Acta Agron Sin ›› 2010, Vol. 36 ›› Issue (12): 2055-2061.doi: 10.3724/SP.J.1006.2010.02055
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
XIONG Fa-Qian1,2,3,JIANG Jing1,ZHONG Rui-Chun1,HAN Zhu-Qiang1,HE Liang-Qiong1,LI Zhong1,ZHUANG Wei-Jian4,*,TANG Rong-Hua1,2, *
[1]Tang R-H(唐荣华), He L-Q(贺梁琼), Zhuang W-J(庄伟建), Han Z-Q(韩柱强), Zhong R-C(钟瑞春), Zhou C-Q(周翠球), Gao G-Q(高国庆), Li Z(李忠). Phylogenetic relationships in the genus Arachis based on SSR molecular marker profiles. Chin J Oil Crop Sci (中国油料作物学报), 2007, 29(2): 142–147 (in Chinese with English abstract) [2]Chen B-Y(陈本银), Jiang H-F(姜慧芳), Liao B-S(廖伯寿), Ren X-P(任小平), Huang J-Q(黄家权), Lei Y(雷永), Wang S-Y(王圣玉). Genetic diversity analysis of Arachis germplasm by SSR. J Trop Subtrop Bot (热带亚热带植物学报), 2008, 16(4): 296–303 (in Chinese with English abstract) [3]Tang R H, Zhuang W J, Gao G Q, He L Q, Han Z Q, Shan S H, Jiang J, Li Y R. Phylogenetic relationships in genus Arachis based on SSR and AFLP markers. Agric Sci China, 2008, 7: 405–414 [4]Santos V S E D, Gimenes M A, Valls J F M, Lopes C R. Genetic variation within and among species of five sections of genus Arachis L.(Leguminosae) using RAPDs. Genet Resour Crop Evol, 2003, 50: 841–848 [5]Milla S R, IsIeib T G, Stalker H T. Taxonomic relationships among Arachis sect. Arachis species as revealed by AFLP markers. Genome, 2005, 48: 1–11 [6]He G H, Prakash C S. Identification of polymorphic DNA markers in cultivated peanut (Arachis hypogaea L.). Euphytica, 1997, 97: 143–149 [7]Subramanian V, Gurtu S, Rao R C N, Nigam S N. Identification of DNA polymorphism in cultivated groundnut using random amplified polymorphic DNA (PAPD) assay. Genome, 2000, 43: 656–660 [8]Raina S N, Rani V, Kojima T, Ogihara Y, Singh K P, Devarumath R M. RAPD and ISSR fingerprints as useful genetic markers for analysis of genetic diversity, varietal identification, and phylogenetic relationships in peanut (Arachis hypogaea) cultivars and wild species. Genome, 2001, 44: 763–772 [9]Jiang H F, Liao B S, Ren X P, Lei Y, Emma M, Fu T D, Crouch J H. Comparative assessment of genetic diversity of peanut (Arachis hypogaea L.) genotypes with various levels of resistance to bacterial wilt through SSR and AFLP analyses. J Genet Genom, 2007, 34: 544–554 [10]Ren X P, Huang J Q, Liao B S, Zhang X J, Jiang H F. Genomic affinities of Arachis genus and interspecific hybrids were revealed by SRAP markers. Genec Resour Crop Evol , 2010, DOI: 10.1007/s107 22 -010-9532-1 [11]Cui S-L(崔顺立), Liu L-F(刘立峰), Chen H-Y(陈焕英), Geng L-G(耿立格), Meng C-S(孟成生), Yang Y(杨余). Genetic diversity of peanut landraces in hebei province revealed by SSR markers. Sci Agric Sin (中国农业科学), 2009, 42(9): 3346–3353 (in Chinese with English abstract) [12]Tang R H, Gao G Q, He L Q, Han Z Q, Shan S H, Zhong R C, Zhou C Q, Jiang J, Li Y R, Zhuang W J. Genetic diversity in cultivated groundnut based on SSR markers. J Genet Genom, 2007, 34: 449–459 [13]Han Z-Q(韩柱强), Gao G-Q(高国庆), Wei P-X(韦鹏霄), Tang R-H(唐荣华), Zhong R-C(钟瑞春). Analysis of DNA polymorphism and genetic relationships in cultivated peanut (Arachis hypogaea L.) using microsatellite markers. Acta Agron Sin (作物学报), 2004, 30(11): 1097–1101 (in Chinese with English abstract) [14]Hong Y-B(洪彦彬), Liang X-Q(梁炫强), Chen X-P(陈小平), Lin K-Y(林坤耀), Zhou G-Y(周桂元), Li S-X(李少雄), Liu H-Y(刘海燕). Genetic diversity analysis in botanical varieties of the cultivated peanut (Arachis hypogaea L.) based on SSR polymorphism. Mol Plant Breed (分子植物育种), 2008, 6(1): 71–78 (in Chinese with English abstract) [15]He L-Q(贺梁琼), Tang R-H(唐荣华), Gao G-Q(高国庆). Molecular evidence for gene introgression from wild species to cultivated varieties in peanut. Mol Plant Breed (分子植物育种), 2005, 3(6): 815–820 (in Chinese with English abstract) [16]Hong Y B, Liang X Q, Chen X P, Liu H Y, Zhou G Y, Li S X, Wen S. Construction of genetic linkage map based on SSR markers in peanut (Arachis hypogaea L.). Agric Sci China, 2008, 7: 915–921 [17]Varshney R K, Bertioli D J, Moretzsohn M C, Vadez V, Krishnamurthy L, Aruna R, Nigam S N, Moss B J, Seetha K, Ravi K, He G, Knapp S J, Hoisington D A. The first SSR-based genetic linkage map for cultivated groundnut (Arachis hypogaea L.). Theor Appl Genet, 2009, 118: 729–739 [18]Andersen J R, Lübberstedt T. Functional markers in plants. Trends Plant Sci, 2003, 8: 554–560 [19]Lu C-R(陆才瑞), Yu S-X(喻树迅), Yu J-W(于霁雯), Fan S-L(范术丽), Song M-Z(宋美珍), Wang W(王武), Ma S-J(马淑娟). Development and appraisement of functional molecular marker: intron sequence amplified polymorphism (ISAP). Hereditas (遗传), 2008, 30: 1207–1216 (in Chinese with English abstract) [20]Yang J-H(杨景华), Wang S-W(王士伟), Liu X-Y(刘训言), Yang J-F(杨加付), Zhang M-F(张明方). Development and application of functional markers in higher plants. Sci Agric Sin (中国农业科学), 2008, 41(11): 3429–3436 (in Chinese with English abstract) [21]Xiong F-Q(熊发前), Tang R-H(唐荣华), Chen Z-L(陈忠良), Pan L-H(潘玲华), Zhuang W-J(庄伟建). Start codon target polymorphism (SCoT): A novel gene targeted marker technique based on the translation start codon. Mol Plant Breed (分子植物育种), 2009, 7(3): 635–638 (in Chinese with English abstract) [22]Collard B C Y, Mackill D J. Start codon targeted (SCoT) polymorphism: a simple, novel DNA marker technique for generating gene-targeted markers in plants. Plant Mol Biol Rep, 2009, 27: 86–93 [23]Kochert G, Stalker H M, Gimenes M, Galgaro L, Lopes C R, Moore K. RFLP and cytogenetic evidence on the origins and evolution of allotetraploid domesticated peanut, Arachis hypogaea (Leguminosae). Am J Bot, 1996, 83: 1282–1291 [24]Song W(宋伟), Wang F-G(王凤格), Yi H-M(易红梅), Li X(李翔), Zhao J-R(赵久然). Functional markers and their potential application in varieties identification and MAS breeding. Mol Plant Breed (分子植物育种), 2009, 17(3): 612–618 (in Chinese with English abstract) [25]Li G, Quiros C F. Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor Appl Genet, 2001, 103: 455–461 [26]Hu J, Vick B A. Target region amplification polymorphism: a novel marker technique for plant genotyping. Plant Mol Bio Rep, 2003, 21: 289–294 |
[1] | XIAO Ying-Ni, YU Yong-Tao, XIE Li-Hua, QI Xi-Tao, LI Chun-Yan, WEN Tian-Xiang, LI Gao-Ke, HU Jian-Guang. Genetic diversity analysis of Chinese fresh corn hybrids using SNP Chips [J]. Acta Agronomica Sinica, 2022, 48(6): 1301-1311. |
[2] | YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487. |
[3] | LI Hai-Fen, WEI Hao, WEN Shi-Jie, LU Qing, LIU Hao, LI Shao-Xiong, HONG Yan-Bin, CHEN Xiao-Ping, LIANG Xuan-Qiang. Cloning and expression analysis of voltage dependent anion channel (AhVDAC) gene in the geotropism response of the peanut gynophores [J]. Acta Agronomica Sinica, 2022, 48(6): 1558-1565. |
[4] | FU Mei-Yu, XIONG Hong-Chun, ZHOU Chun-Yun, GUO Hui-Jun, XIE Yong-Dun, ZHAO Lin-Shu, GU Jia-Yu, ZHAO Shi-Rong, DING Yu-Ping, XU Yan-Hao, LIU Lu-Xiang. Genetic analysis of wheat dwarf mutant je0098 and molecular mapping of dwarfing gene [J]. Acta Agronomica Sinica, 2022, 48(3): 580-589. |
[5] | DING Hong, XU Yang, ZHANG Guan-Chu, QIN Fei-Fei, DAI Liang-Xiang, ZHANG Zhi-Meng. Effects of drought at different growth stages and nitrogen application on nitrogen absorption and utilization in peanut [J]. Acta Agronomica Sinica, 2022, 48(3): 695-703. |
[6] | MA Hong-Bo, LIU Dong-Tao, FENG Guo-Hua, WANG Jing, ZHU Xue-Cheng, ZHANG Hui-Yun, LIU Jing, LIU Li-Wei, YI Yuan. Application of Fhb1 gene in wheat breeding programs for the Yellow-Huai Rivers valley winter wheat zone of China [J]. Acta Agronomica Sinica, 2022, 48(3): 747-758. |
[7] | HUANG Li, CHEN Yu-Ning, LUO Huai-Yong, ZHOU Xiao-Jing, LIU Nian, CHEN Wei-Gang, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Advances of QTL mapping for seed size related traits in peanut [J]. Acta Agronomica Sinica, 2022, 48(2): 280-291. |
[8] | WANG Ying, GAO Fang, LIU Zhao-Xin, ZHAO Ji-Hao, LAI Hua-Jiang, PAN Xiao-Yi, BI Chen, LI Xiang-Dong, YANG Dong-Qing. Identification of gene co-expression modules of peanut main stem growth by WGCNA [J]. Acta Agronomica Sinica, 2021, 47(9): 1639-1653. |
[9] | WANG Jian-Guo, ZHANG Jia-Lei, GUO Feng, TANG Zhao-Hui, YANG Sha, PENG Zhen-Ying, MENG Jing-Jing, CUI Li, LI Xin-Guo, WAN Shu-Bo. Effects of interaction between calcium and nitrogen fertilizers on dry matter, nitrogen accumulation and distribution, and yield in peanut [J]. Acta Agronomica Sinica, 2021, 47(9): 1666-1679. |
[10] | SHI Lei, MIAO Li-Juan, HUANG Bing-Yan, GAO Wei, ZHANG Zong-Xin, QI Fei-Yan, LIU Juan, DONG Wen-Zhao, ZHANG Xin-You. Characterization of the promoter and 5'-UTR intron in AhFAD2-1 genes from peanut and their responses to cold stress [J]. Acta Agronomica Sinica, 2021, 47(9): 1703-1711. |
[11] | GAO Fang, LIU Zhao-Xin, ZHAO Ji-Hao, WANG Ying, PAN Xiao-Yi, LAI Hua-Jiang, LI Xiang-Dong, YANG Dong-Qing. Source-sink characteristics and classification of peanut major cultivars in North China [J]. Acta Agronomica Sinica, 2021, 47(9): 1712-1723. |
[12] | ZHANG He, JIANG Chun-Ji, YIN Dong-Mei, DONG Jia-Le, REN Jing-Yao, ZHAO Xin-Hua, ZHONG Chao, WANG Xiao-Guang, YU Hai-Qiu. Establishment of comprehensive evaluation system for cold tolerance and screening of cold-tolerance germplasm in peanut [J]. Acta Agronomica Sinica, 2021, 47(9): 1753-1767. |
[13] | XUE Xiao-Meng, WU JIE, WANG Xin, BAI Dong-Mei, HU Mei-Ling, YAN Li-Ying, CHEN Yu-Ning, KANG Yan-Ping, WANG Zhi-Hui, HUAI Dong-Xin, LEI Yong, LIAO Bo-Shou. Effects of cold stress on germination in peanut cultivars with normal and high content of oleic acid [J]. Acta Agronomica Sinica, 2021, 47(9): 1768-1778. |
[14] | HAO Xi, CUI Ya-Nan, ZHANG Jun, LIU Juan, ZANG Xiu-Wang, GAO Wei, LIU Bing, DONG Wen-Zhao, TANG Feng-Shou. Effects of hydrogen peroxide soaking on germination and physiological metabolism of seeds in peanut [J]. Acta Agronomica Sinica, 2021, 47(9): 1834-1840. |
[15] | ZHANG Wang, XIAN Jun-Lin, SUN Chao, WANG Chun-Ming, SHI Li, YU Wei-Chang. Preliminary study of genome editing of peanut FAD2 genes by CRISPR/Cas9 [J]. Acta Agronomica Sinica, 2021, 47(8): 1481-1490. |
|