Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2012, Vol. 38 ›› Issue (05): 780-790.doi: 10.3724/SP.J.1006.2012.00780


Identification of Differential Expressed Proteins Responding to Phosphorus Starvation Based on Proteomic Analysis in Roots of Wheat (Triticum aestivum L.)

FENG Wan-Jun1,2,LI Zhen-Xing1,2,GUO Bao-Jian1,2,PENG Hui-Ru1,2,YAO Ying-Yin1,2,NI Zhong-Fu1,2,*,SUN Qi-Xin1,2,*   

  1. 1 Key Laboratory of Crop Heterosis and Utilization (MOE) and State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Genomics and Genetic Improvement (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China; 2 National Plant Gene Research Centre (Beijing), Beijing 100193, China
  • Received:2011-09-05 Revised:2011-12-19 Online:2012-05-12 Published:2012-03-05
  • Contact: 倪中福, E-mail: wheat3392@cau.edu.cn; 孙其信, E-mail: qxsun@cau.edu.cn

Abstract: Growth inhibition caused by phosphorus (P) deficiency is a serious problem for crop production. Plants can respond defensively to this stress by modifying their metabolic pathways and root morphologies through changes of quantity of low-Pi responding genes. To better understand the adaptation mechanisms of wheat to Pi deficiency conditions, a comparative proteome analysis was conducted in this study using wheat root samples treated 7 days without (–P) and with phosphorus (+P). Among 1 144 protein spots reproducibly detected, eighty seven of which (7.6%) were differentially expressed, including those present in treatments of only in –P or +P, and up- or down-regulated in –P. Moreover, 39 of the differentially expressed proteins were revealed to be involved in various biological processes such as metabolism, cell growth and division, transcription and translation, disease and defense, signal transduction, acting as transposable elements and unclassified proteins. Taken together, our results showed that wheat responds to the Pi starvation stress through an array of changes in metabolic states of cells and genes expression, which results in the maintenance of a relative P homeostasis in plants.

Key words: Phosphorus nutrition, Proteomic analysis, Root, Triticum aestivum L.

[1]Vance C P, Uhde-Stone C, Allan D L. Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytol, 2003, 157: 423-447

[2]Raghothama K G. Phosphate acquisition. Annu Rev Plant Physiol Plant Mol Biol, 1999, 50: 665-693

[3]Bates T R, Lynch J P. Stimulation of root hair elongation in Arabidopsis thaliana by low phosphorus availability. Plant Cell Environ, 1996, 19: 529-538

[4]Gahoonia T S, Nielsen N E. Direct evidence on participation of root hairs in phosphorus (32P) uptake from soil. Plant Soil, 1998, 198: 147-152

[5]Mollier A, Pellerin S. Maize root system growth and development as influenced by phosphorus deficiency. J Exp Bot, 1999, 50: 487-497

[6]Williamson L C, Ribrioux S P C P, Fitter A H, Leyser H M O. Phosphate availability regulates root system architecture in Arabidopsis. Plant Physiol, 2001, 126: 875-882

[7]Péret B, Clément M, Nussaume L, Desnos T. Root developmental adaptation to phosphate starvation: better safe than sorry. Trends Plant Sci, 2011, 16: 1360-1385

[8]Ueki K. Control of phosphatase release from cultured tobacco cells. Plant Cell Physiol, 1978, 19: 385-392

[9]Lipton D S, Blancher R W, Blevins D G. Citritions in excludes from P-sufficient and P-starved Medicago sativa L. seedling. Plant Physiol, 1987, 85: 315-317

[10]Rao I M, Terry N. Leaf phosphate status photosynthesis and carbon partitioning in sugar beet: II. Diurnal changes in sugar phosphates, adenylates, and nicotinamide nucleotides. Plant Physiol, 1989, 90: 820-826

[11]Hoffland E, Findenegg G R, Nelemans J A. Solubilization of rock phosphate by rape. Plant & Soil, 1989, 113: 155-165

[12]Duff S M G, Sarath G, Plaxton W C. The role of acid phosphatase in plant phosphorus metabolism. Physiol Planta, 1994, 90: 791-800

[13]Wasaki J, Yamamura T, Shinano T, Osaki M. Secreted acid phosphatase is expressed in cluster roots of lupin in response to phosphorus deficiency. Plant & Soil, 2003, 248: 129-136

[14]Muchhal U S, Raghothama K G. Transcriptional regulation of plant phosphate transporters. Proc Natl Acad Sci USA, 1999, 96, 5868-5872

[15]Uta P, Scott K, Christophe R, Briggs S P. Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci USA, 2002, 99: 13324-13329

[16]Thibaud M C, Arrighi J F, Bayle V, Chiarenza S, Creff A, Bustos R, Paz-Ares J, Poirier Y, Nussaume L. Dissection of local and systemic transcriptional responses to phosphate starvation in Arabidopsis. Plant J, 2010, 64: 775-789

[17]Wu P, Wang X. Role of OsPHR2 on phosphorus homeostasis and root hairs development in rice (Oryza sativa L.). Plant Signal Behav, 2008, 3: 674-675

[18]Devaiah B N, Karthikeyan A S, Raghothama K G. WRKY75 transcription factor is a modulator of phosphate acquisition and root development in Arabidopsis. Plant Physiol, 2007, 143: 1789-1801.

[19]Devaiah B N, Nagarajan V K, Raghothama K G. Phosphate homeostasis and root development in Arabidopsis are synchronized by the zinc finger transcription factor ZAT6. Plant Physiol, 2007, 145: 147-159

[20]Chen Z H, Nimmo G A, Jenkins G I, Nimmo H G. BHLH32 modulates several biochemical and morphological processes that respond to Pi starvation in Arabidopsis. Biochem J, 2007, 405: 191-198

[21]Bariola P A, Howard C J, Taylor C B, Verburg M T, Jaglan V D, Green P J. The Arabidopsis ribonuclease gene RNS1 is tightly controlled in response to phosphate limitation. Plant J, 1994, 6: 673-685

[22]Misson J, Raghothama K G, Jain A, Jouhet J, Block M A, Bligny R, Ortet P, Creff A, Somerville S, Rolland N, Doumas P, Nacry P, Herrerra-Estrella L, Nussaume L, Thibaud M C. A genome-wide transcriptional analysis using Arabidopsis thaliana Affymetrix gene chips determined plant responses to phosphate deprivation. Proc Natl Acad Sci USA, 2005, 102: 11934-11939

[23]Morcuende R, Bari R, Gibon Y, Zheng W M, Pant B D, Bläsing O, Usadel B, Czechowski T, Udvardi M K, Stitt M, Scheible W R. Genome-wide reprogramming of metabolism and regulatory networks of Arabidopsis in response to phosphorus. Plant Cell Environ, 2007, 30: 85-112

[24]Wasaki J, Yonetan R, Kuroda S. Tanscriptomic analysis of metabolic changes by phosphorus stress in rice plant roots. Plant Cell Environ, 2003, 26: 1515-1523

[25]Uhde-Stone C, Gilbert G, Johnson J MF, Litjens R, Zinn K E, Temple S J, Vance C P, Allan D L. Acclimation of white lupin to phosphorus deficiency involves enhanced expression of genes related to organic acid metabolism. Plant & Soil, 2003, 248: 99-116

[26]Wasaki J, Shinano T, Onishi K, Yonetani R, Yazaki J, Fujii F, Shimbo K, Ishikawa M, Shimatani Z, Nagata Y, Hashimoto A, Ohta T, Sato Y, Miyamoto C, Honda S, Kojima K, Sasaki T, Kishimoto N, Kikuchi S, Osaki M. Transcriptomic analysis indicates putative metabolic changes caused by manipulation of phosphorus availability in rice leaves. J Exp Bot, 2006, 57: 2049-2059

[27]Chacón-López A, Ibarra-Laclette E, Sánchez-Calderón L, Gutiérrez-Alanís D, Herrera-Estrella L. Global expression pattern comparison between low phosphorus insensitive 4 and WT Arabidopsis reveals an important role of reactive oxygen species and jasmonic acid in the root tip response to phosphate starvation. Plant Signal Behav, 2011, 6: 382-392

[28]Li K P, Xu C Z, Zhang K W, Yang A F, Zhang J R. Proteomic analysis of roots growth and metabolic changes under phosphorus deficit in maize (Zea mays L.) plants. Proteomics, 2007, 7: 1501-1512

[29]Fukuda T, Saito A, Wasaki J, Shinano T, Osaki M. Metabolic alterations proposed by proteome in rice roots grown under low P and high Al concentration under low pH. Plant Sci, 2007, 172: 1157-1165

[30]Gill B S, Appels R, Botha-Oberholster A M, Buell C R, Bennetzen J L, Chalhoub B, Chumley F, Dvorak J, Iwanaga M, Keller B, Li W L, McCombie W R, Ogihara Y, Quetier F, Sasaki T. A workshop report on wheat genome sequencing: international genome research on wheat consortium. Genetics, 2004, 68: 1087-1096

[31]Davies T G, Su J Y, Xu Q, Li Z S, Li J, Gordon-Weeks R. Expression analysis of putative high-affinity phosphate transporters in Chinese winter wheats. Plant Cell Environ, 2002, 25: 1325-1339

[32]Su J Y, Xiao Y M, Li M, Liu Q Y, Li B, Tong Y P, Jia J Z, Li Z S. Mapping QTLs for phosphorus-deficiency tolerance at wheat seedling stage. Plant & Soil, 2006, 281: 25-36

[33]Tesfaye M, Liu J, Allan D L, Vance C P. Genomic and genetic control of phosphate stress in legumes. Plant Physiol, 2007, 144: 594-603

[34]Gu J-T(谷俊涛), Bao J-X(鲍金香), Wang X-Y(王效颖), Guo C-J(郭程瑾), Li X-J(李小娟), Lu W-J(路文静), Xiao K(肖凯). Investigation based on cDNA-AFLP approach for differential expressed genes responding to deficient-Pi in wheat. Acta Agron Sin (作物学报), 2009, 35: 1597-1605 (in Chinese with English abstract)

[35]Li Z X, Ni Z F,Peng H R, Liu Z Y, Nie X L, Xu S B, Liu G, Sun Q X. Molecular mapping of QTLs for root response to phosphorus deficiency at seedling stage in wheat (Triticum aestivum L.). Prog Nat Sci, 2007, 17: 1177-1184

[36]Ueda I, Wada T. Determination of inorganic phosphate by the molybdovanadate method in the presence of ATP and some interfering organic bases. Anal Biochem, 1970, 37: 169-174

[37]Donnelly B E, Madden R D, Ayoubi P, Porter D R, Dillwith J W. The wheat (Triticum aestivum L.) leaf proteome. Proteomics, 2005, 5: 1624-1633

[38]Porubleva L, Velden K V, Kothari S, Oliver D J, Chitnis P R. The proteome of maize leaves: use of gene sequences and expressed sequence tag data for identification of proteins with peptide mass fingerprints. Electrophoresis, 2001, 22: 1724-1738

[39]Bevan M, Bancroft I, Bent E, Love K, Goodman H, Dean C, Bergkamp R, Dirkse W, Van Staveren M, Stiekema W, Drost L, Ridley P, Hudson S A, Patel K, Murphy G, Piffanelli P, Wedler H, Wedler E, Wambutt R, Weitzenegger T, Pohl T M, Terryn N, Gielen J, Villarroel R, Chalwatzis N. Analysis of 1.9 Mb of contiguous sequence from chromosome 4 of the Arabidopsis thaliana. Nature, 1998, 391: 485-488

[40]Hammond J P, Bennett M J, Bowen H C, Broadley M R, Eastwood D C, May S T, Rahn C, Swarup R, Woolaway K E, White P J. Changes in gene expression in Arabidopsis shoots during phosphate starvation and the potential for developing smart plants. Plant Physiol, 2003, 132: 578-596

[41]Peters J M. Proteasomes: protein degradation machines of the cell. Trends Biochem Sci, 1994, 19: 377-382

[42]Osborne C K, Schiff R, Fuqua S A, Shou J. Estrogen receptor: current understanding of its activation and modulation. Clin Cancer Res, 2001, 7: 4338-4342

[43]Shamovsky I, Nudler E. New insights into the mechanism of heat shock response activation. Cell Mol Life Sci, 2008, 65: 855-861

[44]Benizri E, Ginouvès A, Berra E. The magic of the hypoxia-signaling cascade. Cell Mol Life Sci, 2008, 65: 1133-1149

[45]Sánchez-Calderón L, López-Bucio J, Chacón-López A, Gutiérrez-Ortega A, Hernández-Abreu E, Herrera-Estrella L. Characterization of low phosphorus insensitive mutants reveals a crosstalk between low P-induced determinate root development and the activation of genes involved in the adaptation of Arabidopsis to P deficiency. Plant Physiol, 2006, 140: 879-889

[46]Franco-Zorrilla J M, González E, Bustos R, Linhares F, Leyva A, Paz-Ares J. The transcriptional control of plant responses to phosphate limitation. J Exp Bot, 2004, 55: 285-293

[47]Ciereszko I, Kleczkowski L A. Effects of phosphate deficiency and sugars on expression of rab18 in Arabidopsis: hexokinase-dependent and okadaic acid-sensitive transduction of the sugar signal. Biochim Biophys Acta, 2002, 13: 43-49

[48]Jeschke W D, Peuke A D, Pate J S, Hartung W. Transport, synthesis and catabolism of abscisic acid (ABA) in intact plants of castor bean (Ricinus communis L.) under phosphate deficiency and moderate salinity. J Exp Bot, 1997, 48: 1737-1747

[49]Radin J. Stomatal responses to water stress and to abscisic acid in phosphorus-deficient cotton plants. Plant Physiol, 1984, 76: 392-394

[50]Li K P, Xu C Z, Li Z X, Zhang K W, Yang A F, Zhang J R. Comparative proteome analyses of phosphorus responses in maize (Zea mays L.) roots of wild-type and a low-P-tolerant mutant reveal root characteristics associated with phosphorus efficiency. Plant J, 2008, 55: 927-939

[51]Bao Y Q, Kost B, Chua N H. Reduced expression of ?-tubulin genes in Arabidopsis thaliana specifically affects root growth and morphology, root hair development and root gravitropism. Plant J, 2001, 28: 145-157

[52]Kumar A, Bennetzen J L. Plant retrotransposon. Annu Rev Genet, 1999, 33: 479-532

[53]Mhiri C, Morel J B, Vernhettes S, Casacuberta J M, Lucas H, Grandbastien M A. The promoter of the tobacco Tnt1 retrotransposon is induced by wounding and by abiotic stress. Plant Mol Biol, 1997, 33: 257-266

[54]Grandbastien M A. Activation of plant retrotransposons under stress conditions. Trends Plant Sci, 1998, 3: 181-187

[55]Fedoroff N. Transposons and genome evolution in plants. Proc Natl Acad Sci USA, 2000, 97: 7002-7007

[56]Kashkush K, Feldman M, Levy A A. Transcriptional activation of retrotransposons alters the expression of adjacent genes in wheat. Nature Genet, 2003, 33: 102-106
[1] SUN Si-Min, HAN Bei, CHEN Lin, SUN Wei-Nan, ZHANG Xian-Long, YANG Xi-Yan. Root system architecture analysis and genome-wide association study of root system architecture related traits in cotton [J]. Acta Agronomica Sinica, 2022, 48(5): 1081-1090.
[2] PENG Xi-Hong, CHEN Ping, DU Qing, YANG Xue-Li, REN Jun-Bo, ZHENG Ben-Chuan, LUO Kai, XIE Chen, LEI Lu, YONG Tai-Wen, YANG Wen-Yu. Effects of reduced nitrogen application on soil aeration and root nodule growth of relay strip intercropping soybean [J]. Acta Agronomica Sinica, 2022, 48(5): 1199-1209.
[3] XU De-Rong, SUN Chao, BI Zhen-Zhen, QIN Tian-Yuan, WANG Yi-Hao, LI Cheng-Ju, FAN You-Fang, LIU Yin-Du, ZHANG Jun-Lian, BAI Jiang-Ping. Identification of StDRO1 gene polymorphism and association analysis with root traits in potato [J]. Acta Agronomica Sinica, 2022, 48(1): 76-85.
[4] GE Min, WANG Yuan-Cong, NING Li-Hua, HU Meng-Mei, SHI Xi, ZHAO Han. Function analysis of nitrogen-responsive transcription factor ZmNLP5 affecting root growth in maize [J]. Acta Agronomica Sinica, 2021, 47(5): 807-813.
[5] WANG Wu-Bin, TONG Fei, KHAN Mueen-Alam, ZHANG Ya-Xuan, HE Jian-Bo, HAO Xiao-Shuai, XING Guang-Nan, ZHAO Tuan-Jie, GAI Jun-Yi. Detecting QTL system of root hydraulic stress tolerance index at seedling stage in soybean [J]. Acta Agronomica Sinica, 2021, 47(5): 847-859.
[6] ZHAO Jia-Jia, QIAO Ling, WU Bang-Bang, GE Chuan, QIAO Lin-Yi, ZHANG Shu-Wei, YAN Su-Xian, ZHENG Xing-Wei, ZHENG Jun. Seedling root characteristics and drought resistance of wheat in Shanxi province [J]. Acta Agronomica Sinica, 2021, 47(4): 714-727.
[7] JIN Yi-Rong, LIU Jin-Dong, LIU Cai-Yun, JIA De-Xin, LIU Peng, WANG Ya-Mei. Genome-wide association study of nitrogen use efficiency related traits in common wheat (Triticum aestivum L.) [J]. Acta Agronomica Sinica, 2021, 47(3): 394-404.
[8] LI Qian, Nadil Shah, ZHOU Yuan-Wei, HOU Zhao-Ke, GONG Jian-Fang, LIU Jue, SHANG Zheng-Wei, ZHANG Lei, ZHAN Zong-Xiang, CHANG Hai-Bin, FU Ting-Dong, PIAO Zhong-Yun, ZHANG Chun-Yu. Breeding of a novel clubroot disease-resistant Brassica napus variety Huayouza 62R [J]. Acta Agronomica Sinica, 2021, 47(2): 210-223.
[9] ZHANG Xue-Cui, SUN Su-Li, LU Wei-Guo, LI Hai-Chao, JIA Yan-Yan, DUAN Can-Xing, ZHU Zhen-Dong. Identification of resistance gene against phytophthora root rot in new soybean lines breeded in Henan province [J]. Acta Agronomica Sinica, 2021, 47(2): 275-284.
[10] TIAN Biao, DING Shi-Lin, LIU Chao-Lei, RUAN Ban-Pu, JIANG Hong-Zhen, GUO Rui, DONG Guo-Jun, HU Guang-Lian, GUO Long-Biao, QIAN Qian, GAO Zhen-Yu. Genetic analysis of seedling root traits and fine mapping of the QTL qLRL4 for the longest root length in rice [J]. Acta Agronomica Sinica, 2021, 47(10): 1863-1873.
[11] GAO Guo-Ying, WU Xiao-Fang, HUANG Wei, ZHOU Ding-Gang, ZHANG Da-Wei, ZHOU Mei-Liang, ZHANG Kai-Xuan, YAN Ming-Li. Regulation of flavonoid pathway by BjuB.KAN4 gene in Brassica juncea [J]. Acta Agronomica Sinica, 2020, 46(9): 1322-1331.
[12] GUO Qing-Yun, KUAI Jie, WANG Bo, LIU Fang, ZHANG Chun-Yu, LI Gen-Ze, ZHANG Yun-Yun, FU Ting-Dong, ZHOU Guang-Sheng. Effect of mixed-sowing of near-isogenic lines on the clubroot disease controlling efficiency in rapeseed [J]. Acta Agronomica Sinica, 2020, 46(9): 1408-1415.
[13] WU Chao, LIU Xian-Wen, ZHANG Wei, WANG Qiong, GUO Hua-Chun. Control effects of different potato varieties (lines) and rice-potato rotation system on root-knot nematode [J]. Acta Agronomica Sinica, 2020, 46(9): 1456-1463.
[14] ZHANG Xue-Cui,ZHONG Chao,DUAN Can-Xing,SUN Su-Li,ZHU Zhen-Dong. Fine mapping of Phytophthora resistance gene RpsZheng in soybean cultivar Zheng 97196 [J]. Acta Agronomica Sinica, 2020, 46(7): 997-1005.
[15] ZHANG Yu-Qin,YANG Heng-Shan,LI Cong-Feng,ZHAO Ming,LUO Fang,ZHANG Rui-Fu. Effects of strip-till with staggered planting on yield formation and shoot-root characteristics of spring maize in irrigation area of Xiliaohe plain [J]. Acta Agronomica Sinica, 2020, 46(6): 902-913.
Full text



No Suggested Reading articles found!