Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2014, Vol. 40 ›› Issue (08): 1386-1391.doi: 10.3724/SP.J.1006.2014.01386


Quantitative Traits Loci Analysis of Seed Glucosinolate Content in Brassica napus Using High-density SNP Map

JIAN Hong-Ju,WEI Li-Juan,LI Jia-Na,XU Xin-Fu,CHEN Li,LIU Lie-Zhao*   

  1. Chongqing Engineering Research Center for Rapeseed / College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
  • Received:2014-02-15 Revised:2014-04-16 Online:2014-08-12 Published:2014-06-03
  • Supported by:

    This research was supported by The National Natural Science Foundation of China (No. 31171584), The Chongqing Natural Science Foundation (No.cstc2011jjA8000g), and The Program of Introducing International Super Agricultural Science and Technology (948 Program) (No.2011-G23).


Seed glucosinolate plays important biological and economic roles in Brassica napus. In this study, we aimed at identifying QTLs related to seed glucosinolate content of B. napus using the composite interval mapping (CIM) method based on the high density SNP genetic map. The total seed glucosinolate content was analyzed via Near Infrared Spectroscopy (NIR) using standard methods with three technical replicates. The QTLs related to seed glucosinolate content in two years were detected using the SNP genetic map constructed in 2013, which contains 2795 SNP markers with the total map length of 1832.9 cM and an average distance of 0.66 cM. Five QTLs for seed total glucosinolate content were identified on A03, A09, C02 in both 2011 and 2012, and LOD threshold values for significant QTLs both in 2011 and in 2012 were determined to be 2.90–10.4. These QTLs explained for 56.9% and 55.1% of the total phenotypic variance in 2011 and 2012, respectively. Another five minor QTLs were also detected either in 2011 or 2012. These QTLs accounted for 4.1%–7.9% of the phenotypic variance and the LOD threshold values were 2.53–3.83.

Key words: Brassica napus, Single nucleotide polymorphism, Quantitative trait loci, Seed glucosinolate content

[1]Hasan M, Friedt W, Pons-Kühnemann J, Freitag N M, Link K, Snowdon R J. Association of gene-linked SSR markers to seed glucosinolate content in oilseed rape (Brassica napus ssp. napus). Theor Appl Genet, 2008, 116: 1035–1049

[2]Sønderby I E, Fernando G F, Halkier B A. Biosynthesis of glucosinolates gene discovery and beyond. Trends Plant Sci, 2010, 15: 1360–1385

[3]Wang H, Wu J, Sun S L, Liu B, Cheng F, Sun R F, Wang X W. Glucosinolate biosynthetic genes in Brassica rapa. Gene, 2011, 487: 135–142

[4]Hayes J, Kelleher M, Eggleston I. The cancer chemopreventive actions of phytochemicals derived from glucosinolates. Eur J Nutr, 2008, 47: 73–88

[5]Walker K C, Booth E J. Agricultural aspects of rape and other Brassica products. Eur J Lipid Sci Technol, 2001, 103: 441–446

[6]Hasegawa T, Yamada K, Kosemura S, Yamamura S, Hasegawa K. Phototropic stimulation induces theconversion of glucosinolate to phototropism-regulatingsubstances of radish hypocotyls. Phytochemistry, 2000, 54: 275–279

[7]Mikkelsen M D, Hansen C H, Wittstock U, Halkier B A. Cytochrome P450 CYP79B2 from Arabidopsis catalyzes the conversion of tryptophan toindole-3-acetaldoxime, a precursor of indoleglucosinolates and indole-3-acetic acid. J Biol Chem, 2000, 275: 33712–33717

[8]Hull A K, Vij R, Celenza J L. Arabidopsis cyto-chrome P450s that catalyze the ?rst step of tryptophan-dependent indole-3-acetic acid biosynthesis, Proc Natl Acad Sci, 2000, 97: 2379–2384

[9]Uzunova M, Ecke W, Weissleder K, Röbbelen G. Mapping the genome of rapeseed (Brassica napus L.). I. construction of an RFLP linkage map and localization of QTLs for seed glucosinolate content. Theor Appl Genet, 1995, 90: 194–204

[10]Howell P M, Sharpe A G, Lydiate D J. Homoeologous loci control the accumulation of seed glucosinolates in oilseed rape (Brassica napus). Genome, 2003, 46: 454–460

[11]Sharpe A G, Lydiate D J. Mapping the mosaic of ancestral genotypes in a cultivar of oilseed rape (Brassica napus) selected via pedigree breeding. Genome, 2003, 46: 461–468

[12]Zhao J, Meng J. Detection of loci controlling seed glucosinolate content and their association with Sclerotinia resistance in Brassica napus. Plant Breed, 2003, 122: 19–23

[13]Liu L Z, Qu C M, Wittkop B, Yi B, Xiao Y, He Y J, Sonwdon R J, Li J N. A high-density SNP map for accurate mapping of seed fibre QTL in Brassica napus L. PLoS One, 2013, 8: e83052

[14]Wang S, Basten C J, Zeng Z B. 2006. Windows QTL cartographer. Version 2.5 Department of Statistics, North Carolina State University, Raleigh, N C, 2006.[2012-10-15] [2010-06-26]. Available from http://statgen.ncsu.edu/qtlcart/WQTLCart.htm

[15]Mccouch S R, Cho Y G, Yano M, Paul E, Blinstrub M, Morishima H, Kinoshita T. Report on QTL nomenclature. Rice Genet Newsl, 1997, 14: 11–131 [16] Halkier B A, Gershenzon J. Biology and biochemistry of glucosinolates. Annu Rev Plant Biol, 2006, 57: 303–333

[17]Toroser D, Thormann C E, Osborn T C, Mithen R. RFLP mapping of quantitative trait loci controlling seed aliphaticglucosinolate content in oilseed rape (Brassica napus L.). Theor Appl Genet, 1995, 91: 802–808

[18]Quijada P A, Udall J A, Lambert B, Osborn T C. Quantitative traitanalysis of seed yield and other complex traits in hybrid springrapeseed (Brassica napus L.): 1. identification of genomic regions from winter germplasm. Theor Appl Genet, 2006, 113: 549–561

[19]Basunanda P, Spiller T H, Hasan M, Gehringer A, Schondelmaier J, Luhs W, Friedtand W, Snowdon R J. Marker-assisted increase of genetic diversity in a double-low seed quality winter oilseed rape genetic background. Plant Breed, 2007, 126: 581–587

[20]Parkin I A P, Sharpe A G, Keith D J, Lydiate D J. Identification of the A and C genomes of amphidiploid Brassica napus (oilseed rape). Genome, 1995, 38: 1122–1131

[21]Ferreira M E , Williams P H, Osborn T C. RFLP mapping of Brassica napus using doubled-haploid lines. Theor Appl Genet, 1994, 89: 615–621

[22]Harper A L, Trick M, Higgins J, Fraser F, Clissold L, Wells R, Hattori C, Werner P, Bancroft I. Associative transcriptomics of traits in the polyploid crop species Brassica napus. Nat Biotechnol, 2012, 30: 798–802

[23]Kliebenstein D J, D’Auria J C, Behere A S, Kim J H, Gunderson K L, Breen J N, Lee G, GershenzonJ, Last R L, Jander G. Characterization of seed-speci?c benzoyloxyglucosinolatemutations in Arabidopsis thaliana. Plant J, 2007, 51: 1062–1076

[24]Grubb C D, Abel1 S. Glucosinolate metabolism and its control. Trends Plant Sci, 2006, 11: 89–100

[25]Mikkelsen M D, Naur P and Halkier B A. Arabidopis mutants in the C-S lyase of glucosinolate biosynthesis establish a critical role indol-3-acetaldoxime in auxinhomeostasis. Plant J, 2004, 37: 770–777

[1] CHEN Song-Yu, DING Yi-Juan, SUN Jun-Ming, HUANG Deng-Wen, YANG Nan, DAI Yu-Han, WAN Hua-Fang, QIAN Wei. Genome-wide identification of BnCNGC and the gene expression analysis in Brassica napus challenged with Sclerotinia sclerotiorum and PEG-simulated drought [J]. Acta Agronomica Sinica, 2022, 48(6): 1357-1371.
[2] YUAN Da-Shuang, DENG Wan-Yu, WANG Zhen, PENG Qian, ZHANG Xiao-Li, YAO Meng-Nan, MIAO Wen-Jie, ZHU Dong-Ming, LI Jia-Na, LIANG Ying. Cloning and functional analysis of BnMAPK2 gene in Brassica napus [J]. Acta Agronomica Sinica, 2022, 48(4): 840-850.
[3] HUANG Cheng, LIANG Xiao-Mei, DAI Cheng, WEN Jing, YI Bin, TU Jin-Xing, SHEN Jin-Xiong, FU Ting-Dong, MA Chao-Zhi. Genome wide analysis of BnAPs gene family in Brassica napus [J]. Acta Agronomica Sinica, 2022, 48(3): 597-607.
[4] WANG Rui, CHEN Xue, GUO Qing-Qing, ZHOU Rong, CHEN Lei, LI Jia-Na. Development of linkage InDel markers of the white petal gene based on whole-genome re-sequencing data in Brassica napus L. [J]. Acta Agronomica Sinica, 2022, 48(3): 759-769.
[5] ZHANG Yan-Bo, WANG Yuan, FENG Gan-Yu, DUAN Hui-Rong, LIU Hai-Ying. QTLs analysis of oil and three main fatty acid contents in cottonseeds [J]. Acta Agronomica Sinica, 2022, 48(2): 380-395.
[6] ZHAO Gai-Hui, LI Shu-Yu, ZHAN Jie-Peng, LI Yan-Bin, SHI Jia-Qin, WANG Xin-Fa, WANG Han-Zhong. Mapping and candidate gene analysis of silique number mutant in Brassica napus L. [J]. Acta Agronomica Sinica, 2022, 48(1): 27-39.
[7] WANG Yan-Hua, LIU Jing-Sen, LI Jia-Na. Integrating GWAS and WGCNA to screen and identify candidate genes for biological yield in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(8): 1491-1510.
[8] LI Jie-Hua, DUAN Qun, SHI Ming-Tao, WU Lu-Mei, LIU Han, LIN Yong-Jun, WU Gao-Bing, FAN Chu-Chuan, ZHOU Yong-Ming. Development and identification of transgenic rapeseed with a novel gene for glyphosate resistance [J]. Acta Agronomica Sinica, 2021, 47(5): 789-798.
[9] TANG Xin, LI Yuan-Yuan, LU Jun-Xing, ZHANG Tao. Morphological characteristics and cytological study of anther abortion of temperature-sensitive nuclear male sterile line 160S in Brassica napus [J]. Acta Agronomica Sinica, 2021, 47(5): 983-990.
[10] ZHOU Xin-Tong, GUO Qing-Qing, CHEN Xue, LI Jia-Na, WANG Rui. Construction of a high-density genetic map using genotyping by sequencing (GBS) for quantitative trait loci (QTL) analysis of pink petal trait in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 587-598.
[11] LI Shu-Yu, HUANG Yang, XIONG Jie, DING Ge, CHEN Lun-Lin, SONG Lai-Qiang. QTL mapping and candidate genes screening of earliness traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 626-637.
[12] ZHANG Chun, ZHAO Xiao-Zhen, PANG Cheng-Ke, PENG Men-Lu, WANG Xiao-Dong, CHEN Feng, ZHANG Wei, CHEN Song, PENG Qi, YI Bin, SUN Cheng-Ming, ZHANG Jie-Fu, FU Ting-Dong. Genome-wide association study of 1000-seed weight in rapeseed (Brassica napus L.) [J]. Acta Agronomica Sinica, 2021, 47(4): 650-659.
[13] TANG Jing-Quan, WANG Nan, GAO Jie, LIU Ting-Ting, WEN Jing, YI Bin, TU Jin-Xing, FU Ting-Dong, SHEN Jin-Xiong. Bioinformatics analysis of SnRK gene family and its relation with seed oil content of Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(3): 416-426.
[14] MENG Jiang-Yu, LIANG Guang-Wei, HE Ya-Jun, QIAN Wei. QTL mapping of salt and drought tolerance related traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(3): 462-471.
[15] LI Qian, Nadil Shah, ZHOU Yuan-Wei, HOU Zhao-Ke, GONG Jian-Fang, LIU Jue, SHANG Zheng-Wei, ZHANG Lei, ZHAN Zong-Xiang, CHANG Hai-Bin, FU Ting-Dong, PIAO Zhong-Yun, ZHANG Chun-Yu. Breeding of a novel clubroot disease-resistant Brassica napus variety Huayouza 62R [J]. Acta Agronomica Sinica, 2021, 47(2): 210-223.
Full text



No Suggested Reading articles found!