading and maturity by employing 126 recombinant inbred lines (RILs) derived from a cross between two japonica rice cultivars, Shennong 265 and Lijiangxintuanheigu. Five, seven and ten QTLs controlling chlorophyll contents at tillering stage, heading stage and maturity stage were detected, respectively. They were distributed on all rice chromosomes except chromosome 5. Comparison of the QTLs and the genes underlying the key enzymes of chlorophyll biosynthesis and degradation revealed that relatively more QTLs detected at earlier stage co-located with the genes related to chlorophyll biosynthesis and degradation. With the growth stage going on, more QTLs were detected but only a few of them involved in chlorophyll biosynthesis and degradation. The results suggested that the expression level of most genes related to chlorophyll biosynthesis (degradation) had no difference at earlier stage but specific key genes increased at later stage. And two possible genetic bases for stay-green were proposed.

Key words: Japonica rice, Chlorophyll content, Stay-green, Quantitative trait loci, Chlorophyll biosynthesis and degradation

[1] Beale S I. Green genes gleaned. Trends Plant Sci, 2005, 10: 309-312

[2] Hörtensteiner S. Chlorophyll degradation during senescence. Annu Rev Plant Biol, 2006, 57: 55-77

[3] Takahashi Y, Shomura A, Sasaki T, Yano M. Hd6, a rice quantitative trait locus involved in photoperiod sensitivity, encodes the a subunit of protein kinase CK2. Proc Natl Acad Sci USA, 2001, 98: 7922-7927

[4] Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A, Angeles E R, Qian Q, Kitano H, Matsuoka M. Cytokinin oxidase regulates rice grain production. Science, 2005, 309: 741-745

[5] Song X J, Huang W, Shi M, Zhu M Z, Lin H X. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet, 2007, 39(5): 623-630

[6] Fan C C, Xing Y Z, Mao H L, Lu T T, Han B, Xu C G, Li X H, Zhang Q F. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative trans-membrane protein. Theor Appl Genet, 2006, 112: 1164-1171

[7] Jiang S-K (姜树坤), Zhong M(钟鸣), Xu Z-J(徐正进). Classification of rice cultivars with RAPD molecular markers. J Shenyang Agric Univ (沈阳农业大学学报), 2006, 37(4): 639-641 (in Chinese with English abstract)

[8] Panaud O, Chen X, Mccouch S D. Development of micro-satellite marker and characterization of sample sequence length polymorphism (SSLP) in rice (Oryza sativa L.). Mol Gen Genet, 1996, 252: 597-607

[9] Lander E S, Green P, Abrahamson J, Barlow A, Daly M J, Lincoln S E, Newberg L. MAPMAKER: an interactive computer for constructing primary genetic linkage maps of experimental and natural populations. Genomics, 1987, 1: 174-182

[10] Zeng Z B. Precision mapping of quantitative trait loci. Genetics, 1994, 136: 1457-1468

[11] Huang C(黄成), Jiang S-K (姜树坤), Liu M-H(刘梦红), Xu Z-J(徐正进), Chen W-F(陈温福). QTL dissection of heading date in rice (Oryza sativa L. japanica). Acta Agric Boreali-Sin (华北农学报), 2009, 24(3): 7-9 ( in Chinese with English abstract)

[12] Cao S-Q(曹树青), Lu W(陆巍), Zhai H-Q(翟虎渠), Sheng S-L(盛生兰), Gong H-B(龚红兵), Yang T-N(杨图南), Zhang R-X(张荣铣). Research on the method to estimating flag leaf photosynthesis function duration at rice seedling stage by relative steady phase of chlorophyll content. Chin J Rice Sci (中国水稻科学), 2001, 15(4): 309-313 (in Chinese with English abstract)

[13] Liu W, Fu Y, Hu G, Si H, Zhu L, Wu C, Sun Z. Identification and fine mapping of a thermo-sensitive chlorophyll deficient mutant in rice (Oryza sativa L.). Planta,2007, 226: 785-795

[14] Zhang H, Li J, Yoo J H, Yoo S C, Cho S H, Koh H J, Seo H S, Paek N C. Rice Chlorina-1 and Chlorina-9 encode ChlD and ChlI subunits of Mg-chelatase, a key enzyme for chlorophyll synthesis and chloroplast development. Plant Mol Biol, 2006, 62: 325-337

[15] Jung K H, Hur J, Ryu C H, Choi Y, Chung Y Y, Miyao A, Hirochika H, An G. Characterization of a rice chlorophyll-deficient mutant using the T-DNA gene-trap system. Plant Cell Physiol, 2003, 44: 463-472

[16] Suzuki J Y, Bollivar D W, Bauer C E. Genetic analysis of chlorophyll biosynthesis. Annu Rev Genet, 1997, 31: 61-89

[17] Wu Z, Zhang X, He B, Diao L, Sheng S, Wang J, Guo X, Su N, Wang L, Jiang L, Wang C, Zhai H, Wan J. A chlorophyll-deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis. Plant Physiol, 2007, 145: 29-40

[18] Morita R, Kusaba M, Yamaguchi H, Amano E, Miyao A, Hirochika H, Nishimura M. Characterization of chlorophyllide a oxygenase (CAO) in rice (Oryza sativa). Breed Sci, 55: 361-364

[19] Lee S, Kim J H, Yoo E S, Lee C H, Hirochika H, An G. Differential regulation of chlorophyll a oxygenase genes in rice. Plant Mol Biol, 2005, 57: 805-818

[20] Kusaba M, Ito H, Morita R, Iida S, Sato Y, Fujimoto M, Kawasaki S, Tanaka R, Hirochika H, Nishimura M, Tanaka A. Rice NON-YELLOW COLORING1 is involved in light-harvesting complex II and grana degradation during leaf senescence. Plant Cell, 2007, 19: 1362-1375

[21] Jiang H, Li M, Liang N, Yan H, Wei Y, Xu X, Liu J, Xu Z, Chen F, Wu G. Molecular cloning and function analysis of the stay green gene in rice. Plant J, 2007, 52: 197-209

[22] Tong H-H(童汉华), Mei H-W(梅捍卫), Xing Y-Z(邢永忠), Cao Y-P(曹一平), Yu X-Q(余新桥), Zhang S-Q(章善庆), Luo L-J(罗利军). QTL analysis for morphological and physiological characteristics of flag leaf at the late developmental stage in rice. Chin J Rice Sci (中国水稻科学), 2007, 21(5): 493-499 (in Chinese with English abstract)

[23] Ishimaru K, Yano M, Aoki N, Ono K, Hirose T, Lin S Y, Monna L, Sasaki T, Ohsugi R. Toward the mapping of physiological and agronomic characters on a rice function map: QTL analysis and comparison between QTLs and expressed sequence tags. Theor Appl Genet, 2001, 102: 793-800


[24] Yang Q-H(杨权海), Lu W(陆巍), Hu M-L(胡茂龙), Wang C-M(王春明), Zhang R-X(张荣铣), Yano M(失野昌裕), Wan J-M(万建民). QTL and epistatic interaction underlying leaf chlorophyll and H2O2 content variation in rice (Oryza sativa L.). Acta Genet Sin (遗传学报), 2003, 30(3): 245-250

[25] Abdelkhalik A F, Shishido R, Nomura K, Ikehashi H. QTL-based analysis of leaf senescence in an indica/japonica hybrid in rice (Oryza sativa L.). Theor Appl Genet, 2005, 110: 1226-1235

[26] A Jia L-T(阿加拉铁), Zeng L-J(曾龙军), Xue D-W(薛大伟), Hu J(胡江), Zeng D-L(曾大力), Gao Z-Y(高振宇), Guo L-B(郭龙彪), Li S-G(李仕贵), Qian Q(钱前). QTL analysis for chlorophyll content in four grain-filling stage in rice. Acta Agron Sin (作物学报), 2008, 34(1): 61-66 (in Chinese with English abstract)

[27] Liu D-H(刘道宏). Plant leaf senescence. Plant Physiol Commun (植物生理学通讯), 1983, (2): 16-21 (in Chinese)
[1] ZHANG Yan-Bo, WANG Yuan, FENG Gan-Yu, DUAN Hui-Rong, LIU Hai-Ying. QTLs analysis of oil and three main fatty acid contents in cottonseeds [J]. Acta Agronomica Sinica, 2022, 48(2): 380-395.
[2] SUN Zhi-Guang, WANG Bao-Xiang, ZHOU Zhen-Ling, FANG Lei, CHI Ming, LI Jing-Fang, LIU Jin-Bo, Bello Babatunde Kazeem, XU Da-Yong. Screening of germplasm resources and QTL mapping for germinability under submerged condition in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2021, 47(1): 61-70.
[3] JIAN Hong-Ju, HUO Qiang, GAO Yu-Min, LI Yang-Yang, XIE Ling, WEI Li-Juan, LIU Lie-Zhao, LU Kun, LI Jia-Na. Selection of candidate genes for chlorophyll content in leaves of Brassica napus using genome-wide association analysis [J]. Acta Agronomica Sinica, 2020, 46(10): 1557-1565.
[4] Zi-Ju DAI,Xin-Tao WANG,Qing YANG,Yan WANG,Ying-Ying ZHANG,Zhang-Ying XI,Bao-Quan LI. Major Quantitative Trait Loci Mapping for Tassel Branch Number and Construction of qTBN5 Near-isogenic Lines in Maize (Zea mays L.) [J]. Acta Agronomica Sinica, 2018, 44(8): 1127-1135.
[5] Hai-Ping GUO, Gao-Yang SUN, Xiao-Xiang ZHANG, Peng-Shuai YAN, Kun LIU, Hui-Ling XIE, Ji-Hua TANG, Dong DING, Wei-Hua LI. QTL Analysis of Under-ear Internode Length Based on SSSL Population [J]. Acta Agronomica Sinica, 2018, 44(04): 522-532.
[6] FANG Ya-Jie,ZHU Ya-Jun,WU Zhi-Chao,CHEN Kai,SHEN Cong-Cong,SHI Ying-Yao,XU Jian-Long. Genome-wide Association Study of Grain Appearance and Milling Quality in a Worldwide Collection of Indica Rice Germplasm [J]. Acta Agron Sin, 2018, 44(01): 32-42.
[7] ZHOU Yong,TAO Ya-Jun,YAO Rui,LI Chang,TAN Wen-Chen,YI Chuan-Deng,GONG Zhi-Yun, LIANG Guo-Hua*. QTL Mapping for Leaf Morphological Traits of Rice Using Chromosome Segment Substitution Lines [J]. Acta Agron Sin, 2017, 43(11): 1650-1657.
[8] PAN Ting,HU Wen-Jing,LI Dong-Sheng,CHENG Xiao-Ming,WU Rong-Lin,CHENG Shun-He. Influence of Stem Solidness on Stem Strength and Stem Solidness Associated QTLs in Bread Wheat [J]. Acta Agron Sin, 2017, 43(01): 9-18.
[9] PENG Qian,XUE Ya-Dong,ZHANG Xiang-Ge,LI Hui-Min,SUN Gao-Yang,LI Wei-Hua,XIE Hui-Ling,TANG Ji-Hua. Identification of Heterotic Loci for Yield and Ear Traits Using CSSL Test Population in Maize [J]. Acta Agron Sin, 2016, 42(04): 482-491.
[10] LEI Ya-Kun,LIU Bing-Qiang,DI Rui,YAN Long,YANG Chun-Yan,HAO Dong-Xu,ZHANG Meng-Chen. Analysis of QTL for Fatty Acid Contents under Different Environments in Soybean [J]. Acta Agron Sin, 2016, 42(02): 303-310.
[11] LIANG Hui-Zhen, YU Yong-Liang, YANG Hong-Qi, XU Lan-Jie, DONG Wei, NIU Yong-Guang, ZHANG Hai-Yang, LIU Xue-Yi, FANG Xuan-Jun. Genetic Analysis and QTL Mapping of Isoflavone Contents and Its Components in Soybean [J]. Acta Agron Sin, 2015, 41(09): 1372-1383.
[12] LIANG Hui-Zhen,YU Yong-Liang,YANG Hong-Qi,DONG Wei,XU Lan-Jie,NIU Yong-Guang,ZHANG Hai-Yang,LIU Xue-Yi,FANG Xuan-Jun. Epistatic and QTL × Environment Interaction Effects of QTLs for Leaf Traits and Leaf Chlorophyll Content in Soybean [J]. Acta Agron Sin, 2015, 41(06): 889-899.
[13] WANG Yan-Zheng,WANG Xiao-Jing,LI Yuan,XU Hai,WANG Jia-Yu,ZHAO Ming-Hui,TANG Liang,MA Dian-Rong,XU Zheng-Jin,CHEN Wen-Fu. Analysis of Yield and Quality Traits and the Relationship between Them in Japonica Rice in the Northern China [J]. Acta Agron Sin, 2015, 41(06): 910-918.
[14] JIAN Hong-Ju,WEI Li-Juan,LI Jia-Na,XU Xin-Fu,CHEN Li,LIU Lie-Zhao*. Quantitative Traits Loci Analysis of Seed Glucosinolate Content in Brassica napus Using High-density SNP Map [J]. Acta Agron Sin, 2014, 40(08): 1386-1391.
[15] GONG Jin-Long,XING Zhi-Peng,HU Ya-Jie,ZHANG Hong-Cheng*,DAI Qi-Gen,HUO Zhong-Yang,XU Ke,WEI Hai-Yan,GAO Hui,GUO Bao-Wei. Difference of Root Morphological and Several Physiological Characteristics between Indica and Japonica Super Rice Varieties [J]. Acta Agron Sin, 2014, 40(06): 1066-1080.
Full text



No Suggested Reading articles found!