Acta Agronomica Sinica ›› 2018, Vol. 44 ›› Issue (02): 197-207.doi: 10.3724/SP.J.1006.2018.00197
• Orginal Article • Previous Articles Next Articles
Li ZHANG**, Hong-Ju JIAN**, Bo YANG, Ao-Xiang ZHANG, Chao ZHANG, Hong YANG, Li-Yuan ZHANG, Lie-Zhao LIU, Xin-Fu XU, Kun LU, Jia-Na LI*
[1] | Farrar J, Pollock C, Gallagher J.Sucrose and the integration of metabolism in vascular plants.Plant Sci, 2000, 154: 1-11 |
[2] | Bahaji A, Baroja F E, Ricarte B A, Sánchez L Á M, Muñoz F J, Romero J M, Ruiz M T, Baslam M, Almagro G, Sesma M T, Pozueta R J. Characterization of multiple SPS knockout mutants reveals redundant functions of the four Arabidopsis sucrose phosphate synthase isoforms in plant viability, and strongly indicates that enhanced respiration and accelerated starch turnover can alleviate the blockage of sucrose biosynthesis.Plant Sci, 2015, 238: 135-147 |
[3] | Huber S C, Huber J L.Role and regulation of sucrose-phosphate synthase in higher plants.Annu Rev Plant Biol, 1996, 47: 199-222 |
[4] | 李永庚, 于振文, 姜东, 余松烈. 冬小麦旗叶蔗糖和籽粒淀粉合成动态及与其有关的酶活性的研究. 作物学报, 2001, 27: 658-664 |
Li Y G, Yu Z W, Jiang D, Yu S L.Studies on the dynamic changes of the synthesis of sucrose in the flag leaf and starch in the grain and related enzymes of high yielding wheat.Acta Agron Sin, 2001, 27: 658-664 (in Chinese with English abstract) | |
[5] | Sawitri W D, Narita H, Ishizaka I E, Sugiharto B, Hase T, Nakagawa A.Purification and characterization of recombinant sugarcane sucrose phosphate synthase expressed inE. coli and insect Sf9 cells: an importance of the N-terminal domain for an allosteric regulatory property. J Biochem, 2016, 159: 599-607 |
[6] | Langenkämper G, Fung R W M, Newcomb R D, Atkinson R G. Gardner R C, MacRae E A. Sucrose phosphate synthase genes in plants belong to three different families. J Mol Evol, 2002, 54: 322-332 |
[7] | Lunn J E, Macrae E.New complexities in the synthesis of sucrose.Curr Opin Plant Biol, 2003, 6: 208-214 |
[8] | Castleden C K, Aoki N, Gillespie V J, MacRae E A, Quick W P, Buchner P, Foyer C H, Furbank R T, Lunn J E. Evolution and function of the sucrose-phosphate synthase gene families in wheat and other grasses. Plant Physiol, 2004, 135: 1753-1764 |
[9] | Grof C P L, So C T E, Perroux J M, Bonnett G, Forrester R I. The five families of sucrose-phosphate synthase genes inSaccharum spp. are differentially expressed in leaves and stem. Funct Plant Biol, 2006, 33: 605-610 |
[10] | Sun J D, Zhang J S, Larue C T, Larue C T, Huber S C.Decrease in leaf sucrose synthesis leads to increased leaf starch turnover and decreased RuBP regeneration-limited photosynthesis but not Rubisco-limited photosynthesis inArabidopsis null mutants of SPSA1. Plant, Cell & Environ, 2011, 34: 592-604 |
[11] | Jiang J, Zhang Z, Cao J.Pollen wall development: the associated enzymes and metabolic pathways.Plant Biol, 2013, 15: 249-263 |
[12] | Lin I W, Sosso D, Chen L Q, Gase K, Kim S G, Kessler D, Klinkenberg P M, Gorder M K, Hou B H, Qu X Q, Carter C J, Baldwin I T, Frommer W B.Nectar secretion requires sucrose phosphate synthases and the sugar transporter SWEET9.Nature, 2014, 508 : 546-549 |
[13] | Chen S, HajirezaeI M, Börnke F. Differential expression of sucrose- phosphate synthase isoenzymes in tobacco reflects their functional specialization during dark-governed starch mobilization in source leaves.Plant Physiol, 2005, 139: 1163-1174 |
[14] | Park J Y, Canam T, Kang K Y, Ellis D D, Mansfild S D.Over-expression of an Arabidopsis family A sucrose phosphate synthase (SPS) gene alters plant growth and fibre development.Transgenic Res, 2008, 17: 181-192 |
[15] | Huber S C.Role of sucrose-phosphate synthase in partitioning of carbon in leaves.Plant Physiol, 1983, 71: 818-821 |
[16] | 刘凌霄, 沈法富, 卢合全, 韩庆点, 刘云国. 蔗糖代谢中蔗糖磷酸合成酶(SPS)的研究进展. 分子植物育种, 2005, 3: 275-281 |
Liu L X, Shen F F, Lu H Q, Han Q D, Liu Y G.Research Advance on sucrose phosphate synthase in sucrose metabolism.Mol Plant Breed, 2005, 3: 275-281 (in Chinese with English abstract) | |
[17] | Baxter C J, Foyer C H, Turner J, Rolfe S A, Quick W P.Elevated sucrose phosphate synthase activity in transgenic tobacco sustains photosynthesis in old leaves and alters development.J Exp Bot, 2003, 54: 1813-1820 |
[18] | Ishimaru K, Hirotsu N, Kashiwagi T, Madoka Y, Nagasuga K, Ono K, Ohsugi R.Over-expression of a maizeSPS gene improves yield characters of potato under field conditions. Plant Prod Sci, 2008, 11: 104-107 |
[19] | Ohsugi R, Huber S C.Light modulation and localization of sucrose phosphate synthase activity between mesophyll cells and bundle sheath cells in C4 species.Plant Physiol, 1987, 84: 1096-1101 |
[20] | Reimholz R, Geiger M, Haake V, Deiting U, Krause K P, Sonnewald U, Stitt M.Potato plants contain multiple forms of sucrose phosphate synthase, which differ in their tissue distributions, their levels during development, and their responses to low temperature. Plant, Cell & Environ, 1997, 20: 291-305 |
[21] | Quick P, Siegl G, Neuhaus E, Feil R, Stitt M.Shortterm water stress leads to a stimulation of sucrose synthesis by activating sucrose-phosphate synthase.Planta, 1989, 177: 535-546 |
[22] | Seneweera S P, Basra A S, Barlow E W, Conroy J P.Diurnal regulation of leaf blade elongation in rice by CO2 (Is it related to sucrose-phosphate synthase activity?).Plant Physiol, 1995, 108: 1471-1477 |
[23] | Gibon Y, Bläsing O E, Palacios R N, Pankovic D,Hendriks J H M, Fisahn J, Höhne M, Gunther M, Stitt M. Adjustment of diurnal starch turnover to short days: depletion of sugar during the night leads to a temporary inhibition of carbohydrate utilization, accumulation of sugars and post-translational activation of ADP-glucose pyrophosphorylase in the following light period.Plant J, 2004, 39: 847-862 |
[24] | Okamura M, Aoki N, Hirose T, Yonekura M, Ohto C, Ohsugi R.Tissue specificity and diurnal change in gene expression of the sucrose phosphate synthase gene family in rice.Plant Sci, 2011, 181: 159-166 |
[25] | Winter H, Huber S C.Regulation of sucrose metabolism in higher plants: localization and regulation of activity of key enzymes.Crit Rev Biochem Mol Biol, 2000, 35: 253-289 |
[26] | 唐湘如, 官春云. 施氮对油菜几种酶活性的影响及其与产量和品质的关系. 中国油料作物学报, 2001, 23(4): 32-37 |
Tang X R, Guan C Y.Chinese journal of oil crop sciences, Effect of N application on activities of several enzymes and trait of yield and quality in rapeseed cultivar Xiangyou No.13.Chin J Oil Crop Sci, 2001, 23(4): 32-37 (in Chinese) | |
[27] | Tamura K, Stecher G, Peterson D, Filipski A, Kumar S.MEGA6: Molecular evolutionary genetics analysis version 6.0.Mol Biol Evol, 2013, 30: 2725-2729 |
[28] | Artimo P, Jonnalagedda M, Arnold K, Baratin D, Csardi G, de Castro E, Duvaud S, Flegel V, Fortier A, Gasteiger E, Grosdidier A, Hernandez C, Ioannidis V, Kuznetsov D, Liechti R, Moretti S, Mostaguir K, Redaschi N, Rossier G, Xenarios I, Stockinger H. ExPASy: SIB bioinformatics resource portal.Nucl Acids Res, 2012, 40: W597-W603 |
[29] | Hu B, Jin J P, Guo A Y, Zhang H, Luo J H, Gao G.GSDS 2.0: an upgraded gene feature visualization server.Bioinformatics, 2015, 31: 1296-1297 |
[30] | Bailey T L, Boden M, Buske F A, Frith M, Grant C E, Clementi L, Ren J Y, Li W W, Noble W S.MEME SUITE: tools for motif discovery and searching.Nucl Acids Res, 2009, 37: W202-W208 |
[31] | Jones P, Binns D, Chang H Y, Fraser M, Li W Z, McAnulla C, McWilliam H, Maslen J, Mitchell A, Nuka G, Pesseat S, Quinn A F, Sangrador V A, Scheremetjew M, Yong S Y, Lopez R, Hunter S. InterProScan 5: genome-scale protein function classification.Bioinformatics, 2014, 30: 1236-1240 |
[32] | Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Peer Y V D, Rouzé P, Rombauts S. PlantCARE, a database of plantcis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucl Acids Res, 2002, 30: 325-327 |
[33] | Rombauts S, Déhais P, Van M M, Rouzé P.PlantCARE, a plant cis-acting regulatory element database.Nucl Acids Res, 1999, 27: 295-296 |
[34] | Wei L J, Jian H J, Lu K, Filardo F, Yin N W, Liu L Z, Qu C M, Li W, Du H, Li J N.Genome-wide association analysis and differential expression analysis of resistance toSclerotinia stem rot in Brassica napus. Plant Biotechnol J, 2016, 14: 1368-1380 |
[35] | 李乐, 许红亮, 杨兴露, 李雅轩, 胡英考. 大豆LEA基因家族全基因组鉴定、分类和表达. 中国农业科学, 2011, 44: 3945-3954 |
Li L, Xu H L, Yang X L, Li Y X, Hu Y K, Genome-wide identification, classification and expression analysis ofLEA gene family in soybean. Sci Agric Sin, 2011, 44: 3945-3954 (in Chinese with English abstract) | |
[36] | 王小非, 刘鑫, 苏玲, 孙永江, 张世忠, 郝玉金, 由春香. 番茄LBD基因家族的全基因组序列鉴定及其进化和表达分析. 中国农业科学, 2013, 46: 2501-2513 |
Wang X F, Liu X, Su L, Sun Y J, Zhang S Z, Hao Y J, You C X.Identification, evolution and expression analysis of the LBD gene family in tomato.Sci Agric Sin, 2013, 46: 2501-2513 (in Chinese with English abstract) | |
[37] | 许园园, 蔺经, 李晓刚, 常有宏. 梨CBL基因家族全基因组序列的鉴定及非生物胁迫下的表达分析. 中国农业科学, 2015, 48: 735-747 |
Xu Y Y, Lin J, Li X G, Chang Y H.Identification and expression analysis under abiotic stresses of theCBL gene family in pear. Sci Agric Sin, 2015, 48: 735-747 (in Chinese with English abstract) | |
[38] | Jian H J, Lu K, Yang B, Wang T Y, Zhang L, Zhang A X, Wang J, Liu L Z, Qu C M, Li J N.Genome-wide analysis and expression profiling of theSUC and SWEET gene families of sucrose transporters in oilseed rape(Brassica napus L.). Front Plant Sci, 2016, 7: 1464-1480 |
[39] | Yoo M J, Ma T Y, Zhu N, Liu L H, Harmon A C, Wang Q M, Chen S X.Genome-wide identification and homeolog-specific expression analysis of theSnRK2 genes in Brassica napus guard cells. Plant Mol Biol, 2016, 91: 211-227 |
[40] | He Y J, Mao S S, Gao Y L, Wu D M, Cui Y X, Li J N, Qian W.Genome-wide identification and expression analysis of WRKY transcription factors under multiple stresses inBrassica napus. PLoS One, 2016, 11: e0157558 |
[41] | Dun X L, Shen W H, Hu K N, Zhou Z F, Xia S Q, Wen J, Yi B, Shen J X, Ma C Z, Tu J X, Fu T D, Lagercrantz U.Neofunctionalization of duplicatedTic40 genes caused a gain-of-function variation related to male fertility in Brassica oleracea lineages. Plant Physiol, 2014, 166: 1403-1419 |
[42] | Lysak M A, Cheung K, Kitschke M, Bureš P.Ancestral chromosomal blocks are triplicated in Brassiceae species with varying chromosome number and genome size.Plant Physiol, 2007, 145: 402-410 |
[43] | Wang X W, Wang H Z, Wang J, Sun R F, Wu J, Liu S Y, Bai Y Q, Mun J H, Bancroft I, Cheng F, Huang S W, Li X X, Hua W, Wang J Y, Wang X Y, Freeling M, Pires J C, Paterson A H, Chalhoub B, Wang B, Hayward A, Sharpe A G, Park B S, Wesshaar B, Liu B H, Li B, Liu B, Tong C B, Song C, Duran C, Peng C F, Geng C Y, Koh C, Lin C Y, Edwards D, Mu D S, Shen D, Soumpourou E, Li F, Fraser F, Conant G, Lassalle G, King G J, Bommema G, Tang H B, Wang H P, Belcram H, Zhou H L, Hirakawa H, Abe H, Guo H, Wang H, Jin H Z, Parkin I A P, Batley J, Kim J S, Just J, Li J W, Xun J H, Deng J, Kim J A, Li J P, Yu J Y, Meng J L, Wang J P, Min J M, Poulain J, Wang J, Hatakeyama K, Wu K, Wang L, Fang L, Trick M, Links M G, Zhao M X, Jin M N, Ramchiary N, Drou N, Berkman P J, Cai Q L, Huang Q F, Li R Q, Tabata S, Cheng S F, Zhang S, Zhang S J, Huang S M, Sato S, Sun S L, Kwon S J, Choi S R, Lee T H, Fan W, Zhao X, Tan X, Xu X, Wang Y, Qiu Y, Yin Y, Li Y R, Du Y C, Liao Y C, Lim Y, Narusaka Y, Wang Y P, Wang Z Y, Li Z Y, Wang Z W, Xiong Z Y, Zhang Z H. The genome of the mesopolyploid crop speciesBrassica rapa. Nat Genet, 2011, 43: 1035-1039 |
[44] | Liu S Y, Liu Y M, Yang X H, Tong C B, Edwards D, Parkin I A.P., Zhao M X, Ma J X, Yu J Y, Huang S M, Wang X Y, Wang J Y, Lu K, Fang Z Y, Bancroft I, Yang T, Hu Q, Wang X F, Yue Z, Li H J, Yang L F, Wu J, Zhou Q, Wang W X, King G J, Pires J C, Lu C X, Wu Z Y, Sampath P, Wang Z, Guo H, Pan S K, Yang L M, Zhang D, Jin D C, Li W S, Belcram H, Tu J X, Guan M, Qi C K, Du D Z, Li J N, Jiang L C, Batley J, Sharpe A G, Park B, Ruperao P, Cheng F, Waminal N E, Huang Y, Dong C H, Wang L, Li J P, Hu Z Y, Zhuang M, Huang Y, Huang J Y, Shi J Q, Mei D S, Liu J, Lee T, Wang J P, Jin H Z, Li Z Y, Li X, Zhang J F, Xiao L, Zhou Y M, Liu Z S, Liu X Q, Qin R, Tang X, Liu W B, Wang Y P, Zhang Y Y, Lee J , Kim H H, Denoeud F, Xu X, Liang X M, Hua W, Wang X W, Wang J, Chalhoub B, Paterson A H. The Brassica oleracea genome reveals the asymmetrical evolution of polyploidy genomes. Nat Commun, 2014, 5: 3930 |
[45] | Chalhoub B, Denoeud F, Liu S, Parkin I A P, Tang H B, Wang X Y, Chiquet J, Belcram H, Tong C B, Samans B, Corréa, Silva C D, Just J, Falentin C, Koh C S, Clainche I L, Bernard M, Bento P, Noel B, Labadie K, Alberti A, Charles M, Arnaud D, Guo H, Daviaud C, Alamery S, Jabbari K, Zhao M X, Edger P P, Chelaifa H, Tack D, Lassalle G, Mestiri I, Schnel N, Paslier M L, Fan G Y, Renault V, Bayer P E, Golicz A A, Manoli S, Lee T, Thi V H D, Chalabi S, Hu Q, Fan C C, Tollenaere R, Lu Y H, Battail C, Shen J X, Sidebottom C H. D, Wang X F, Canaguier A, Chauveau A, Bérard A, Deniot G, Guan M, Liu Z S, Sun F M, Lim Y P, Lyons E, Town C D, Bancroft I, Wang X W, Meng J L, Ma J X, Pires J C, King G J, Brunel D, Delourme R, Renard M, Aury J, Adams K L, Batley J, Snowdon R J, Tost J, Ewards D, Zhou Y M, Hua W, Sharpe A G, Paterson A H, Guan C Y, Wincker P. Early allopolyploid evolution in the post-NeolithicBrassica napus oilseed genome. Science, 2014, 345: 950-953 |
[46] | Xu G X, Guo C, Shan H Y, Kong H Z.Divergence of duplicate genes in exon-intron structure.Proc Natl Acad Sci USA, 2012, 109: 1187-1192 |
[47] | Rogozin I B, Sverdlov A V, Babenko V N, Koonin E V.Analysis of evolution of exon-intron structure of eukaryotic genes.Briefings Bioinform, 2005, 6: 118-134 |
[48] | Johansson I, Karlsson M, Johanson U, Larsson C, Kjellbom P.The role of aquaporins in cellular and whole plant water balance.Biochim Biophys Acta, 2000, 1465: 324-342 |
[49] | Volkert K, Debast S, Voll L M, Voll H, Schießl I, Hofmann J, Schneider S, Börnke F.Loss of the two major leaf isoforms of sucrose-phosphate synthase inArabidopsis thaliana limits sucrose synthesis and nocturnal starch degradation but does not alter carbon partitioning during photosynthesis. J Exp Bot, 2014, 65: 5217-5229 |
[50] | Hirose T, Hashida Y, Aoki N, Okamura M, Yonekura M, Ohto C, Terao T, Ohsugi R.Analysis of gene-disruption mutants of a sucrose phosphate synthase gene in rise,OsSPS1, shows the importance of sucrose synthesis in pollen germination. Plant Sci, 2014, 225: 102-106 |
[51] | Chen S, Hajirezaei M, Börnke F.Differential expression of sucrose-phosphate synthase isoenzymes in tobacco reflects their functional specialization during dark-governed starch mobilization in source leaves.Plant Physiol, 2005, 139: 1163-1174 |
[52] | Lu K, Xiao Z C, Jian H J, Peng L, Qu C M, Fu M L, He B, Tie L M, Liang Y, Xu X F, Li J N.A combination of genome-wide association and transcriptome analysis reveals candidate genes controlling harvest index-related traits inBrassica napus. Sci Rep, 2016, 6: 36452 |
[1] | CHEN Song-Yu, DING Yi-Juan, SUN Jun-Ming, HUANG Deng-Wen, YANG Nan, DAI Yu-Han, WAN Hua-Fang, QIAN Wei. Genome-wide identification of BnCNGC and the gene expression analysis in Brassica napus challenged with Sclerotinia sclerotiorum and PEG-simulated drought [J]. Acta Agronomica Sinica, 2022, 48(6): 1357-1371. |
[2] | JIN Min-Shan, QU Rui-Fang, LI Hong-Ying, HAN Yan-Qing, MA Fang-Fang, HAN Yuan-Huai, XING Guo-Fang. Identification of sugar transporter gene family SiSTPs in foxtail millet and its participation in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 825-839. |
[3] | YUAN Da-Shuang, DENG Wan-Yu, WANG Zhen, PENG Qian, ZHANG Xiao-Li, YAO Meng-Nan, MIAO Wen-Jie, ZHU Dong-Ming, LI Jia-Na, LIANG Ying. Cloning and functional analysis of BnMAPK2 gene in Brassica napus [J]. Acta Agronomica Sinica, 2022, 48(4): 840-850. |
[4] | HUANG Cheng, LIANG Xiao-Mei, DAI Cheng, WEN Jing, YI Bin, TU Jin-Xing, SHEN Jin-Xiong, FU Ting-Dong, MA Chao-Zhi. Genome wide analysis of BnAPs gene family in Brassica napus [J]. Acta Agronomica Sinica, 2022, 48(3): 597-607. |
[5] | WANG Rui, CHEN Xue, GUO Qing-Qing, ZHOU Rong, CHEN Lei, LI Jia-Na. Development of linkage InDel markers of the white petal gene based on whole-genome re-sequencing data in Brassica napus L. [J]. Acta Agronomica Sinica, 2022, 48(3): 759-769. |
[6] | WANG Yan-Hua, LIU Jing-Sen, LI Jia-Na. Integrating GWAS and WGCNA to screen and identify candidate genes for biological yield in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(8): 1491-1510. |
[7] | SU Ya-Chun, LI Cong-Na, SU Wei-Hua, YOU Chui-Huai, CEN Guang-Li, ZHANG Chang, REN Yong-Juan, QUE You-Xiong. Identification of thaumatin-like protein family in Saccharum spontaneum and functional analysis of its homologous gene in sugarcane cultivar [J]. Acta Agronomica Sinica, 2021, 47(7): 1275-1296. |
[8] | YIN Ming, YANG Da-Wei, TANG Hui-Juan, PAN Gen, LI De-Fang, ZHAO Li-Ning, HUANG Si-Qi. Genome-wide identification of GRAS transcription factor and expression analysis in response to cadmium stresses in hemp (Cannabis sativa L.) [J]. Acta Agronomica Sinica, 2021, 47(6): 1054-1069. |
[9] | LI Jie-Hua, DUAN Qun, SHI Ming-Tao, WU Lu-Mei, LIU Han, LIN Yong-Jun, WU Gao-Bing, FAN Chu-Chuan, ZHOU Yong-Ming. Development and identification of transgenic rapeseed with a novel gene for glyphosate resistance [J]. Acta Agronomica Sinica, 2021, 47(5): 789-798. |
[10] | TANG Xin, LI Yuan-Yuan, LU Jun-Xing, ZHANG Tao. Morphological characteristics and cytological study of anther abortion of temperature-sensitive nuclear male sterile line 160S in Brassica napus [J]. Acta Agronomica Sinica, 2021, 47(5): 983-990. |
[11] | ZHOU Xin-Tong, GUO Qing-Qing, CHEN Xue, LI Jia-Na, WANG Rui. Construction of a high-density genetic map using genotyping by sequencing (GBS) for quantitative trait loci (QTL) analysis of pink petal trait in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 587-598. |
[12] | LI Shu-Yu, HUANG Yang, XIONG Jie, DING Ge, CHEN Lun-Lin, SONG Lai-Qiang. QTL mapping and candidate genes screening of earliness traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 626-637. |
[13] | JIA Xiao-Ping, LI Jian-Feng, ZHANG Bo, QUAN Jian-Zhang, WANG Yong-Fang, ZHAO Yuan, ZHANG Xiao-Mei, WANG Zhen-Shan, SANG Lu-Man, DONG Zhi-Ping. Responsive features of SiPRR37 to photoperiod and temperature, abiotic stress and identification of its favourable allelic variations in foxtail millet (Setaria italica L.) [J]. Acta Agronomica Sinica, 2021, 47(4): 638-649. |
[14] | TANG Jing-Quan, WANG Nan, GAO Jie, LIU Ting-Ting, WEN Jing, YI Bin, TU Jin-Xing, FU Ting-Dong, SHEN Jin-Xiong. Bioinformatics analysis of SnRK gene family and its relation with seed oil content of Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(3): 416-426. |
[15] | YUE Jie-Ru, BAI Jian-Fang, ZHANG Feng-Ting, GUO Li-Ping, YUAN Shao-Hua, LI Yan-Mei, ZHANG Sheng-Quan, ZHAO Chang-Ping, ZHANG Li-Ping. Cloning and potential function analysis of ascorbic peroxidase gene of hybrid wheat in seed aging [J]. Acta Agronomica Sinica, 2021, 47(3): 405-415. |
|