Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2018, Vol. 44 ›› Issue (04): 522-532.doi: 10.3724/SP.J.1006.2018.00522

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

QTL Analysis of Under-ear Internode Length Based on SSSL Population

Hai-Ping GUO1(), Gao-Yang SUN1, Xiao-Xiang ZHANG2, Peng-Shuai YAN1, Kun LIU1, Hui-Ling XIE1, Ji-Hua TANG1, Dong DING1, Wei-Hua LI1,*()   

  1. 1 College of Agronomy, Henan Agricultural University / Key Laboratory of Wheat and Maize Crops Science, Zhengzhou 450002, Henan, China
    2 Maize Research Institute of Sichuan Agricultural University, Chengdu 611130, Sichuan, China
  • Received:2017-06-14 Accepted:2017-11-21 Online:2018-04-12 Published:2017-12-01
  • Contact: Wei-Hua LI E-mail:guohaiping885@126.com;liwh416@163.com
  • Supported by:
    This study was supported by the National Natural Science Foundation of China (U1604231), the Major Science and Technology Projects in Henan Province (161100110500), and Henan Science and Technology Project (152102110060).

Abstract:

The under-ear internode length determines maize plant height and ear height, which are two agronomic traits associated with yield and lodging resistance. The lengths of the 7th, 8th, and 9th internode play a decisive role in ear height. Compared with other agronomic traits, there is little knowledge for genetic basis of under-ear internode length. Thus, exploring the genetic basis of internode length plays an important role in maize breeding. In this study, a set of 260 chromosome segment substitution lines (CSSLs), using Chang 7-2 as the donor parent and lx9801 as recipient parent, was constructed and used to map QTLs for the 7th, 8th, and 9th internode length and ear height at two-environments in two years. In total, 18, 23, and 17 QTLs were detected for the 7th, 8th, and 9th internode length, respectively. Among them, eight QTLs were simultaneously detected for the 7th, 8th, and 9th internode length. For ear height, 20 QTLs were detected, 12 (60%) of these 20 QTLs were found to co-localize to the 7th, 8th, and 9th internode length. The results indicated that length of the 7th, 8th, and 9th internode and ear height have same genetic basis. Furthermore, length of the 7th, 8th, and 9th internode are important components of ear height and also determining the plant height and ear height in maize.

Key words: maize, single segment substitution lines (SSSL), under-ear internode length, ear height, quantitative trait loci (QTL)

Table 1

performance of sevnth,eighth,and ninth internode length and car height for parents and SSSL population(cm)"

Table 2

Result of t-test of 7th, 8th, 9th internode length, and ear height for parents"

性状
Trait
2012 2013
浚县 Xunxian 长葛 Changge 浚县 Xunxian 长葛 Changge
第7节间长7th internode length 4.047** 3.036** 0.045* 0.874**
第8节间长8th internode length 0.626** 2.145** 2.443** 2.991**
第9节间长9th internode length 6.024** 8.374** 2.967** 6.889**
穗位高Ear height 1.171** 2.609* 2.369* 2.085**

Table 3

Correlation coefficients analysis of seventh, eighth, ninth internode length with ear height in SSSL population"

年份
Year
性状
Trait
浚县 Xunxian 长葛 Changge
第7节间长
7th IL
第8节间长
8th IL
第9节间长
9th IL
穗位高
EH
第7节间长
7th IL
第8节间长
8th IL
第9节间长
9th IL
穗位高
EH
2012 第7节间长7th IL 1 1
第8节间长8th IL 0.760** 1 0.633** 1
第9节间长9th IL 0.597** 0.635** 1 0.558** 0.538** 1
穗位高EH 0.432** 0.455** 0.439** 1 0.415** 0.443** 0.431** 1
2013 第7节间长7th IL 1 1
第8节间长8th IL 0.684** 1 0.645** 1
第9节间长9th IL 0.680** 0.677** 1 0.364** 0.482** 1
穗位高EH 0.398** 0.417** 0.403** 1 0.386** 0.412** 0.393** 1

Table 4

QTLs detcced for seventh,eighth,ninth internode length and ear height in the SSSL population(cm)"

[1] Hallauer A R, Russell W A, Lamkey K R.Corn breeding.Corn & Corn Improvement, 1988, 48: 463-564
[2] 张建华. 玉米DH群体株高、节间长、穗部性状和一般配合力的分析和QTL定位. 河北农业大学硕士学位论文, 河北保定, 2009
Zhang J H.Analysis of Plant Height, Internode Length, Panicle Traits and General Combining Ability of Maize DH Population and QTL Mapping. MS Thesis of Hebei Agricultural University, Baoding, Hebei,China, 2009 (in Chinese with English abstract)
[3] Sibov S T, De Souza Jr C L, Garcia A A F, Silva A R, Garcia A F, Mangolin C A, Benchimol L L, De Souza A P. Molecular mapping in tropical maize(Zea mays L.) using microsatellite markers.2. Quantitative trait loci (QTL) for grain yield, plant height, ear height and grain moisture. Hereditas, 2003, 139: 107-115
[4] Lu H, Romero-Severson J, Bernardo R.Genetic basis of heterosis explored by simple sequence repeat markers in a random-mated maize population.Theor Appl Genet, 2003, 107: 494-502
[5] 严建兵, 汤华, 黄益勤, 郑用琏, 李建生. 玉米和水稻重要性状QTL的比较研究. 遗传学报, 2004, 31: 1401-1407
Yan J B, Tang H, Huang Y Q, Zheng Y L, Li J S.A comparative study on QTLs for important traits of maize and rice.Acta Genet Sin, 2004, 31: 1401-1407 (in Chinese with English abstract)
[6] 吴建伟, 刘成, 石云素, 宋燕春, 张桂寅, 马峙英, 王天宇, 黎裕. 对不同水分条件下玉米株高和穗位高的QTL分析. 植物遗传资源学报, 2005, 6: 266-271
Wu J W, Liu C, Shi Y S, Song C Y, Zhang G Y, Ma Z Y, Wang T Y, Li Y.QTL analysis of plant height and ear height in maize under different water regimes.J Plant Genet Resour, 2005, 6: 266-271 (in Chinese with English abstract)
[7] 兰进好, 褚栋. 玉米株高和穗位高遗传基础的QTL剖析. 遗传学报, 2005, 25: 925-934
Lan J H, Chu D.Study on the genetic basis of plant height and ear height in maize by QTL dissection.Acta Genet Sin, 2005, 25: 925-934 (in Chinese with English abstract)
[8] 汤华, 严建兵, 黄益勤, 郑用琏, 李建生. 玉米5个农艺性状的QTL定位. 遗传学报, 2005, 32: 203-309
Tang H, Yan J B, Huang Y Q, Zheng Y L, Li J S.QTL mapping of five agronomic traits in maize.Acta Genet Sin, 2005, 32: 203-309 (in Chinese with English abstract)
[9] 杨俊品, 荣廷昭, 向道权, 唐海涛, 黄烈健, 戴景瑞. 玉米数量性状基因定位. 作物学报, 2005, 31: 188-196
Yang J P, Rong T Z, Xiang D Q, Tang H T, Huang L J, Dai J R.QTL mapping of quantitative traits in maize. Acta Agron Sin, 2005, 31: 188-196 (in Chinese with English abstract)
[10] Lima M, Souza A, Bento D, Carlini-Garcia L.Mapping QTL for grain yield and plant traits in a tropical maize population.Mol Breed, 2006, 17: 227-239
[11] Teng F, Zhai L, Liu R, Bai W, Wang L.ZmGA3ox2, a candidate gene for a major QTL, qPH3.1, for plant height in maize. Plant J, 2013, 73: 405-416
[12] Tang Z, Yang Z, Hu Z, Zhang D, Lu X.Cytonuclear epistatic quantitative trait locus mapping for plant height and ear height in maize.Mol Breed, 2013, 31: 1-14
[13] Cai H, Chu Q, Gu R, Yuan L, Liu J.Identification of QTLs for plant height, ear height and grain yield in maize (Zea mays L.) in response to nitrogen and phosphorus supply. Mol Breed, 2012, 131: 502-510
[14] Li Z Q, Zhang H M, Wu X P, Sun Y, Liu X H.Quantitative trait locus analysis for ear height in maize based on a recombinant inbred line population.Genet Mol Res, 2014, 13: 450
[15] Meghiji M R, Dudley J W, Lambert R J, Sprague G F.Inbreeding depression, inbred and hybrid grain yields, and other traits of maize genotypes representing three eras.Crop Sci, 1984, 24: 545-549
[16] 张君, 库丽霞, 张伟强, 杨爽, 刘海英, 赵瑞芳, 陈彦惠. 玉米穗上节间距的QTL定位. 玉米科学, 2010, 18(04): 45-48
Zhang J, Ku L X, Zhang W Q, Yang S, Liu H Y, Zhao R F, Chen Y H.QTL mapping of internodes length above upmost ear in maize.J Maize Sci, 2010, 18(04): 45-48 (in Chinese with English abstract)
[17] 袁亮, 丁冬, 李卫华, 谢惠玲, 汤继华, 付志远. 玉米优良自交系单片段代换系的构建. 玉米科学, 2012, 2(2): 52-55
Yuan L, Ding D, Li W H, Fu Z Y.Constroction of Single Segment Substitution Lines (SSSLs) of the elite inbred lines in maize. J Maize Sci, 2012, 2(2): 52-55 (in Chinese with English abstract)
[18] Eshed Y, Zamir D.Less-than-additive epistatic interactions of quantitative trait loci in tomato.Genetics, 1996, 143: 1807-1817
[19] 刘胜群, 刘铁东, 宋凤斌, 王洋, 齐晓宁, 朱先灿. 行向和种植方式对玉米穗下节间与茎倒伏相关性状的影响. 土壤与作物, 2016, 5(3): 159-165
Liu S Q, Liu T D, Song F B, Wang Y, Qi X N, Zhu X C.Effects of row orientation and planting pattern on traits associated with stem lodging in maize.Soils & Crops, 2016, 5(3): 159-165 (in Chinese with English abstract)
[20] 季洪强, 常纪苹, 付志远, 丁冬, 谭晓军, 汤欣欣, 刘宗华. 玉米植株抗倒伏性状的遗传分析. 河南农业大学学报, 2011, 45: 263-266
Ji H Q, Chang J P, Fu Z Y, Ding D, Tan X J, Tang X X, Liu Z H.Inheritance of plant traits on lodging resistance in maize.J Henan Agric Univ, 2011, 45: 263-266 (in Chinese with English abstract)
[21] Ku L X, Zhang L K, Tian Z Q, Guo S L, Su H H, Ren Z Z, Wang Z Y, Li G H, Wang X B, Zhu Y G, Zhou J L, Chen Y H.Dissection of the genetic architecture underlying the plant density response by mapping plant height-related traits in maize ( Zea mays L.).Mol Genet Genomics, 2015, 290: 1223-1233
[22] 季兰, 杨仁崔. 水稻茎伸长生长与植物激素. 植物学报, 2002, 19: 109-115
Ji L, Yang R C.Rice stem elongation and plant hormones.Chin Bull Bot, 2002, 19: 109-115 (in Chinese with English abstract)
[23] 杨晓军, 路明, 张世煌, 周芳, 曲延英, 谢传晓. 玉米株高和穗位高的QTL定位. 遗传, 2008, 30: 1477-1486
Yang X J, Lu M, Zhang S H, Zhou F, Qu Y Y, Xie C X.QTL mapping of plant height and ear position in maize (Zea mays L.).Hereditas(Beijing), 2008, 30: 1477-1486 (in Chinese with English abstract)
[24] 徐德林, 蔡一林, 吕学高, 代国丽, 王国强, 王久光,孙海艳, 覃鸿妮. 玉米株型性状的QTL定位. 玉米科学, 2009, 17(6): 27-31
Xü D L, Cai Y L, Lyu X G, Dai G L, Wang G Q, Wang J G, Sun H Y, Qin H N.QTL mapping for plant-tape traits in maize.J Maize Sci, 2009, 17(6): 27-31 (in Chinese with English abstract)
[25] 吴建伟, 刘成, 石云素, 宋燕春, 张桂寅, 马峙英, 王天宇, 黎裕. 不同水分条件下玉米株高和穗位高的QTL分析. 植物遗传资源学报, 2005, 6: 266-271
Wu J W, Liu C, Shi Y S, Song C Y, Zhang G Y, Ma Z Y, Wang T Y, Li Y.QTL analysis of plant height and ear height in maize under different water regimes.J Plant Genet Resour, 2005, 6: 266-271 (in Chinese with English abstract)
[26] 李慧敏, 李卫华, 郭海平, 刘坤, 张向歌, 张晓祥, 谢惠玲, 汤继华, 丁冬. 玉米穗下节间长的杂种优势位点解析. 中国农业科学, 2017, 50: 978-989
Li H M, Li W H, Guo H P, Liu K, Zhang X G, Zhang X X, Xie H L, Tang J H, Ding D.Heterosis analysis of internode length under ear in maize.Sci Agric Sin, 2017, 50: 978-989 (in Chinese with English abstract)
[27] Guo X, Guo Y, Ma J, Wang F, Sun M Z, Gui L J, Zhou J J, Song X L, Sun X Z, Zhang T Z.Mapping heterotic loci for yield and agronomic traits using chromosome segment introgression lines in cotton.J Integr Plant Biol, 2013, 55: 759-774
[28] 马西青. 玉米株高杂种优势遗传基础剖析. 中国农业大学硕士学位论文, 北京, 2005
Ma X Q.Dissection of Genetic Basis of Plant Height Heterosis in Maize. MS Thesis of China Agricultural University, Beijing,China, 2005 (in Chinese with English abstract)
[29] 马西青, 汤继华, 滕文涛, 严建兵, 吴为人, 戴景瑞, 李建生.利用“永久F2”群体定位玉米株高的 QTL与杂种优势位点. 2006, 51: 2864-2869
Tang J H, Ma X Q, Teng W T, Yan J B, Wu W R, Dai J R, Li J S.Detection of quantitative trait loci and heterosis for plant height in maize in “immortalized F2” (IF2) population.Chin Sci Bull, 2006, 51: 2864-2869 (in Chinese without English abstract)
[30] 华金平. 汕优63 “永久F2” 群体构建及其杂种优势的遗传研究. 华中农业大学博士学位论文, 湖北武汉, 2001
Hua J P.Genetic Dissection on the Basis of Heterosis Using an “Immortalized F2” Population. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei,China, 2001 (in Chinese with English abstract)
[1] WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450.
[2] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[3] CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515.
[4] SHAN Lu-Ying, LI Jun, LI Liang, ZHANG Li, WANG Hao-Qian, GAO Jia-Qi, WU Gang, WU Yu-Hua, ZHANG Xiu-Jie. Development of genetically modified maize (Zea mays L.) NK603 matrix reference materials [J]. Acta Agronomica Sinica, 2022, 48(5): 1059-1070.
[5] XU Jing, GAO Jing-Yang, LI Cheng-Cheng, SONG Yun-Xia, DONG Chao-Pei, WANG Zhao, LI Yun-Meng, LUAN Yi-Fan, CHEN Jia-Fa, ZHOU Zi-Jian, WU Jian-Yu. Overexpression of ZmCIPKHT enhances heat tolerance in plant [J]. Acta Agronomica Sinica, 2022, 48(4): 851-859.
[6] LIU Lei, ZHAN Wei-Min, DING Wu-Si, LIU Tong, CUI Lian-Hua, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping. Genetic analysis and molecular characterization of dwarf mutant gad39 in maize [J]. Acta Agronomica Sinica, 2022, 48(4): 886-895.
[7] YAN Yu-Ting, SONG Qiu-Lai, YAN Chao, LIU Shuang, ZHANG Yu-Hui, TIAN Jing-Fen, DENG Yu-Xuan, MA Chun-Mei. Nitrogen accumulation and nitrogen substitution effect of maize under straw returning with continuous cropping [J]. Acta Agronomica Sinica, 2022, 48(4): 962-974.
[8] XU Ning-Kun, LI Bing, CHEN Xiao-Yan, WEI Ya-Kang, LIU Zi-Long, XUE Yong-Kang, CHEN Hong-Yu, WANG Gui-Feng. Genetic analysis and molecular characterization of a novel maize Bt2 gene mutant [J]. Acta Agronomica Sinica, 2022, 48(3): 572-579.
[9] SONG Shi-Qin, YANG Qing-Long, WANG Dan, LYU Yan-Jie, XU Wen-Hua, WEI Wen-Wen, LIU Xiao-Dan, YAO Fan-Yun, CAO Yu-Jun, WANG Yong-Jun, WANG Li-Chun. Relationship between seed morphology, storage substance and chilling tolerance during germination of dominant maize hybrids in Northeast China [J]. Acta Agronomica Sinica, 2022, 48(3): 726-738.
[10] QU Jian-Zhou, FENG Wen-Hao, ZHANG Xing-Hua, XU Shu-Tu, XUE Ji-Quan. Dissecting the genetic architecture of maize kernel size based on genome-wide association study [J]. Acta Agronomica Sinica, 2022, 48(2): 304-319.
[11] ZHANG Yan-Bo, WANG Yuan, FENG Gan-Yu, DUAN Hui-Rong, LIU Hai-Ying. QTLs analysis of oil and three main fatty acid contents in cottonseeds [J]. Acta Agronomica Sinica, 2022, 48(2): 380-395.
[12] YAN Yan, ZHANG Yu-Shi, LIU Chu-Rong, REN Dan-Yang, LIU Hong-Run, LIU Xue-Qing, ZHANG Ming-Cai, LI Zhao-Hu. Variety matching and resource use efficiency of the winter wheat-summer maize “double late” cropping system [J]. Acta Agronomica Sinica, 2022, 48(2): 423-436.
[13] ZHANG Qian, HAN Ben-Gao, ZHANG Bo, SHENG Kai, LI Lan-Tao, WANG Yi-Lun. Reduced application and different combined applications of loss-control urea on summer maize yield and fertilizer efficiency improvement [J]. Acta Agronomica Sinica, 2022, 48(1): 180-192.
[14] YU Rui-Su, TIAN Xiao-Kang, LIU Bin-Bin, DUAN Ying-Xin, LI Ting, ZHANG Xiu-Ying, ZHANG Xing-Hua, HAO Yin-Chuan, LI Qin, XUE Ji-Quan, XU Shu-Tu. Dissecting the genetic architecture of lodging related traits by genome-wide association study and linkage analysis in maize [J]. Acta Agronomica Sinica, 2022, 48(1): 138-150.
[15] ZHAO Xue, ZHOU Shun-Li. Research progress on traits and assessment methods of stalk lodging resistance in maize [J]. Acta Agronomica Sinica, 2022, 48(1): 15-26.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!