Acta Agron Sin ›› 2014, Vol. 40 ›› Issue (02): 240-252.doi: 10.3724/SP.J.1006.2014.00240
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
YUAN Qing-Hua,XIE Rui-Hong,ZHANG Zhen-Chen,MA Zhu-Wen,LI Ji-Qin,LI Shu-Ling,CHEN Jun-Biao*
[1]Ellis J, Dodds P, Pryor T. The generation of plant disease resistance gene specificities. Trends Plant Sci, 2000, 5: 373–379[2]Sanseverino W, Roma G, Simone M D, Faino L, Melito S, Stupka E, Frusciante L, Ercolano M R. PRGdb: a bioinformatics platform for plant resistance gene analysis. Nucl Acids Res, 2009, 38: D815[3]Johal G S, Briggs S P. Reductase activity encoded by the Hm1 disease resistance gene in maize. Science, 1992, 258: 985–987[4]Whitham S, McCormick S, Baker B. The N gene of tobacco confers resistance to tobacco mosaic virus in transgenic tomato. Proc Natl Acad Sci USA, 1996, 93: 8776–8781[5]Dixon M S, Jones D A, Keddie J S, Thomas C M, Harrison K, Jones J D G, Lane C. The tomato Cf-2 disease resistance locus comprises two functional genes encoding leucine-rich repeat protein. Cell, 1996, 84: 451–459[6]Bent A F. Plant disease resistance genes: function meets structure. Plant Cell, 1996, 8: 1757–1771[7]Meyers B C, Dickerman A W, Michelmore R W, Sivaramakrishnan S, Sobral B W, Young N D. Plant disease resistance genes encode members of an ancient and diverse protein family within the nucleotide-binding superfamily. Plant J, 1999, 20: 317–332[8]Hulbert S H, Webb C A, Smith S M, Sun Q. Resistance gene complexes: evolution and utilization. Annu Rev Phytopathol, 2001, 39: 285–312[9]Dangl J L, Jones J D: Plant pathogens and integrated defence responses to infection. Nature, 2001, 411: 826–833[10]Meyers B C, Kozik A, Griego A, Kuang H, Michelmore R W. Genome-wide analysis of NBS-LRR-encoding genes in Arabidopsis. Plant Cell, 2003, 15: 809–834[11]Bent A F, Kunkel B N, Dahlbeck D, Brown K L, Schmidt R, Giraudat J, Leung J, Staskawicz B J: RPS2 of Arabidopsis thaliana: a leucine-rich repeat class of plant disease resistance genes. Science, 1994, 265: 1856–1860[12]Dunning F M, Sun W, Jansen K L, Helft L, Bent A F. Identification and mutational analysis of Arabidopsis FLS2 leucine-rich repeat domain residues that contribute to flagellin perception. Plant Cell, 2007, 19: 3297–3313[13]Song W Y, Wang G L, Chen L L, Kim H S, Pi L Y, Holsten T, Gardner J, Wang B, Zhai W X, Zhu L H, Fauquet C, Ronald P. A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science, 1995, 270: 1804–1806[14]Tor M, Brown D, Cooper A, Woods-Tor A, Sjolander K, Jones J D, Holub E B. Arabidopsis downy mildew resistance gene RPP27 encodes a receptor-like protein similar to CLAVATA2 and tomato Cf-9. Plant Physiol, 2004, 135: 1100–1112[15]Martin G B, Brommonschenkel S H, Chunwongse J, Frary A, Ganal M W, Spivey R, Wu T, Earle E D, Tanksley S D. Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science, 1993, 262: 1432–1436[16]Taler D, Galperin M, Benjamin I, CohenY, Kenigsbuch D. Plant eR genes that encode photorespiratory enzymes confer resistance against disease. Plant Cell, 2004, 16: 172–184[17]Buschges R, Hollricher K, Panstruga R, Simons G, Wolter M, Frijters A, van Daelen R, van der Lee T, DieRGLarde P, Groenendijk J, Topsch S, Vos P, Salamini F, Schulze-Lefert P. The barley Mlo gene: a novel control element of plant pathogen resistance. Cell, 1997, 88: 695–705[18]Botella M A, Coleman M J, Hughes D E, Nishimura M T, Jones J D G, Somerville S C. Map positions of 47 Arabidopsis sequences with sequence similarity to disease resistance genes. Plant J, 1997, 12: 1197–1211[19]Aarts M G M, Hekkert B L, Holub E B, Beynon J L, Stiekema W J, Pereira A. Identification of R-gene homologous DNA fragments genetically linked to disease resistance loci in Arabidopsis thaliana. Mol Plant Microbe Interact, 1998, 11: 251–258[20]Graham M A, Marek L F, Lohnes D, Cregan P, Shoemaker R C. Expression and genome oRGLnization of resistance gene analogs in soybean. Genome, 2000, 43: 86–93[21]Mago R, Nair S, Mohan M. Resistance gene analogues from rice: cloning, sequencing and mapping. Theor Appl Genet, 1999, 99: 50–57[22]Collins N C, Webb C A, Seah S, Ellis J G, Hulbert S H, Pryor A. The isolation and mapping of disease resistance gene analogs in maize. Mol Plant Microbe Interact, 1998, 11: 968–978[23]Seah S, Sivasithamparam K, Karakousis A, Lagudah E S. Cloning and characterization of a family of disease resistance gene analogs from wheat and barley. Theor Appl Genet, 1998, 97: 937–945[24]Leng X, Xiao B, Wang S, Gui Y, Wang Y, Lu X, Xie J, Li Y, Fan L. Identification of NBS-type resistance gene homologs in tobacco genome. Plant Mol Biol Rep, 2010, 28: 152–161[25]Gao Y L, Xu Z L, Jiao F C, Yu H Q, Xiao B G, Li Y P, Lu X P. Cloning, structural features, and expression analysis of resistance gene analogs in tobacco. Mol Biol Rep, 2010, 37: 345–354[26]Wan H J, Zhao Z G, Malik A, Qian C T, Chen J F. Identification and characterization of potential NBS-encoding resistance genes and induction kinetics of a putative candidate gene associated with downy mildew resistance in Cucumis. BMC plant Biol, 2010, 10: 186[27]Huettel B, Santra D, Muehlbauer J, Kahl G. Resistance gene analogues of chickpea (Cicer arietinum L.): isolation, genetic mapping and association with a Fusarium resistance gene cluster. Theor Appl Genet, 2002, 105: 479–490[28]Nair R A, Thomas G. Isolation, characterization and expression studies of resistance gene candidates (RGCs) from Zingiber spp. Theor Appl Genet, 2007, 116: 123–134[29]Bertioli D J, Leal-Bertioli S C, Lion M B, Santos V L, Pappas G, Cannon S B, Guimaraes P M. A large scale analysis of resistance gene homologues in Arachis. Mol Gen Genomics, 2003, 270: 35–45[30]Monsi B, Wisser R J, Pennill L, Hulbert S H. Full-genome analysis of resistance gene homologues in rice. Theor Appl Genet, 2004, 109: 1434–1447[31]Ameline-Torregrosa C, Wang B B, O'Bleness M S, Deshpande S, Zhu H Y, Roe B, Young N D, Cannon S B. Identification and characterization of nucleotide-binding site-leucine-rich repeat genes in the model plant Medicago truncatula. Plant Physiol, 2008, 146: 5–21[32]Li X Y, Cheng Y, Ma W, Zhao Y, Jiang H Y, Zhang M. Identification and characterization of NBS-encoding disease resistance genes in Lotus japonicus. Plant Syst Evol, 2010, 289: 101–110[33]Liu Z, Crampton M, Todd A, Kalavacharla V. Identification of expressed resistance gene-like sequences by data mining in 454-derived transcriptomic sequences of common bean (Phaseolus vulgaris L.). BMC Plant Biol, 2012, 12: 42[34]Liu Z, Feng S, Pandey M K, Chen X, Culbreath A K, Varshney R K, Guo B. Identification of expressed resistance gene analogs from peanut (Arachis hypogaea L.) expressed sequence tags. J Integr Plant Biol, 2013, 55: 453–461[35]Sanz M J, Loarce Y, Fominaya A, Vossen J H, Ferrer E. Identification of RFLP and NBS/PK profiling markers for disease resistance loci in genetic maps of oats. Theor Appl Genet, 2013, 126: 203–218[36]Loarce Y, Sanz M J, Irigoyen M L, Fominaya A, Ferrer E. Mapping of STS markers obtained from oat resistance gene analog sequences. Genome, 2009, 52: 608–619[37]Tantasawat P A, Poolsawat O, Prajongjai T, Chaowiset W, Tharapreuksapong A. Association of RGA-SSCP markers with resistance to downy mildew and anthracnose in grapevines. Genet Mol Res, 2012, 11: 1799–1809[38]Palomino C, Fernández-Romero M D, Rubio J, Torres A, Moreno M T, Millán T. Integration of new CAPS and dCAPS-RGA markers into a composite chickpea genetic map and their association with disease resistance. Theor Appl Genet, 2009, 118: 671–682[39]Flor H H. The complementary genic systems in flax and flax rust. Adv Genet, 1956, 8: 29–54[40]Dilbirligi M, Gill K S. Identification and analysis of expressed resistance gene sequences in wheat. Plant Mol Biol, 2003, 53: 771–787[41]Xiao W K, Xu M L, Zhao J R, Wang F G, Li J S, Dai J R. Genome-wide isolation of resistance gene analogs in maize (Zea mays L.). Theor Appl Genet, 2006, 113: 63–72[42]Rossi M, Araujo P G, Paulet F, Garsmeur O, Dias V M, Chen H, Van Sluys M A, D’Hont A: Genomic distribution and characterization of EST-derived resistance gene analogs (RGAs) in sugarcane. Mol Genet Genom, 2003, 269: 406–419[43]Xiao W K, Zhao J, Fan S C, Li L, Dai J R, Xu M L. Mapping of genome-wide resistance gene analogs (RGAs) in maize (Zea mays L.). Theor Appl Genet, 2007, 115: 501–508[44]He L, Du C, Covaleda L, Xu Z, Robinson A F, Yu J Z, Kohel R J, Zhang H B. Cloning, characterization, and evolution of the NBS-LRR-encoding resistance gene analogue family in polyploid cotton (Gossypium hirsutum L.). Mol Plant Microbe Interact, 2004, 17: 1234–1241[45]Peñuela S, Danesh D, Young N D. Targeted isolation, sequence analysis, and physical mapping of nonTIR NBS-LRR genes in soybean. Theor Appl Genet, 2002, 104: 261–272[46]Bertioli D J, Moretzsohn M C, Madsen L H, Sandal N, Leal-Bertioli S C, Guimaraes P M, Hougaard B K, Fredslund J, Schauser L, Nielsen A M, Sato S, Tabata S, Cannon S B, Stougaard J. An analyses of synteny of Arachis with Lotus and Medicago sheds new light on the structure, stability and evolution of legume genomes. BMC Genomics, 2009, 10: 45[47]Bindler G, Plieske J, Bakaher N, Gunduz I, Ivanov N, Van der Hoeven R, Ganal M, Donini P. A high density genetic map of tobacco (Nicotiana tabacum L.) obtained from large scale microsatellite marker development. Theor Appl Genet, 2011, 23: 219–230 |
[1] | CHEN Xiao-Hong, LIN Yuan-Xiang, WANG Qian, DING Min, WANG Hai-Gang, CHEN Ling, GAO Zhi-Jun, WANG Rui-Yun, QIAO Zhi-Jun. Development of DNA molecular ID card in hog millet germplasm based on high motif SSR [J]. Acta Agronomica Sinica, 2022, 48(4): 908-919. |
[2] | ZHANG Xia, YU Zhuo, JIN Xing-Hong, YU Xiao-Xia, LI Jing-Wei, LI Jia-Qi. Development and characterization analysis of potato SSR primers and the amplification research in colored potato materials [J]. Acta Agronomica Sinica, 2022, 48(4): 920-929. |
[3] | WANG Yan-Yan, WANG Jun, LIU Guo-Xiang, ZHONG Qiu, ZHANG Hua-Shu, LUO Zheng-Zhen, CHEN Zhi-Hua, DAI Pei-Gang, TONG Ying, LI Yuan, JIANG Xun, ZHANG Xing-Wei, YANG Ai-Guo. Construction of SSR fingerprint database and genetic diversity analysis of cigar germplasm resources [J]. Acta Agronomica Sinica, 2021, 47(7): 1259-1274. |
[4] | HAN Bei, WANG Xu-Wen, LI Bao-Qi, YU Yu, TIAN Qin, YANG Xi-Yan. Association analysis of drought tolerance traits of upland cotton accessions (Gossypium hirsutum L.) [J]. Acta Agronomica Sinica, 2021, 47(3): 438-450. |
[5] | LIU Shao-Rong, YANG Yang, TIAN Hong-Li, YI Hong-Mei, WANG Lu, KANG Ding-Ming, FANG Ya-Ming, REN Jie, JIANG Bin, GE Jian-Rong, CHENG Guang-Lei, WANG Feng-Ge. Genetic diversity analysis of silage corn varieties based on agronomic and quality traits and SSR markers [J]. Acta Agronomica Sinica, 2021, 47(12): 2362-2370. |
[6] | GUO Yan-Chun, ZHANG Li-Lan, CHEN Si-Yuan, QI Jian-Min, FANG Ping-Ping, TAO Ai-Fen, ZHANG Lie-Mei, ZHANG Li-Wu. Establishment of DNA molecular fingerprint of applied core germplasm in jute (Corchorus spp.) [J]. Acta Agronomica Sinica, 2021, 47(1): 80-93. |
[7] | WANG Heng-Bo,QI Shu-Ting,CHEN Shu-Qi,GUO Jin-Long,QUE You-Xiong. Development and application of SSR loci in monoploid reference genome of sugarcane cultivar [J]. Acta Agronomica Sinica, 2020, 46(4): 631-642. |
[8] | Hong-Yan ZHANG,Tao YANG,Rong LIU,Fang JIN,Li-Ke ZHANG,Hai-Tian YU,Jin-Guo HU,Feng YANG,Dong WANG,Yu-Hua HE,Xu-Xiao ZONG. Assessment of genetic diversity by using EST-SSR markers in Lupinus [J]. Acta Agronomica Sinica, 2020, 46(3): 330-340. |
[9] | Li-Lan ZHANG, Lie-Mei ZHANG, Huan-Ying NIU, Yi XU, Yu LI, Jian-Min QI, Ai-Fen TAO, Ping-Ping FANG, Li-Wu ZHANG. Correlation between SSR markers and fiber yield related traits in jute (Corchorus spp.) [J]. Acta Agronomica Sinica, 2020, 46(12): 1905-1913. |
[10] | LIU Rong, WANG Fang, FANG Li, YANG Tao, ZHANG Hong-Yan, HUANG Yu-Ning, WANG Dong, JI Yi-Shan, XU Dong-Xu, LI Guan, GUO Rui-Jun, ZONG Xu-Xiao. An integrated high-density SSR genetic linkage map from two F2 population in Chinese pea [J]. Acta Agronomica Sinica, 2020, 46(10): 1496-1506. |
[11] | YE Wei-Jun,CHEN Sheng-Nan,YANG Yong,ZHANG Li-Ya,TIAN Dong-Feng,ZHANG Lei,ZHOU Bin. Development of SSR markers and genetic diversity analysis in mung bean [J]. Acta Agronomica Sinica, 2019, 45(8): 1176-1188. |
[12] | Zhi-Jun TONG,Yi-Han ZHANG,Xue-Jun CHEN,Jian-Min ZENG,Dun-Huang FANG,Bing-Guang XIAO. Mapping of quantitative trait loci conferring resistance to brown spot in cigar tobacco cultivar Beinhart1000-1 [J]. Acta Agronomica Sinica, 2019, 45(3): 477-482. |
[13] | CHEN Fang,QIAO Lin-Yi,LI Rui,LIU Cheng,LI Xin,GUO Hui-Juan,ZHANG Shu-Wei,CHANG Li-Fang,LI Dong-Fang,YAN Xiao-Tao,REN Yong-Kang,ZHANG Xiao-Jun,CHANG Zhi-Jian. Genetic analysis and chromosomal localization of powdery mildew resistance gene in wheat germplasm CH1357 [J]. Acta Agronomica Sinica, 2019, 45(10): 1503-1510. |
[14] | XUE Yan-Tao,LU Ping,SHI Meng-Sha,SUN Hao-Yue,LIU Min-Xuan,WANG Rui-Yun. Genetic diversity and population genetic structure of broomcorn millet accessions in Xinjiang and Gansu [J]. Acta Agronomica Sinica, 2019, 45(10): 1511-1521. |
[15] | Jia-Yu YAO,Li-Wu ZHANG,Jie ZHAO,Yi XU,Jian-Min QI,Lie-Mei ZHANG. Evaluation and characteristic analysis of SSRs from the whole genome of jute (Corchorus capsularis) [J]. Acta Agronomica Sinica, 2019, 45(1): 10-17. |
|