Acta Agron Sin ›› 2011, Vol. 37 ›› Issue (10): 1828-1836.doi: 10.3724/SP.J.1006.2011.01828
• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles Next Articles
MENG Yan-Yan,FAN Shu-Li,SONG Mei-Zhen,PANG Chao-You,YU Shu-Xun*
[1]Mayer B, Hemmens B. Biosynthesis and action of nitric oxide in mammalian cells. Trends Biochem Sci, 1997, 22: 477-481 [2]Stamler J S, Lamas S, Fang F C. Nitrosylation, the prototypic redox-based signaling mechanism. Cell, 2001, 106: 675-683 [3]Qiao W, Fan L M. Nitric oxide signaling in plant responses to abiotic stresses. J Integr Plant Biol, 2008, 50: 1238-1246 [4]Wang P-H(王鹏程), Du Y-Y(杜艳艳), Song C-P(宋纯鹏). Research progress on nitric oxide signaling in plant cell. Chin Bull Bot (植物学报), 2009, 44(5): 517-525 (in Chinese with English abstract) [5]Mishina T E, Lamb C, Zeier J. Expression of a nitric oxide degrading enzyme induces a senescence programme in Arabidopsis. Plant Cell Environ, 2007, 30: 39-52 [6]Corpas F J, Palma J M, Del Río L A, Barroso J B. Evidence supporting the existence of l-arginine-dependent nitric oxide synthase activity in plants. New Phytol, 2009, 184: 9-14 [7]Corpas F J, Barroso J B, Carreras A, Quiros M, Leon A M, Romero-Puertas M C, Esteban F J, Valderrama R, Palma J M, Sandalio L M. Cellular and subcellular localization of endogenous nitric oxide in young and senescent pea plants. Plant Physiol, 2004, 136: 2722-2733 [8]Guo F Q, Crawford N M. Arabidopsis nitric oxide synthase1 is targeted to mitochondria and protects against oxidative damage and dark-induced senescence. Plant Cell, 2005, 17: 3436-3450 [9]Hung K T, Kao C H. Nitric oxide counteracts the senescence of rice leaves induced by abscisic acid. J Plant Physiol, 2003, 160: 871-879 [10]Hung K T, Kao C H. Nitric oxide acts as an antioxidant and delays methyl jasmonate-induced senescence of rice leaves. J Plant Physiol, 2004, 161: 43-52 [11]Hung K T, Kao C H. Nitric oxide counteracts the senescence of rice leaves induced by hydrogen peroxide. Bot Bull Acad Sin, 2005, 46: 21-28 [12]Leshem Y Y, Wills R B H, Ku V V V. Evidence for the function of the free radical gas—nitric oxide (NO)—as an endogenous maturation and senescence regulating factor in higher plants. Plant Physiol Biochem, 1998, 36: 825-833 [13]Jasid S, Galatro A, Villordo J J, Puntarulo S, Simontacchi M. Role of nitric oxide in soybean cotyledon senescence. Plant Sci, 2009, 176: 662-668 [14]Yu S X, Song M Z, Fan S L, Wang W, Yuan R H. Biochemical genetics of short-season cotton cultivars that express early maturity without senescence. J Integr Plant Biol, 2005, 47: 334-342 [15]Yu S-X(喻树迅), Song M-Z(宋美珍), Fan S-L(范术丽), Yuan R-H(原日红). Studies on biochemical assistant breeding technology of earliness without premature senescence of the short-season upland cotton. Sci Agric Sin (中国农业科学), 2005, 38(4): 664-670 (in Chinese with English abstract) [16]Sun Y(孙云), Jiang C-L(江春柳), Lai Z-X(赖钟雄), Shao W(邵巍), Wang X-Y(王秀英). Determination and observation of the changes of the ascorbate peroxidase activities in the fresh leaves of tea plants. Chin J Trop Crops (热带作物学报), 2008, 29(5): 562-566 (in Chinese with English abstract) [17]Wang D-L(王德龙), Yu J-W(于霁雯), Yu S-X(喻树迅), Zhai H-H(翟红红), Fan S-L(范术丽), Song M-Z(宋美珍), Zhang J-F(张金发). The construction of cDNA library from cotton seed. Cotton Sci (棉花学报), 2009, 21(5): 351-355 (in Chinese with English abstract) [18]Alscher R G, Erturk N, Heath L S. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot, 2002, 53: 1331-1341 [19]Manjunatha G, Lokesh V, Neelwarne B. Nitric oxide in fruit ripening: trends and opportunities. Biotechnol Adv, 2010, 28: 489-499 [20]Hayashi K, Noguchi N, Niki E. Action of nitric oxide as an antioxidant against oxidation of soybean phosphatidyl choline liposomal membranes. FEBS Lett, 1995, 370: 37-40 [21]Wink D A, Hanbauer I, Krishna M C, DeGraff W, Gamson J, Mitchell J B. Nitric oxide protects against cellular damage and cytotoxicity from reactive oxygen species. Proc Natl Acad Sci USA, 1993, 90: 9813-9817 [22]Caro A, Puntarulo S. Nitric oxide decreases superoxide anion generation by microsomes from soybean embryonic axes. Physiol Plant, 1998, 104: 357-364 [23]Tewari R K, Kumar P, Kim S, Hahn E J, Paek K Y. Nitric oxide retards xanthine oxidase-mediated superoxide anion generation in Phalaenopsis flower: an implication of NO in the senescence and oxidative stress regulation. Plant Cell Rep, 2009, 28: 267-279 [24]Myouga F, Hosoda C, Umezawa T, Iizumi H, Kuromori T, Motohashi R, Shono Y, Nagata N, Ikeuchi M, Shinozaki K. A he- terocomplex of iron superoxide dismutases defends chloroplast nucleoids against oxidative stress and is essential for chloroplast development in Arabidopsis. Plant Cell, 2008, 20: 3148-3162 [25]Šimonovi?ová M, Huttová J, Mistrik I, Iroká B, Tamás L. Root growth inhibition by aluminum is probably caused by cell death due to peroxidase-mediated hydrogen peroxide production. Protoplasma, 2004, 224: 91-98 [26]Almagro L, Gómez Ros L, Belchi-Navarro S, Bru R, Ros Barceló A, Pedreo M. Class III peroxidases in plant defence reactions. J Exp Bot, 2009, 60: 377-390 [27]Rio L A, Corpas F J, Sandalio L M, Palma J M, Barroso J B. Plant peroxisomes, reactive oxygen metabolism and nitric oxide. IUBMB Life, 2003, 55: 71-81 |
[1] | ZHOU Jing-Yuan, KONG Xiang-Qiang, ZHANG Yan-Jun, LI Xue-Yuan, ZHANG Dong-Mei, DONG He-Zhong. Mechanism and technology of stand establishment improvements through regulating the apical hook formation and hypocotyl growth during seed germination and emergence in cotton [J]. Acta Agronomica Sinica, 2022, 48(5): 1051-1058. |
[2] | SUN Si-Min, HAN Bei, CHEN Lin, SUN Wei-Nan, ZHANG Xian-Long, YANG Xi-Yan. Root system architecture analysis and genome-wide association study of root system architecture related traits in cotton [J]. Acta Agronomica Sinica, 2022, 48(5): 1081-1090. |
[3] | YAN Xiao-Yu, GUO Wen-Jun, QIN Du-Lin, WANG Shuang-Lei, NIE Jun-Jun, ZHAO Na, QI Jie, SONG Xian-Liang, MAO Li-Li, SUN Xue-Zhen. Effects of cotton stubble return and subsoiling on dry matter accumulation, nutrient uptake, and yield of cotton in coastal saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(5): 1235-1247. |
[4] | ZHENG Shu-Feng, LIU Xiao-Ling, WANG Wei, XU Dao-Qing, KAN Hua-Chun, CHEN Min, LI Shu-Ying. On the green and light-simplified and mechanized cultivation of cotton in a cotton-based double cropping system [J]. Acta Agronomica Sinica, 2022, 48(3): 541-552. |
[5] | ZHANG Yan-Bo, WANG Yuan, FENG Gan-Yu, DUAN Hui-Rong, LIU Hai-Ying. QTLs analysis of oil and three main fatty acid contents in cottonseeds [J]. Acta Agronomica Sinica, 2022, 48(2): 380-395. |
[6] | ZHANG Te, WANG Mi-Feng, ZHAO Qiang. Effects of DPC and nitrogen fertilizer through drip irrigation on growth and yield in cotton [J]. Acta Agronomica Sinica, 2022, 48(2): 396-409. |
[7] | ER Chen, LIN Tao, XIA Wen, ZHANG Hao, XU Gao-Yu, TANG Qiu-Xiang. Coupling effects of irrigation and nitrogen levels on yield, water distribution and nitrate nitrogen residue of machine-harvested cotton [J]. Acta Agronomica Sinica, 2022, 48(2): 497-510. |
[8] | ZHAO Wen-Qing, XU Wen-Zheng, YANG Liu-Yan, LIU Yu, ZHOU Zhi-Guo, WANG You-Hua. Different response of cotton leaves to heat stress is closely related to the night starch degradation [J]. Acta Agronomica Sinica, 2021, 47(9): 1680-1689. |
[9] | YUE Dan-Dan, HAN Bei, Abid Ullah, ZHANG Xian-Long, YANG Xi-Yan. Fungi diversity analysis of rhizosphere under drought conditions in cotton [J]. Acta Agronomica Sinica, 2021, 47(9): 1806-1815. |
[10] | ZENG Zi-Jun, ZENG Yu, YAN Lei, CHENG Jin, JIANG Cun-Cang. Effects of boron deficiency/toxicity on the growth and proline metabolism of cotton seedlings [J]. Acta Agronomica Sinica, 2021, 47(8): 1616-1623. |
[11] | GAO Lu, XU Wen-Liang. GhP4H2 encoding a prolyl-4-hydroxylase is involved in regulating cotton fiber development [J]. Acta Agronomica Sinica, 2021, 47(7): 1239-1247. |
[12] | MA Huan-Huan, FANG Qi-Di, DING Yuan-Hao, CHI Hua-Bin, ZHANG Xian-Long, MIN Ling. GhMADS7 positively regulates petal development in cotton [J]. Acta Agronomica Sinica, 2021, 47(5): 814-826. |
[13] | XU Nai-Yin, ZHAO Su-Qin, ZHANG Fang, FU Xiao-Qiong, YANG Xiao-Ni, QIAO Yin-Tao, SUN Shi-Xian. Retrospective evaluation of cotton varieties nationally registered for the Northwest Inland cotton growing regions based on GYT biplot analysis [J]. Acta Agronomica Sinica, 2021, 47(4): 660-671. |
[14] | ZHOU Guan-Tong, LEI Jian-Feng, DAI Pei-Hong, LIU Chao, LI Yue, LIU Xiao-Dong. Efficient screening system of effective sgRNA for cotton CRISPR/Cas9 gene editing [J]. Acta Agronomica Sinica, 2021, 47(3): 427-437. |
[15] | HAN Bei, WANG Xu-Wen, LI Bao-Qi, YU Yu, TIAN Qin, YANG Xi-Yan. Association analysis of drought tolerance traits of upland cotton accessions (Gossypium hirsutum L.) [J]. Acta Agronomica Sinica, 2021, 47(3): 438-450. |
|