Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2012, Vol. 38 ›› Issue (06): 935-946.doi: 10.3724/SP.J.1006.2012.00935

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS •     Next Articles

Association Analysis of Agronomic Traits and Resistance to Aspergillus flavus in the ICRISAT Peanut Mini-Core Collection

HUANG Li**,REN Xiao-Ping**,ZHANG Xiao-Jie,CHEN Yu-Ning,JIANG Hui-Fang*   

  1. Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
  • Received:2011-11-01 Revised:2012-02-22 Online:2012-06-12 Published:2012-04-06
  • Contact: 姜慧芳, E-mail: peanutlab@oilcrops.cn

Abstract: Yield is an important trait in peanut breeding, which is strongly influenced by environments and complex genetic factors. Association mapping, based on natural population and linkage disequilibrium (LD), has been successfully used for exploring the genetic basis of complex traits in crops. In this study, we introduced a set of peanut mini-core collection of 146 varieties from International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), which were phenotyped for agronomic traits and resistance to Aspergillus flavus and genotyped by using 26 SSR primers containing 120 loci in the population. Based on the analyses of linkage disequilibrium, population structure and kinship, we performed the genome-wide association mapping. Distribution of LD suggested that the average of the total R2 was 0.185, indicating a relative low level of LD between the SSR loci. One hundred sixty-four varieties were grouped into two subgroups by population structure analysis corresponding to Arachis hypogaea ssp. fastigiata and Arachis hypogaea spp. hypogaea, respectively, which was consistent with botanical classification and results of analysis of genetic differentiation. A total of 39 loci were identified to be associated with ten agronomic traits, with 1.50%~20.34% of phenotypic variation explained. A total of 16 loci were associated with Aspergillus flavus infection index and aflatoxin amount, with 5.23%~17.19% of explained phenotypic variation. Of which, 13 common loci were associated with both agronomic traits and resistance to Aspergillus flavus. Furthermore, 63 alleles with increasing effect, 47 alleles with decreasing effect and the varieties carrying them were identified for ten agronomic and two resistance-related traits. This study demonstrates that association mapping is effective to explore genetic basis of important traits in peanut and assist to peanut breeding.

Key words: Arachis hypogaea L., Mini-core collection, SSR marker, Association analysis

[1]Sun D-R(孙大容). Peanut Breeding (花生育种学). Beijing: China Agriculture Press, 1998. pp 1-147 (in Chinese)

[2]Ren X-P(任小平), Zhang X-J(张晓杰), Liao B-S(廖伯寿), Lei Y(雷永), Huang J-Q(黄家权), Chen Y-N(陈玉宁), Jiang H-F(姜慧芳). Analysis of genetic diversity in ICRISAT mini core collection of peanut (Arachis hypogaea L.) by SSR markers. Sci Agric Sin (中国农业科学), 2010, 43(14): 2848-2858 (in Chinese with English abstract)

[3]Wan S-B(万书波). Chinese Peanut Cultivation (中国花生栽培学). Shanghai: Shanghai Scientific and Technical Publishers, 2003. pp 1-15 (in Chinese)

[4]Nevano G. Studies de alkune correlazion nell arachide (Arachis hypogaea L.). Stazioni Sperimentali Agrarie Italiane, 1924, 57(1-3): 17-33

[5]Yang X-H(阳小虎), Peng C-J(彭昌家), Cheng L(程林). Correction and path analysis to pod weight per plant and plant traits of peanut. Peanut Sci Technol (花生科技), 1986, (2): 33-35 (in Chinese)

[6]Liu E-S(刘恩生). Diallel Analysis for yield, protein and oil content of peanut. Acta Agric Boreali-Sin (华北农学报), 1987, 2(3): 18-26 (in Chinese with English abstract)

[7]Xu Y-M(徐宜民), Gan X-M(甘信民), Gu S-Y(顾淑媛), Cao Y-L(曹玉良), Liu F-S(刘法生). Correction and path analysis to the main agronomic trait and yield trait of peanut. Peanut Sci Technol (花生科技), 1992, (2): 24-28 (in Chinese)

[8]Liao X-M(廖小妹), Li L-R(李丽容), Zheng G-R(郑广柔), Li S-L(黎穗临). Correction and path analysis to the oil content, protein content and agronomic trait of Arachis hypogaea tvar. vulgaris. Peanut Sci Technol (花生科技), 1992, (3): 15-17 (in Chinese)

[9]Jiang H-F(姜慧芳), Ren X-P(任小平), Wang S-Y(王圣玉). Evaluation for resistance to invasion and aflatoxin contamination caused by Aspergillus flavus in groundnut. Chin J Oil Crop Sci (中国油料作物学报), 2005, 27(3): 21-25 (in Chinese with English abstract)

[10]Frary A, Nesbitt T C, Grandillo S, Knaap E, Cong B, Liu J, Meller J, Elber R, Alpert K B, Tanksley S D. fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science, 2000, 289: 85-88

[11]Salvi S, Sponza G, Morgante M, Tomes D, Niu X, Fengler K A, Meeley R, Ananiev E V, Sviashev S, Bruggemann E, Li B, Hainey C F, Radovic S, Zaina G, Rafalski J A, Tingey S V, Miao G H, Phillips R L, Tuberosa R. Conserved noncoding genomic sequences associated with a flowering-time quantitative trait locus in maize. Proc Natl Acad Sci USA, 2007, 104: 11376-11381

[12]Briggs W, Mcmullen M D, Gaut B S, Doebley J. Linkage mapping of domestication loci in a large maize-teosinte backcross resource. Genetics, 2007, 177: 1915-1928

[13]Wilson L M, Whitt S R, Ibanez A M, Rocheford T R, Goodman M M, Buckler E S. Dissection of maize kernel composition and starch production by candidate gene associations. Plant Cell, 2004, 16: 2719-2733

[14]Harjes C E, Rocheford T R, Bai L, Brutnell T P, Kandianis C B, Sowinski S G, Stapleton A E, Vallabhaneni R, Williams M, Wurtzel E T, Yan J, Buckler E S. Natural genetic variation in lycopene epsilon cyclase tapped for maize biofortification. Science, 2008, 319: 330-333

[15]Yan J, Shah T, Warburton M L, Buckler E S, McMullen M D, Crouch J. Genetic characterization and linkage disequilibrium estimation of a global maize collection using SNP markers. PLoS One, 2009, 4: e8451

[16]Agrama H A, Eizenga G C, Yan W. Association mapping of yield and its components in rice cultivars. Mol Breed, 2007, 19: 341-356

[17]Iwata H, Ebana K, Uga Y, Hayashi T, Jannink J. Genome-wide association study of grain shape variation among Oryza sativa L. germplasms based on elliptic Fourier analysis. Mol Breed, 2010, 25: 203-215

[18]Wen W, Mei H, Feng F, Yu S, Huang Z, Wu J, Chen L, Xu X, Luo L. Population structure and association mapping on chromosome 7 using a diverse panel of Chinese germplasm office(Oryza sativa L.). Theor Appl Genet, 2009, 119: 459-470

[19]Jestin C, Lodé M, Vallée P, Domin C, Falentin C, Horvais R, Coedel S, Manzanares-Dauleux M J, Delourme R. Association mapping of quantitative resistance for Leptosphaeria maculans in oilseed rape (Brassica napus L.). Mol Breed, 2010, 27: 1-17

[20]Belamkar V, Selvaraj M G, Ayers J L, Payton P R, Puppala N, Burow M D. A first sight into population structure and linkage disequilibrium in the US peanut mini-core collection. Genetica, 2011, 139: 411-429

[21]Wang M L, Sukumaran S, Barkley N A, Chen Z, Chen C Y, Guo B, Pittman R N, Stalker H T, Holbrook C C, Pederson G A, Yu J. Population structure and marker-trait association analysis of the US peanut (Arachis hypogaea L.) mini-core collection. Theor Appl Genet, 2011, DOI 10.1007/s00122-011-1668-7

[22]Jiang H-F(姜慧芳), Duan N-X(段乃雄). Descriptors and Data Standard for Peanut (Arachis spp.)(花生种质资源描述规范和数据标准). Beijing: China Agriculture Press, 2006. pp 83-84 (in Chinese)

[23]Chen B-Y(陈本银), Jiang H-F(姜慧芳), Liao B-S(廖伯寿), Ren X-P(任小平). Phylogenetic relationship among the species in genus Arachis through SSR. J Plant Genet Resour (植物遗传资源学报), 2007, 8(2): 140-144 (in Chinese with English abstract)

[24]Breseghello F and Mark E S. Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics, 2006, 172: 1165-1177

[25]Hasan M, Friedt W, Pons-Kühnemann J, Freitag N M, Link K, Snowdon R J. Association of gene-linked SSR markers to seed glucosinolate content in oilseed rape (Brassica napus ssp. napus). Theor Appl Genet, 2008, 116:1035-1049

[26]Pritchard J K, Stephens M, Donnelly P. Inference of population structrue using multilocus genotype data. Genetics, 2000, 155: 945-959

[27]Liu K, Muse S V. PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics, 2005, 21: 2128-2129

[28]Excoffier L, Laval G, Schneider S. Arlequin version 3.0: an integrated software package for population genetics data analysis. Evol Bioinform, 2005, (1): 47-50

[29]Weir B, Cockerham C. Estimating F-statistics for the analysis of population structure. Evolution, 1984, 38: 1358-1370

[30]Hardy O J, Vekemans X. Spagedi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes, 2002, 2: 618-620

[31]Yu J, Pressoir G, Briggs W H, Bi I V, Yamasaki M, Doebley J F, McMullen M D, Gaut B S, Nielsen D M, Holland J B.A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet, 2006, 38: 203-208

[32]Yang X, Yan J, Shah T, Warburton M, Li Q, Li L, Gao Y, Fu Z, Zhou Y, Xu S, Bai G, Meng Y, Zheng Y, Li J. Genetic analysis and characterization of a new maize association mapping panel for quantitative trait loci dissection. Theor Appl Genet, 2010, 121: 417-431

[33]Malysheva-Otto L V, Ganal M, Roder M S. Analysis of molecular diversity, population structure and linkage disequilibrium in a worldwide survey of cultivated barley germplasm (Hordeum vulgare L.). BMC Genet, 2006, 7: 6

[34]Flint-Garcia S A, Thornsberry J M, S E, Iv Buckler. Stucuture of linkage disequilibrium in plants. Ann Rev Plant Biol, 2003, 54: 357-374

[35]Liu K, Goodman M, Muse S, Smith J S, Buckler E, Doebley J. Genetic structure and diversity among maize inbred lines as inferred from DNA microsatellites. Genetics, 2003, 165: 2117-2128

[36]Song B H, Windsor A J, Schmid K J, Ramos-Onsins S, Schranz M E, Heidel A J, Mitchell-Olds T. Multilocus patterns of nucleotide diversity, population structure and linkage disequilibrium in Boechera stricta, a wild relative of Arabidopsis. Genetics, 2009, 181: 1021-1033

[37]Brown A H D. Core cllections: a practical approach to genetic resources management. Genome, 1989, 31: 818-824

[38]Myles S, Peiffer J, Brown P J, Ersoz E S, Zhang Z, Costich D E, Buckler E S. Association mapping: critical considerations shift from genotyping to experimental design. Plant Cell, 2009, 21: 2194-2202

[39]Ersoz E S, Yu J, Buckler E S. Genomics-assisted crop improvement. Dordrecht, the Netherlands: Springer, 2007. pp 97-120

[40]Wang J, McClean P E, Lee R, Goos R J, Helms T. Association mapping of iron deficiency chlorosis loci in soybean (Glycine max L. Merr.) advanced breeding lines. Theor Appl Genet, 2008, 116: 777-787

[41]Tian F, Bradbury P J, Brown P J, Hung H, Sun Q, Flint-Garcia S, Rocheford T R, McMullen M D, Holland J B, Buckler E S. Genome-wide association study of leaf architecture in the maize nested association mapping population. Nat Genet, 2011, 43: 159-162

[42]Huang X, Paulo M J, Boer M, Effgen S, Keizer P, Koornneef M, van Eeuwijk F A. Analysis of natural allelic variation in Arabidopsis using a multiparent recombinant inbred line population. Proc Natl Acad Sci USA, 2011, 18: 4488-4493

[43]Yan J, Kandianis C B, Harjes C E, Bai L, Kim E H, Yang X, Skinner D J, Fu Z, Mitchell S, Li Q, Fernandez M G S, Zaharieva M, Babu R, Fu Y, Palacios Natalia, Li J, DellaPenna D, Brutnell T, Buckler E S, Warburton M L, Rocheford T. Rare genetic variation at Zea mays crtRB1 increases β-carotene in maize grain. Nat Genet, 2010, 42: 322-327

[44]He G, Meng R, Newman M, Gao G, Pittman R N, Prakash C S. Microsatellites as DNA markers in cultivated peanut (A. hypogaea L.). BMC Plant Biol, 2003, 3: 3

[45]Moretzsohn M C, Leoi L, Proite K, Guimaraes P M, Leal-Bertioli S C M, Gimenes M A, Martins W S, Valls J F M, Grattapaglia D, Bertioli D J. A microsatellite-based, gene-rich linkage map for the AA genome of Arachis (Fabaceae). Theor Appl Genet, 2005, 111: 1060-1071
[1] XU De-Rong, SUN Chao, BI Zhen-Zhen, QIN Tian-Yuan, WANG Yi-Hao, LI Cheng-Ju, FAN You-Fang, LIU Yin-Du, ZHANG Jun-Lian, BAI Jiang-Ping. Identification of StDRO1 gene polymorphism and association analysis with root traits in potato [J]. Acta Agronomica Sinica, 2022, 48(1): 76-85.
[2] YU Rui-Su, TIAN Xiao-Kang, LIU Bin-Bin, DUAN Ying-Xin, LI Ting, ZHANG Xiu-Ying, ZHANG Xing-Hua, HAO Yin-Chuan, LI Qin, XUE Ji-Quan, XU Shu-Tu. Dissecting the genetic architecture of lodging related traits by genome-wide association study and linkage analysis in maize [J]. Acta Agronomica Sinica, 2022, 48(1): 138-150.
[3] WANG Yan-Yan, WANG Jun, LIU Guo-Xiang, ZHONG Qiu, ZHANG Hua-Shu, LUO Zheng-Zhen, CHEN Zhi-Hua, DAI Pei-Gang, TONG Ying, LI Yuan, JIANG Xun, ZHANG Xing-Wei, YANG Ai-Guo. Construction of SSR fingerprint database and genetic diversity analysis of cigar germplasm resources [J]. Acta Agronomica Sinica, 2021, 47(7): 1259-1274.
[4] TANG Jing-Quan, WANG Nan, GAO Jie, LIU Ting-Ting, WEN Jing, YI Bin, TU Jin-Xing, FU Ting-Dong, SHEN Jin-Xiong. Bioinformatics analysis of SnRK gene family and its relation with seed oil content of Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(3): 416-426.
[5] HAN Bei, WANG Xu-Wen, LI Bao-Qi, YU Yu, TIAN Qin, YANG Xi-Yan. Association analysis of drought tolerance traits of upland cotton accessions (Gossypium hirsutum L.) [J]. Acta Agronomica Sinica, 2021, 47(3): 438-450.
[6] JIANG Wei, PAN Zhe-Chao, BAO Li-Xian, ZHOU Fu-Xian, LI Yan-Shan, SUI Qi-Jun, LI Xian-Ping. Genome-wide association analysis for late blight resistance of potato resources [J]. Acta Agronomica Sinica, 2021, 47(2): 245-261.
[7] LIU Shao-Rong, YANG Yang, TIAN Hong-Li, YI Hong-Mei, WANG Lu, KANG Ding-Ming, FANG Ya-Ming, REN Jie, JIANG Bin, GE Jian-Rong, CHENG Guang-Lei, WANG Feng-Ge. Genetic diversity analysis of silage corn varieties based on agronomic and quality traits and SSR markers [J]. Acta Agronomica Sinica, 2021, 47(12): 2362-2370.
[8] XIE Lei, REN Yi, ZHANG Xin-Zhong, WANG Ji-Qing, ZHANG Zhi-Hui, SHI Shu-Bing, GENG Hong-Wei. Genome-wide association study of pre-harvest sprouting traits in wheat [J]. Acta Agronomica Sinica, 2021, 47(10): 1891-1902.
[9] LI Jing-Cai, WANG Qiang-Lin, SONG Wei-Wu, HUANG Wei, XIAO Gui-Lin, WU Cheng-Jin, GU Qin, SONG Bo-Tao. Association analysis of dormancy QTL in tetraploid potato via candidate gene markers [J]. Acta Agronomica Sinica, 2020, 46(9): 1380-1387.
[10] PENG Bo,ZHAO Xiao-Lei,WANG Yi,YUAN Wen-Ya,LI Chun-Hui,LI Yong-Xiang,ZHANG Deng-Feng,SHI Yun-Su,SONG Yan-Chun,WANG Tian-Yu,LI Yu. Genome-wide association studies of leaf orientation value in maize [J]. Acta Agronomica Sinica, 2020, 46(6): 819-831.
[11] Yun-Fu LI,Jing-Xian WANG,Yan-Fang DU,Hua-Wen ZOU,Zu-Xin ZHANG. Identification of indeterminate domain protein family genes associated with flowering time in maize [J]. Acta Agronomica Sinica, 2019, 45(4): 499-507.
[12] Mi WU,Nian WANG,Chao SHEN,Cong HUANG,Tian-Wang WEN,Zhong-Xu LIN. Development and evaluation of InDel markers in cotton based on whole-genome re-sequencing data [J]. Acta Agronomica Sinica, 2019, 45(2): 196-203.
[13] Yang-Yang LI,Rong-Rong JING,Rong-Rong LYU,Peng-Cheng SHI,Xin LI,Qin WANG,Dan WU,Qing-Yuan ZHOU,Jia-Na LI,Zhang-Lin TANG. Genome-wide association analysis and candidate genes prediction of waterlogging-responding traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2019, 45(12): 1806-1821.
[14] CHEN Fang,QIAO Lin-Yi,LI Rui,LIU Cheng,LI Xin,GUO Hui-Juan,ZHANG Shu-Wei,CHANG Li-Fang,LI Dong-Fang,YAN Xiao-Tao,REN Yong-Kang,ZHANG Xiao-Jun,CHANG Zhi-Jian. Genetic analysis and chromosomal localization of powdery mildew resistance gene in wheat germplasm CH1357 [J]. Acta Agronomica Sinica, 2019, 45(10): 1503-1510.
[15] XUE Yan-Tao,LU Ping,SHI Meng-Sha,SUN Hao-Yue,LIU Min-Xuan,WANG Rui-Yun. Genetic diversity and population genetic structure of broomcorn millet accessions in Xinjiang and Gansu [J]. Acta Agronomica Sinica, 2019, 45(10): 1511-1521.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!