Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2014, Vol. 40 ›› Issue (09): 1595-1603.doi: 10.3724/SP.J.1006.2014.01595

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Quantitative Trait Loci of Major Fatty Acid Components in Soybean

ZOU Xiao,HAN Fen-Xia,CHEN Ming-Yang,SUN Jun-Ming,NAN Jin-Ping,YAN Shu-Rong,YANG Hua   

  1.  韩粉霞, E-mail: hanfenxia@caas.cn, Tel: 010-82108780
  • Received:2014-03-12 Revised:2014-06-16 Online:2014-09-12 Published:2014-07-09

Abstract:

The mapping population with 100 BC2F2 lines of soybean backcross from Zhonghuang 13 × Zhonghuang 20 was developed and tested for its genetic variation. A linkage map with a total distance of 2157.3 cM was constructed with an average distance of 16.5 cM using 131 polymorphism SSR markers. Five kinds of fatty acid components were measured by GC in three years. The QTLs of major fatty acid components were analyzed with ICIM by IciMapping 3.3. The results showed that 26 QTLs associated with five fatty acid components were detected, including five QTLs for palmitic acid, five QTLs for stearic acid, seven QTLs for oleic acid, five QTLs for linoleic acid and four QTLs for linolenic acid. There were three intervals related to the same component detected in different years. The interval of sat_294–satt228 related to palmitic acid was detected in three years, the intervals of sat_253–satt323 and sat_292–satt397 related to oleic acid were detected in two years. Four intervals were identified to be related to two different components. The intervals of sat_294-satt228 related to palmitic acid and oleic acid, satt308–sat_422 related to stearic acid and linoeic acid, sat_292–satt397 related to oleic acid and linoeic acid, and satt374–satt269 related to linoeic acid and linolenic acid were detected.

Key words: Soybean, Fatty acid, Linkage map, QTL

[1]庄无忌, 韩华琼, 谢发明. 栽培、野生、半野生大豆脂肪酸组成的初步分析研究. 大豆科学, 1984, 3: 223–230



Zhuang W J, Han H Q, Xie F M. fatty acid composition analysis of cultivation, wild, half wild soybean. Soybean Sci, 1984, 3: 223–230 (in Chinese with English abstract)



[2]吕景良, 邵荣春, 吴百灵, 梁岐, 吴桂荣. 东北地区大豆品种资源脂肪酸组成的分析研究. 作物学报, 1990, 16: 349–355



Lü J L, Shao R C, Wu B L, Liang Q, Wu G R. Fatty acid composition analysis of soybean germplasm resources in Northeast. Acta Agron Sin, 1990, 16: 349–355 (in Chinese with English abstract)



[3]Panthee D R, Pantalone V R, Saxton A M. Modifier QTL for fatty acid composition in soybean oil. Euphytica, 2006, 152: 67–73



[4]宋万坤, 于妍, 高运来, 姜威, 刘春燕, 孙殿军, 陈庆山, 胡国华. 大豆饱和脂肪酸组分改良研究进展. 生物技术通报, 2008, (增刊-1): 18–21



Song W K, Yu Y, Gao Y L, Jiang W, Liu C Y, Sun D J, Chen Q S, Hu G H. Genetic modification of the saturated fatty acid composition of soybean. Biotechnol Bull, 2008, (suppl-1): 18–21 (in Chinese with English abstract)



[5]蔡一荣, 李望丰, 刘立侠, 许守民. 大豆品质改良的基因工程育种概况. 大豆科学, 2006, 25: 62–66



Cai Y R, Li W F, Liu L X, Xu S M. Genetic engineering of soybean quality improvement. Soybean Sci, 2006, 25: 62–66 (in Chinese with English abstract)



[6]翟虎渠, 王建康. 应用数量遗传. 北京: 中国农业科学技术出版社, 2007



Zhai H Q, Wang J K. Applied Quantitative Genetics. Beijing: Agricultural Science and Technology Press of China, Beijing, 2007 (in Chinese)



[7]Kearsey M J, Hyne V. QTL analysis: a simple ‘marker-regression’ approach. Theor Appl Genet, 1994, 89: 698–702



[8]Lander E S, Botstein D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics, 1989, 121: 185–199



[9]Zeng Z B. Precision mapping of quantitative trait loci. Genetics, 1994, 136: 1457–1468



[10]Li H, Ye G, Wang J. A modified algorithm for the improvement of composite interval mapping. Genetics, 2007, 175: 361–374



[11]Li H H, Ribaut J M, Li Z L, Wang J K. Inclusive composite interval mapping (ICIM) for digenic epistasis of quantitative traits in biparental populations. Theor Appl Genet, 2008, 116: 243–260



[12]王建康. 数量性状基因的完备区间作图方法. 作物学报, 2009, 35: 239–245



Wang J K. Inclusive composite interval mapping of quantitative trait genes. Acta Agron Sin, 2009, 35: 239–245 (in Chinese with English abstract)



[13]Kao C H, Zeng Z B, Teasdale R D. Multiple interval mapping for quantitative trait loci. Genetics, 1999, 152: 1203–1216



[14]Wang J K, Li H H, Zhang L Y, Li C H, Meng L. Users’ Manual of QTL IciMapping V3. 2011



[15]Sun Z Q, Li H H, Zhang L Y, Wang J K. Estimation of recombination frequency in bi-parental genetic populations. Genet Res, 2012, 94: 163–177



[16]Li Z L, Wilson R F, Rayford W E, Boerma H R. Molecular mapping genes condition in reduced palmitic acid content in N87-2122-4 soybean. Crop Sci, 2002, 42: 373–378



[17]Spencer M, Panalone V R, Meyer E J, Landau-Eills D, Hyten D L. Mapping the Fas locus controlling stearic acid content in soybean. Theor Appl Genet, 2003, 106: 615–619



[18]苗兴芬, 朱命喜, 徐文平, 丁俊杰, 于凤瑶, 于永梅, 杜升伟, 刘春燕, 陈庆山, 胡国华. 大豆脂肪酸含量的QTL分析. 作物学报, 2010, 36: 1498–1505



Miao X F, Zhu M X, Xu W P, Ding J J, Yu F Y, Yu Y M, Du S W, Liu C Y, Chen Q S, Hu G H. QTL analysis of fatty acids contents in soybean. Acta Agron Sin, 2010, 36: 1498–1505 (in Chinese with English abstract)



[19]苗兴芬. 多年多点条件下大豆脂肪酸含量QTL分析. 东北农业大学博士论文, 2010. pp 82–84



Miao X F. QTL Analysis of Fatty Acids Content of Soybean in Multiple Years and Sites. PhD Dissertation of Northeast Agricultural University, 2010. pp 82–84 (in Chinese with English abstract)



[20]于福宽. 大豆种质脂肪酸主要组分鉴定与QTL标记定位. 中国农业科学院研究生院硕士学位论文, 北京, 2011. pp 24–54



Yu F K. Mapping QTLs and Screening Germplasm for the Major Fatty Acid Components in Soybean Seeds. MS Thesis of Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China, 2011. pp 24–54 (in Chinese with English abstract)



[21]Xie D W, Han Y P, Zeng Y H, Chang W, Teng W L, Li W B. SSR-and SNP-related QTL underlying linolenic acid and other fatty acid contents in soybean seeds across multiple environments. Mol Breed, 2012, 30: 169–179



[22]宋万坤, 王晶, 朱命喜, 齐照明, 刘春燕, 陈庆山, 胡国华. 大豆脂肪酸组分相关QTL元分析. 大豆科学, 2009, 28: 774–780



Song W K, Wang J, Zhu M X, Qi Z M, Liu C Y, Chen Q S, Hu G H. Meta-analysis of fatty acid QTLs in soybean. Soybean Sci, 2009, 28: 774–780 (in Chinese with English abstract)



[23]Wang X, Jiang G L, Green M, Scott R A, Hyten D L, Cregan P B. Quantitative trait locus analysis of saturated fatty acids in a population of recombinant inbred lines of soybean. Mol Breed, 2012, 30: 1163–1179



[24]Wang X, Jiang G L, Green M, Scott, R A, Hyten D L, Cregan P B. Quantitative trait locus analysis of unsaturated fatty acids in a recombinant inbred population of soybean. Mol Breed, 2014, 33: 281–296



[25]Akond M, Liu S, Boney M, Kantartzi S K, Meksem K, Bellaloui N, Lightfoot D A, Kassem M A. Identification of quantitative trait Loci (QTL) underlying protein, oil, and five major fatty acids’ contents in soybean. Am J Plant Sci, 2014, 5: 158–167



[26]郑永战. 我国大豆种质资源脂肪性状的变异、遗传与基因定位的研究. 南京农业大学博士学位论文, 江苏南京, 2006. pp 56–70



Zheng Y Z. Variability, Inheritance, and QTL Mapping of Fatty Traits in Chinese Germplasm of Soybean. PhD Dissertation of Nanjing Agricultural University, Nanjing, China, 2006. pp 56–70 (in Chinese with English abstract)



[27]于福宽, 孙君明, 韩粉霞, 葛一楠, 张晶莹, 马磊, 张金巍, 闫淑荣, 杨华. 大豆籽粒中脂肪酸组分快速检测方法的比较分析. 大豆科学, 2011, 30: 626–631



Yu F K, Sun J M, Han F X, Ge Y N, Zhang J Y, Ma L, Zhang J W, Yan S R, Yang H. Comparison of three rapid gas chromatography (GC) methods for determination on fatty acids components in soybean seeds. Soybean Sci, 2011, 30: 626–631 (in Chinese with English abstract)



[28]李慧慧, 张鲁燕, 王建康. 数量性状基因定位研究中若干常见问题的分析与解答. 作物学报, 2010, 36: 918–931



Li H H, Zhang L Y, Wang J K. Analysis and answers to frequently asked questions in quantitative trait locus mapping. Acta Agron Sin, 2010, 36: 918–931 (in Chinese with English abstract)



[29]Lestari P, Trijatmiko K R, Reflinur, Warsun A, Tasliah, Ona I, Cruz C V, Bustamam M. Mapping quantitative trait loci conferring blast resistance in upland indica rice (Oryza sativa L.). J Crop Sci Biotechnol, 2011, 14: 57–63



[30]Primomo V S, Falk D E, Ablett G R, Tanner J W, Rajcan I. genotype × environment interactions, stability, and agronomic performance of soybean with altered fatty acid profiles. Crop Sci, 2002, 42: 37–44



[31]Hou G Y, Ablett G R, Peter P K, Rajcan I. environmental effects on fatty acids levels in soybean seed oil. J Am Oil Chem Soc, 2006, 83: 759–763



[32]Yan Z, Lauer J G, Borges R, de Leon N. Effects of genotype × environment interaction on agronomic traits in soybean. Crop Sci, 2010, 50: 695–701



[33]张志永. 大豆籽粒脂肪酸含量的遗传相关研究. 中国油料, 1991, (3): 16–19



Zhang Z Y. Genetic research of soybean seed fatty acid content. Oil Crops China, 1991, (3): 16–19 (in Chinese with English abstract)



[34]年海, 刘忠堂. 大豆脂肪酸与主要农艺性状和品质性状的相关分析. 大豆科学, 1996, 15: 213–221



Nian H, Liu Z T. Correlation analysis of soybean fatty acids and major agronomic and quality traits. Soybean Sci, 1996, 15: 213–221 (in Chinese with English abstract)



[35]陈霞. 黑龙江省主栽大豆品种脂肪, 脂肪酸组份的测定及其相关性的分析. 大豆科学, 1996, 15: 91–95



Chen X. correlation analysis of oil and fatty acid composition from soybean cultivars in Heilongjiang Province. Soybean Sci, 1996, 15: 91–95 (in Chinese with English abstract)



[36]谢冬微, 韩英鹏, 李文滨. 不同环境条件下大豆脂肪酸含量与主要农艺性状相关性及通径分析. 大豆科学, 2010, 29: 403–407



Xie D W, Han Y P, Li W B. Correlation of fatty acid with major agronomic characters of soybean in different environments. Soybean Sci, 2010, 29: 403–407 (in Chinese with English abstract)



[37]Bachlava E, Dewey R E, Burton J W, Cardinal A J. Mapping and comparison of quantitative trait loci for oleic acid seed content in two segregating soybean populations. Crop Sci, 2009, 49: 433–442



[38]Hyten D L, Pantalone V R, Sams C E, Saxton A M, Landau-Ellis D, Stefaniak T R, Schmidt M E. Seed quality QTL in a prominent soybean population. Theor Appl Genet, 2004, 109: 552–561



[39]Qi Z M, Wu Q, Han X, Sun Y N, Du X Y, Liu C Y, Jiang H W, Hu G H, Chen Q S. Soybean oil content QTL mapping and integrating with meta-analysis method for mining genes. Euphytica, 2011, 179: 499–514



[40]Wang X Z, Jiang G L, Green M, Scott R A, Hyten D L, Cregan P B. Quantitative trait locus analysis of saturated fatty acids in a population of recombinant inbred lines of soybean. Mol Breed, 2012, 30: 1163–1179



[41]Reinprecht Y, Poysa V W, Yu K F, Rajcan I, Ablett G R, Peter K P. Seed and agronomic QTL in low linolenic acid, lipoxygenase-free soybean (Glycine max (L.) Merrill) germplasm. Genome, 2006, 49: 1510–1527



[42]Kabelka E A, Diers B W, Fehr W R, LeRoy A R, Baianu I C, You T, Neece D J, Nelson R L. Putative alleles for increased yield from soybean plant introductions. Crop Sci, 2004, 44: 784–791



[43]Lu W G, Wen Z X, Li H C, Yuan D H, Li J Y, Zhang H, Huang Z W, Cui S Y, Du W J. Identification of the quantitative trait loci (QTL) underlying water soluble protein content in soybean. Theor Appl Genet, 2013, 126: 425–433



[44]Tajuddin T, Watanabe S, Yamanaka N, Harada K. Analysis of quantitative trait loci for protein and lipid contents in soybean seeds using recombinant inbred lines. Breed Sci, 2003, 53: 133–140



[45]Spencer M M, Landau-Ellis D, Meyer E J, Pantalone V R. Molecular markers associated with linolenic acid content in soybean. J Am Oil Chem Soc, 2004, 81: 559–562



[46]Gai J Y, Wang Y J, Wu X L, Chen SY. A comparative study on segregation analysis and QTL mapping of quantitative traits in plants—with a case in soybean. Front Agric China, 2007, 1: 1–7
[1] CHEN Ling-Ling, LI Zhan, LIU Ting-Xuan, GU Yong-Zhe, SONG Jian, WANG Jun, QIU Li-Juan. Genome wide association analysis of petiole angle based on 783 soybean resources (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1333-1345.
[2] HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356.
[3] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[4] YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102.
[5] LI A-Li, FENG Ya-Nan, LI Ping, ZHANG Dong-Sheng, ZONG Yu-Zheng, LIN Wen, HAO Xing-Yu. Transcriptome analysis of leaves responses to elevated CO2 concentration, drought and interaction conditions in soybean [Glycine max (Linn.) Merr.] [J]. Acta Agronomica Sinica, 2022, 48(5): 1103-1118.
[6] PENG Xi-Hong, CHEN Ping, DU Qing, YANG Xue-Li, REN Jun-Bo, ZHENG Ben-Chuan, LUO Kai, XIE Chen, LEI Lu, YONG Tai-Wen, YANG Wen-Yu. Effects of reduced nitrogen application on soil aeration and root nodule growth of relay strip intercropping soybean [J]. Acta Agronomica Sinica, 2022, 48(5): 1199-1209.
[7] WANG Hao-Rang, ZHANG Yong, YU Chun-Miao, DONG Quan-Zhong, LI Wei-Wei, HU Kai-Feng, ZHANG Ming-Ming, XUE Hong, YANG Meng-Ping, SONG Ji-Ling, WANG Lei, YANG Xing-Yong, QIU Li-Juan. Fine mapping of yellow-green leaf gene (ygl2) in soybean (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(4): 791-800.
[8] LI Rui-Dong, YIN Yang-Yang, SONG Wen-Wen, WU Ting-Ting, SUN Shi, HAN Tian-Fu, XU Cai-Long, WU Cun-Xiang, HU Shui-Xiu. Effects of close planting densities on assimilate accumulation and yield of soybean with different plant branching types [J]. Acta Agronomica Sinica, 2022, 48(4): 942-951.
[9] DU Hao, CHENG Yu-Han, LI Tai, HOU Zhi-Hong, LI Yong-Li, NAN Hai-Yang, DONG Li-Dong, LIU Bao-Hui, CHENG Qun. Improving seed number per pod of soybean by molecular breeding based on Ln locus [J]. Acta Agronomica Sinica, 2022, 48(3): 565-571.
[10] ZHOU Yue, ZHAO Zhi-Hua, ZHANG Hong-Ning, KONG You-Bin. Cloning and functional analysis of the promoter of purple acid phosphatase gene GmPAP14 in soybean [J]. Acta Agronomica Sinica, 2022, 48(3): 590-596.
[11] WANG Juan, ZHANG Yan-Wei, JIAO Zhu-Jin, LIU Pan-Pan, CHANG Wei. Identification of QTLs and candidate genes for 100-seed weight trait using PyBSASeq algorithm in soybean [J]. Acta Agronomica Sinica, 2022, 48(3): 635-643.
[12] HUANG Li, CHEN Yu-Ning, LUO Huai-Yong, ZHOU Xiao-Jing, LIU Nian, CHEN Wei-Gang, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Advances of QTL mapping for seed size related traits in peanut [J]. Acta Agronomica Sinica, 2022, 48(2): 280-291.
[13] ZHANG Yan-Bo, WANG Yuan, FENG Gan-Yu, DUAN Hui-Rong, LIU Hai-Ying. QTLs analysis of oil and three main fatty acid contents in cottonseeds [J]. Acta Agronomica Sinica, 2022, 48(2): 380-395.
[14] ZHANG Guo-Wei, LI Kai, LI Si-Jia, WANG Xiao-Jing, YANG Chang-Qin, LIU Rui-Xian. Effects of sink-limiting treatments on leaf carbon metabolism in soybean [J]. Acta Agronomica Sinica, 2022, 48(2): 529-537.
[15] SHI Lei, MIAO Li-Juan, HUANG Bing-Yan, GAO Wei, ZHANG Zong-Xin, QI Fei-Yan, LIU Juan, DONG Wen-Zhao, ZHANG Xin-You. Characterization of the promoter and 5'-UTR intron in AhFAD2-1 genes from peanut and their responses to cold stress [J]. Acta Agronomica Sinica, 2021, 47(9): 1703-1711.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!