Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2017, Vol. 43 ›› Issue (08): 1205-1215.doi: 10.3724/SP.J.1006.2017.01205

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Screening FagopyrumtararicumGenotypes Tolerant to Low Nitrogen Stress at Seedling Stageand Its Evaluating Indices

ZHANG Chu1,ZHANG Yong-Qing1,2,*,LU Zhi-Juan1,LIU Li-Qin1   

  1. 1College of Life Science, Shanxi Normal University, Linfen 041004, China; 2College of Geographical Science, Shanxi Normal University, Linfen 041004, China
  • Received:2017-01-18 Revised:2017-05-10 Online:2017-08-12 Published:2017-05-19
  • Contact: Zhang yongqing, E-mail: yqzhang208@126.com E-mail:zhangchu0331@126.com
  • Supported by:

    The study was supported by the National Natural Science Foundation of China (31571604).

Abstract:

Nitrogen (N) deficiency is a major problem for agricultural production in the cold area of Loess Plateau. In this, multiple indices of seedlings, including agronomic traits, physiological characteristics, and N utilization parameters, were measured in a hydroponics experiment with nine F. genotypes. The low-N tolerance was assessedby: calculating subordinatefunction values, and making the comprehensive evaluation after principal component and clustering analyses. Under low-N stress, the restraintdegree was greater forshoots than for roots.Compared with normal-N supply, low-N stress resulted in decreases of plant height, stem diameter, leaf area, shoot dry weight, root average diameter, root volume and root surface area and increases of main root length and root-to-shoot ratio. In addition, the root activity, nitrate reductase (NR) activity and soluble protein content decreased under low-N stress, whereas the activities of superoxide dismutase (SOD)and peroxidase (POD) as well as the contents of malonaldehyde (MDA), soluble sugar and free prolineincreased. The photosynthesis-related indices also changed under low-N stress, showing the decreases of leaf chlorophyll content, Fm and Fv/Fm and the increase ofFo. Theplant N contentand plant N accumulation decreased under low-N condition, however, the plant N utilization efficiency showed obvious increase, owing to the greater decline of N accumulation than that of plant biomass.The 25 single indices were converted intofour independent comprehensive indices (accumulative contribution of 87.44%), with which the nine F.genotypes were classified into high-, medium- and low-tolerance groups.An optimal equation was also set up to evaluate and predict low-N tolerance of F. genotypesthrough stepwise regression with D value as the dependent variable and low-N tolerance index as the independent variable. Finally, eight indices, plant height, stem diameter, leaf area, root-shoot ratio, chlorophyll content, Fm, root activity and plant N utilization efficiency,were selected due to their significant impacts on low-N tolerance. These indices are recommended in quick by screening low-N tolerant F.genotypes.tararicumtararicumtararicumtararicum

Key words: Fagopyrumtararicum, Low nitrogen tolerance, Comprehensiveevaluation, Regression analysis

[1]张定一,张永清,杨武德,苗果园.不同基因型小麦对低氮胁迫的生物学响应.作物学报,2006,32:1349–1354
Zhang D Y, Zhang Y Q. Biological response of roots in different wheat genotypes to low-N stress. Acta Agron Sin, 2006, 32: 1349–1354 (in Chinese with English abstract)
[2]Diaz C, Salibacolombani V, Loudet O. Leaf yellowing and anthocyanin accumulation are two genetically independent strategies in response to nitrogen limitation in Arabidopsis thaliana. Plant Cell Physiol, 2006, 47: 74–83
[3]李强,罗延宏,谭杰,孔凡磊,杨世民,袁继超.玉米杂交种苗期耐低氮指标的筛选与综合评价.中国生态农业学报,2014,22:1190–1199
 Li Q, Luo Y H, Tan J, Kong F L, Yang S M, Yuan J C. Indexes screening and comprehensive evaluation of low nitrogen tolerance of hybrid maize cultivar at seeding stage. ChinJ Eco-Agric, 2014, 22:1190–1199(in Chinese with English abstract)
[4]李春艳,张宏,马龙,李诚.冬小麦苗期氮素吸收利用生理指标的综合评价.植物营养与肥料学报,2012,18:523–530
Li C Y, Zhang H, Ma L, Li C. Comprehensive evaluation on physiological indices of nitrogen absorption and utilization in winter wheat at the stage. J Plant NutrFert, 2012, 18: 523–530(in Chinese with English abstract)
[5]赵化田,王瑞芳,许云峰,安调过.小麦苗期耐低氮基因型的筛选与评价.中国生态农业学报,2011,19:1199–1204
Zhao H T, Wang R F, Xu Y F, An DG. Screening and evaluating low nitrogen tolerant wheat genotype at seeding stage. Chin J Eco-Agric, 2011,19: 1199–1204(in Chinese with English abstract)
[6]Calderónmontaño J M, Burgosmorón E, Pérezguerrero C, López-Lázaro, M. A review on the dietary flavonoid kaempferol. Mini Rev Med Chem, 2011, 11:298–344
[7]张雄,王立祥,柴岩,廖允成.小杂粮生产可持续发展探讨.中国农业科学,2003,36:1595–1598
Zhang X, Wang L X, Chai Y, Liao Y C. Sustainable development of minor crops in China.Sci Agric Sin, 2003, 36: 1595–1598(in Chinese with English abstract)
[8]赵刚,唐宇,王安虎.苦荞麦的成分功能研究与开发应用.四川农业大学学报,2001,19:355–358
Zhao G, Tang Y, Wang A H. The function research and application development of the composition for tartary buckwheat. J Sichuan Agric Univ, 2001, 19: 355–358(in Chinese with English abstract)
[9]侯雅君,张宗文,吴斌,李艳琴.苦荞种质资源AFLP标记遗传多样性分析.中国农业科学,2009,42:4166–4174
Hou Y J, Zhang Z W, Wu B, Li Y Q. Genetic diversity in tartary buckwheat revealed by AFLP analysis.Sci Agric Sin, 2009,42:4166–4174(in Chinese with English abstract)
[10]杨玉霞,吴卫,郑有良,王俊,李建,邬昌禄.苦荞品种(系)主要农艺性状与蛋白质含量的聚类分析.种子,2008,27(10):30–34
 Yang Y X, Wu W, Zheng Y L, Wang J, Li J, Wu C L. Cluster analysis of the mainly agronomic characters and the protein content on tartary uckwheat. Seed, 2008,27(10):30–34(in Chinese with English abstract)
[11]Shi Y H, Zhang Y Q. Effect of seed soaking with rare earth on the seed germination and seeding growth of tartary buckwheat under different water conditions. Agric SciTechnol, 2013, 14: 1237–1243
[12]田秀英,王正银.硒对苦荞产量、营养与保健品质的影响.作物学报,2008,34:1266–1272
Tian X Y, Wang Z Y. Effects of selenium application on yield and qualities for nutrition and health care in tartary buckwheat. Acta Agron Sin,2008, 34:1266–1272(in Chinese with English abstract)
[13]张志良,翟伟菁,李小芳.植物生理学实验指导(第4版).北京:高等教育出版社,2009. pp30–227
    Zhang Z L,Zhai W J, Li X F. Experimental Instruction of Plant Physiology, 4nd edn. Beijing: High Education Press, 2009. pp30-227 (in Chinese)
[14]鲍士旦.土壤农化分析(第2版).北京:中国农业出版社,1986. pp 213-216
    Bao S D. Soil Agro-chemistrical Analysis, 2nd edn. Beijing: China Agricultural Press, 1986. pp 213–216 (in Chinese)
[15]张美俊,乔治军,杨武德,冯美臣,肖璐洁,王冠,段云.不同糜子品种对低氮胁迫的生物学响应.植物营养与肥料学报,2014,20:661–669
Zhang M J, Qiao Z J, Yang W D. Biological response of different cultivars of millet to low-N stress.J Plant NutrFert,2014, 20:661-669(in Chinese with English abstract)
[16]谢孟林,李强,查丽,朱敏,程秋博,袁继超,孔凡磊.低氮胁迫对不同耐低氮性玉米品种幼苗根系形态和生理特征的影响.中国生态农业学报,2015,23:946–953
   Xie M L, Li Q, Zha L, Zhu M, Cheng Q B, Yuan J C, Kong F L. Effects of low nitrogen stress on physiological and morphological traits of roots of different low nitrogen tolerance maize varieties at seeding stage. Chin J Eco-Agric, 2015,23:946–953(in Chinese with English abstract)
[17]陈二影,杨延兵,秦岭,张华文,刘宾,王海莲,陈桂玲,于淑婷,管延安.谷子苗期氮高效品种筛选及相关特性分析.中国农业科学,2016,49:3287–3297
    Chen E Y, Yang Y B, Qin L, Zhang H W, Liu B, Wang H L, Chen G L, Yu S T, Guan Y A. Evaluation of nitrogen efficient cultivars of foxtail millet and analysis of the related characters at seeding stage. Sci Agric Sin, 2016, 49:3287–3297(in Chinese with English abstract)

[1] QIN Lu, HAN Pei-Pei, CHANG Hai-Bin, GU Chi-Ming, HUANG Wei, LI Yin-Shui, LIAO Xiang-Sheng, XIE Li-Hua, LIAO Xing. Screening of rapeseed germplasms with low nitrogen tolerance and the evaluation of its potential application as green manure [J]. Acta Agronomica Sinica, 2022, 48(6): 1488-1501.
[2] GAO Zhen, LIANG Xiao-Gui, ZHANG Li, ZHAO Xue, DU Xiong, CUI Yan-Hong, ZHOU Shun-Li. Effects of irrigating at different growth stages on kernel number of spring maize in the North China Plain [J]. Acta Agronomica Sinica, 2021, 47(7): 1324-1331.
[3] WU Ya-Wei, PU Wei, ZHAO Bo, WEI Gui, KONG Fan-Lei, YUAN Ji-Chao. Characteristics of post-anthesis carbon and nitrogen accumulation and translocation in maize cultivars with different low nitrogen tolerance [J]. Acta Agronomica Sinica, 2021, 47(5): 915-928.
[4] Li-Lan ZHANG, Lie-Mei ZHANG, Huan-Ying NIU, Yi XU, Yu LI, Jian-Min QI, Ai-Fen TAO, Ping-Ping FANG, Li-Wu ZHANG. Correlation between SSR markers and fiber yield related traits in jute (Corchorus spp.) [J]. Acta Agronomica Sinica, 2020, 46(12): 1905-1913.
[5] CHEN Er-Ying, WANG Run-Feng, QIN Ling, YANG Yan-Bing, LI Fei-Fei, ZHANG Hua-Wen, WANG Hai-Lian, LIU Bin, KONG Qing-Hua, GUAN Yan-An. Comprehensive identification and evaluation of foxtail millet for saline-alkaline tolerance during germination [J]. Acta Agronomica Sinica, 2020, 46(10): 1591-1604.
[6] SUN Wan-Cang1,**,LIU Hai-Qing1,**,LIU Zi-Gang1,*,WU Jun-Yan,LI Xue-Cai,FANG Yan,ZENG Xiu-Cun,XU Yao-Zhao,ZHANG Ya-Hong,DONG Yun. Critical Index Analysisof Safe Over-wintering Rate ofWinter Rapeseed (Brassica rapa) in Cold and Arid Region in North China [J]. Acta Agron Sin, 2016, 42(04): 609-618.
[7] MO Hui-Dong. Ill-conditioned Matrix and Its Improvement in Regression [J]. Acta Agron Sin, 2006, 32(01): 1-6.
[8] SUN Xue-Mei;ZHOU Qi-Fa;HE Qiu-Xia. Hyperspectral Variables in Predicting Leaf Chlorophyll Content and Grain Protein Content in Rice [J]. Acta Agron Sin, 2005, 31(07): 844-850.
[9] Jiang Chang-jian; Zhu Qing-sen; Qiu Ze-sen. Statistical Analysis of a Factorial Experiment with Indeterminate Levels [J]. Acta Agron Sin, 1994, 20(02): 229-234.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!