Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2018, Vol. 44 ›› Issue (02): 197-207.doi: 10.3724/SP.J.1006.2018.00197

• Orginal Article • Previous Articles     Next Articles

Genome-wide Analysis and Expression Profiling of SPS Gene Family in Brassica nupus L.

Li ZHANG**, Hong-Ju JIAN**, Bo YANG, Ao-Xiang ZHANG, Chao ZHANG, Hong YANG, Li-Yuan ZHANG, Lie-Zhao LIU, Xin-Fu XU, Kun LU, Jia-Na LI*   

  1. College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China;
  • Received:2017-05-03 Accepted:2017-09-10 Online:2018-02-12 Published:2017-10-27
  • Contact: Li ZHANG,Hong-Ju JIAN,Jia-Na LI E-mail:ljn1950@swu.edu.cn
  • Supported by:
    This study was supported by the Natural Science Foundation of China (U1302266), the National Key Technologies R&D Program of China (2013BAD01B03-12), the China Agriculture Research System (CARS-13), the Science and Technology Innovation Project of Social Undertakings and Livelihood Protection of Chongqing (cstc2016shms-ztzx80020), and the Scientific Research Innovation Projects for Graduate Student of Chongqing (CYS16082).

Abstract:

Sucrose phosphate synthase (SPS) is the rate-limiting enzyme that controls the sucrose biosynthesis in plants and has great influence on transportation and accumulation of photosynthate. In this study, we identified 11 members of the SPS gene family in the oilseed rape (Brassica nupus L.) genome. These SPS genes were classed into clusters A, B, and C according to gene structure and phylogenetic relationship. Gene structure prediction indicated that BnSPS genes were highly conserved, in which BnSPSC-1 consisted five exons and others consisted 11-15 exons. Promoter cis-element analysis indicated that BnSPS genes had not only essential responsive elements but also some types of elements potentially responsive to stresses or hormone responses. The qRT-PCR assay showed tissue-specific expressions of BnSPS genes with rich expressions of BnSPSA1 in flower, BnSPSB in leaf, bud and flower, BnSPSC in leaf, and BnSPSA2 in various tissues. The relative expression levels of BnSPSA1 and BnSPSC were higher in high-biomass rapeseed varieties than in low-biomass rapeseed varieties, whereas, that of BnSPSB was higher in low-biomass rapeseed varieties, suggesting that SPS genes are closely ralated to biological yield of rapeseed. This study provides basic information for functional study and utilization of BnSPS genes.

Key words: Brassica napus, sucrose phosphate synthase, genome-wide analysis, expression analysis

Fig. 1

Phylogenetic tree of SPS proteins in A. thaliana, B. oleracea, B. rape, and B. napus (neighbor-joining method) BnSPS proteins are in red. Numbers above clades indicate bootstrap values."

Supplementary fig. 1

Frequency distribution in biological yield of the population consisting of 33 Brassica napus inbred lines"

Supplementary table 1

Biological yields of 33 Brassica napus inbred lines"

自交系编号
Code of inbred
line
品种名称
Variety name
生物产量
Biological yield
(g plant-1)
自交系编号
Code of inbred
line
品种名称
Variety name
生物产量
Biological yield
(g plant-1)
L1 云花油9号Yunhuayou 9 198 L18 SWU63 121
L2 中双11 Zhongshuang 11 180 L19 SWU82 119
L3 SWU47 172 L20 秦油5号 Qinyou 5 118
L4 WH-30 171 L21 WH-30 115
L5 SWU106 164 L22 SWU71 113
L6 盐油2号 Yanyou 2 160 L23 SWU80 112
L7 油研10选 Youyan 10 xuan 157 L24 SWU97 111
L8 中双4号 Zhongshuang 4 155 L25 2012-8380 110
L9 沪油14 Huyou 14 154 L26 WH-62 105
L10 中双12 Zhongshuang 12 152 L27 华油2号 Huayou 2 99
L11 宁油12 Ningyou 12 148 L28 丰油9号 Fengyou 9 96
L12 Wx10315 146 L29 中油821 Zhongyou 821 95
L13 SWU94 140 L30 SWU108 93
L14 云油双1号 Yunyoushuang 1 139 L31 SWU101 89
L15 2012-9323 134 L32 10-1047 87
L16 华双128 Huashuang 128 131 L33 花油8号 Huayou 8 59
L17 SWU68 128

Supplementary table 2

Primers of sequences"

基因 Gene 引物序列 Primer sequence (5′-3′)
Actin7 F: TGGGTTTGCTGGTGACGAT; R: TGCCTAGGACGACCAACAATACT
BnSPSA1-1 F: AGGATAAGTATATCCCGAAGGAACTC; R: CGTCACCAGCATCAGCGTAGT
BnSPSA1-2 F: CACATGATGGTGATATGGAAGACG; R: GATATTCTTTTTTGGGTCGGGC
BnSPSA1-3 F: GAGACTGATCTTCACAAGTCATGGA; R: TCCTTTTCCTCATGCTGCTTCT
BnSPSA2-1 F: AAATGGCAGAGAGTCGAGTTCG; R: AGCTTAGCTTTTCTTTCAGCGGT
BnSPSA2-2 F: TGCTAGTGCGATGGGGGAT; R: GGTAGCTTCTGTTGCCGTGC
BnSPSA2-3 F: TGACTGGAGCTATGCCGAACCT; R: GGACATCTGCATCACATGGCTAAG
BnSPSA2-4 F: CGGTTTGATACGAGGTGAGAACAT; R: GCATCTCAGACGGTTCAGCG
BnSPSB-1 F: ATGTCGTATGAGACATCCCCAGT; R: TATTCGGTTCAAGAGACGCATTC
BnSPSB-2 F: CGAGGAACTTATCTCTGGCACAC; R: CCAATAAAAGGACTCTCTGACGG
BnSPSC-1 F: ACGTGAAAAAGGACGCAATGAT; R: GCAGATAGAGGCAGGCACAATG
BnSPSC-2 F: GTGATTACTGCTGATTCCTACGATG; R: TATTTTTCCCTTGCCCGATGT

Table 1

Information of predicted BnSPS proteins"

基因名称
Gene name
基因序列号
Gene ID
氨基酸数量
Amino acid number
分子量
Molecular weight (kD)
等电点
Isoelectric point
染色体
Chromosome
BnSPSA1-1 BnaC09g37470D 966 109.2 6.35 C09
BnSPSA1-2 BnaA10g15120D 966 109.0 6.29 A10
BnSPSA1-3 BnaA02g04800D 972 109.3 5.52 A02
BnSPSA2-1 BnaA03g03230D 1039 116.3 6.13 A03
BnSPSA2-2 BnaC03g04660D 962 107.4 6.66 C03
BnSPSA2-3 BnaC07g29460D 967 107.9 6.78 C07
BnSPSA2-4 BnaA06g27590D 960 107.2 6.66 A06
BnSPSB-1 BnaA10g03060D 1064 119.5 5.74 A10
BnSPSB-2 BnaC05g02930D 1065 119.6 5.74 C05
BnSPSC-1 BnaC02g29300D 473 53.8 8.06 C02
BnSPSC-2 BnaA02g23460D 1047 118.5 6.24 A02

Fig. 2

Chromosomal mapping of BrSPS (a), BoSPS (b), and BnSPS (c)"

Fig. 3

Structures (A) and identified motifs (B) of BnSPS gene family"

Fig. 4

Tissue-specific expression patterns of BnSPS genes in Zhongshuang 11 R: root; S: stem; L: leave; B: bud; F: flower; SE: seed; SW: silique wall. The error bar shows the standard deviation of three biological replicates. The relative expression level in leaf was used as the control. * and ** indicate significantly different expression in a certain organ to the control at P < 0.05 and P < 0.01, respectively."

Table 2

Types and quantities of cis-acting elements in BnSPS promoters"

基因 Gene ABRE ARE CGTCA-motif GARE-motif MBS TCA-element TGACG-motif
SPSA1-1 0 4 3 3 0 2 3
SPSA1-2 0 1 3 2 1 2 3
SPSA1-3 0 1 0 0 0 1 0
SPSA2-1 1 3 1 2 1 0 1
SPSA2-2 1 2 1 3 1 0 1
SPSA2-3 0 1 0 1 2 1 0
SPSA2-4 6 1 3 1 2 2 3
SPSB-1 5 6 1 1 1 2 1
SPSB-2 4 4 2 1 1 1 2
SPSC-1 0 0 2 1 1 0 2
SPSC-2 0 0 2 2 1 0 2
总计Total 17 23 18 17 11 11 18

Fig. 5

Differential expression of BnSPS genes in different organs between high-biomass and low-biomass rapeseed varieties L: leave; S: stem; SE: seed; SW: silique wall. The error bar shows the standard deviation of three biological replicates. The relative expression levels in SWU97 organs were used as controls. * and ** indicate significantly different expression in the same organ between a certain variety and SWU97 at P < 0.05 and P < 0.01, respectively. Zhongshuang 4, WH-30 and SWU47 were high-biomass varieties; WH-62 and SWU97 were low-biomass varieties."

[1] Farrar J, Pollock C, Gallagher J.Sucrose and the integration of metabolism in vascular plants.Plant Sci, 2000, 154: 1-11
[2] Bahaji A, Baroja F E, Ricarte B A, Sánchez L Á M, Muñoz F J, Romero J M, Ruiz M T, Baslam M, Almagro G, Sesma M T, Pozueta R J. Characterization of multiple SPS knockout mutants reveals redundant functions of the four Arabidopsis sucrose phosphate synthase isoforms in plant viability, and strongly indicates that enhanced respiration and accelerated starch turnover can alleviate the blockage of sucrose biosynthesis.Plant Sci, 2015, 238: 135-147
[3] Huber S C, Huber J L.Role and regulation of sucrose-phosphate synthase in higher plants.Annu Rev Plant Biol, 1996, 47: 199-222
[4] 李永庚, 于振文, 姜东, 余松烈. 冬小麦旗叶蔗糖和籽粒淀粉合成动态及与其有关的酶活性的研究. 作物学报, 2001, 27: 658-664
Li Y G, Yu Z W, Jiang D, Yu S L.Studies on the dynamic changes of the synthesis of sucrose in the flag leaf and starch in the grain and related enzymes of high yielding wheat.Acta Agron Sin, 2001, 27: 658-664 (in Chinese with English abstract)
[5] Sawitri W D, Narita H, Ishizaka I E, Sugiharto B, Hase T, Nakagawa A.Purification and characterization of recombinant sugarcane sucrose phosphate synthase expressed inE. coli and insect Sf9 cells: an importance of the N-terminal domain for an allosteric regulatory property. J Biochem, 2016, 159: 599-607
[6] Langenkämper G, Fung R W M, Newcomb R D, Atkinson R G. Gardner R C, MacRae E A. Sucrose phosphate synthase genes in plants belong to three different families. J Mol Evol, 2002, 54: 322-332
[7] Lunn J E, Macrae E.New complexities in the synthesis of sucrose.Curr Opin Plant Biol, 2003, 6: 208-214
[8] Castleden C K, Aoki N, Gillespie V J, MacRae E A, Quick W P, Buchner P, Foyer C H, Furbank R T, Lunn J E. Evolution and function of the sucrose-phosphate synthase gene families in wheat and other grasses. Plant Physiol, 2004, 135: 1753-1764
[9] Grof C P L, So C T E, Perroux J M, Bonnett G, Forrester R I. The five families of sucrose-phosphate synthase genes inSaccharum spp. are differentially expressed in leaves and stem. Funct Plant Biol, 2006, 33: 605-610
[10] Sun J D, Zhang J S, Larue C T, Larue C T, Huber S C.Decrease in leaf sucrose synthesis leads to increased leaf starch turnover and decreased RuBP regeneration-limited photosynthesis but not Rubisco-limited photosynthesis inArabidopsis null mutants of SPSA1. Plant, Cell & Environ, 2011, 34: 592-604
[11] Jiang J, Zhang Z, Cao J.Pollen wall development: the associated enzymes and metabolic pathways.Plant Biol, 2013, 15: 249-263
[12] Lin I W, Sosso D, Chen L Q, Gase K, Kim S G, Kessler D, Klinkenberg P M, Gorder M K, Hou B H, Qu X Q, Carter C J, Baldwin I T, Frommer W B.Nectar secretion requires sucrose phosphate synthases and the sugar transporter SWEET9.Nature, 2014, 508 : 546-549
[13] Chen S, HajirezaeI M, Börnke F. Differential expression of sucrose- phosphate synthase isoenzymes in tobacco reflects their functional specialization during dark-governed starch mobilization in source leaves.Plant Physiol, 2005, 139: 1163-1174
[14] Park J Y, Canam T, Kang K Y, Ellis D D, Mansfild S D.Over-expression of an Arabidopsis family A sucrose phosphate synthase (SPS) gene alters plant growth and fibre development.Transgenic Res, 2008, 17: 181-192
[15] Huber S C.Role of sucrose-phosphate synthase in partitioning of carbon in leaves.Plant Physiol, 1983, 71: 818-821
[16] 刘凌霄, 沈法富, 卢合全, 韩庆点, 刘云国. 蔗糖代谢中蔗糖磷酸合成酶(SPS)的研究进展. 分子植物育种, 2005, 3: 275-281
Liu L X, Shen F F, Lu H Q, Han Q D, Liu Y G.Research Advance on sucrose phosphate synthase in sucrose metabolism.Mol Plant Breed, 2005, 3: 275-281 (in Chinese with English abstract)
[17] Baxter C J, Foyer C H, Turner J, Rolfe S A, Quick W P.Elevated sucrose phosphate synthase activity in transgenic tobacco sustains photosynthesis in old leaves and alters development.J Exp Bot, 2003, 54: 1813-1820
[18] Ishimaru K, Hirotsu N, Kashiwagi T, Madoka Y, Nagasuga K, Ono K, Ohsugi R.Over-expression of a maizeSPS gene improves yield characters of potato under field conditions. Plant Prod Sci, 2008, 11: 104-107
[19] Ohsugi R, Huber S C.Light modulation and localization of sucrose phosphate synthase activity between mesophyll cells and bundle sheath cells in C4 species.Plant Physiol, 1987, 84: 1096-1101
[20] Reimholz R, Geiger M, Haake V, Deiting U, Krause K P, Sonnewald U, Stitt M.Potato plants contain multiple forms of sucrose phosphate synthase, which differ in their tissue distributions, their levels during development, and their responses to low temperature. Plant, Cell & Environ, 1997, 20: 291-305
[21] Quick P, Siegl G, Neuhaus E, Feil R, Stitt M.Shortterm water stress leads to a stimulation of sucrose synthesis by activating sucrose-phosphate synthase.Planta, 1989, 177: 535-546
[22] Seneweera S P, Basra A S, Barlow E W, Conroy J P.Diurnal regulation of leaf blade elongation in rice by CO2 (Is it related to sucrose-phosphate synthase activity?).Plant Physiol, 1995, 108: 1471-1477
[23] Gibon Y, Bläsing O E, Palacios R N, Pankovic D,Hendriks J H M, Fisahn J, Höhne M, Gunther M, Stitt M. Adjustment of diurnal starch turnover to short days: depletion of sugar during the night leads to a temporary inhibition of carbohydrate utilization, accumulation of sugars and post-translational activation of ADP-glucose pyrophosphorylase in the following light period.Plant J, 2004, 39: 847-862
[24] Okamura M, Aoki N, Hirose T, Yonekura M, Ohto C, Ohsugi R.Tissue specificity and diurnal change in gene expression of the sucrose phosphate synthase gene family in rice.Plant Sci, 2011, 181: 159-166
[25] Winter H, Huber S C.Regulation of sucrose metabolism in higher plants: localization and regulation of activity of key enzymes.Crit Rev Biochem Mol Biol, 2000, 35: 253-289
[26] 唐湘如, 官春云. 施氮对油菜几种酶活性的影响及其与产量和品质的关系. 中国油料作物学报, 2001, 23(4): 32-37
Tang X R, Guan C Y.Chinese journal of oil crop sciences, Effect of N application on activities of several enzymes and trait of yield and quality in rapeseed cultivar Xiangyou No.13.Chin J Oil Crop Sci, 2001, 23(4): 32-37 (in Chinese)
[27] Tamura K, Stecher G, Peterson D, Filipski A, Kumar S.MEGA6: Molecular evolutionary genetics analysis version 6.0.Mol Biol Evol, 2013, 30: 2725-2729
[28] Artimo P, Jonnalagedda M, Arnold K, Baratin D, Csardi G, de Castro E, Duvaud S, Flegel V, Fortier A, Gasteiger E, Grosdidier A, Hernandez C, Ioannidis V, Kuznetsov D, Liechti R, Moretti S, Mostaguir K, Redaschi N, Rossier G, Xenarios I, Stockinger H. ExPASy: SIB bioinformatics resource portal.Nucl Acids Res, 2012, 40: W597-W603
[29] Hu B, Jin J P, Guo A Y, Zhang H, Luo J H, Gao G.GSDS 2.0: an upgraded gene feature visualization server.Bioinformatics, 2015, 31: 1296-1297
[30] Bailey T L, Boden M, Buske F A, Frith M, Grant C E, Clementi L, Ren J Y, Li W W, Noble W S.MEME SUITE: tools for motif discovery and searching.Nucl Acids Res, 2009, 37: W202-W208
[31] Jones P, Binns D, Chang H Y, Fraser M, Li W Z, McAnulla C, McWilliam H, Maslen J, Mitchell A, Nuka G, Pesseat S, Quinn A F, Sangrador V A, Scheremetjew M, Yong S Y, Lopez R, Hunter S. InterProScan 5: genome-scale protein function classification.Bioinformatics, 2014, 30: 1236-1240
[32] Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Peer Y V D, Rouzé P, Rombauts S. PlantCARE, a database of plantcis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucl Acids Res, 2002, 30: 325-327
[33] Rombauts S, Déhais P, Van M M, Rouzé P.PlantCARE, a plant cis-acting regulatory element database.Nucl Acids Res, 1999, 27: 295-296
[34] Wei L J, Jian H J, Lu K, Filardo F, Yin N W, Liu L Z, Qu C M, Li W, Du H, Li J N.Genome-wide association analysis and differential expression analysis of resistance toSclerotinia stem rot in Brassica napus. Plant Biotechnol J, 2016, 14: 1368-1380
[35] 李乐, 许红亮, 杨兴露, 李雅轩, 胡英考. 大豆LEA基因家族全基因组鉴定、分类和表达. 中国农业科学, 2011, 44: 3945-3954
Li L, Xu H L, Yang X L, Li Y X, Hu Y K, Genome-wide identification, classification and expression analysis ofLEA gene family in soybean. Sci Agric Sin, 2011, 44: 3945-3954 (in Chinese with English abstract)
[36] 王小非, 刘鑫, 苏玲, 孙永江, 张世忠, 郝玉金, 由春香. 番茄LBD基因家族的全基因组序列鉴定及其进化和表达分析. 中国农业科学, 2013, 46: 2501-2513
Wang X F, Liu X, Su L, Sun Y J, Zhang S Z, Hao Y J, You C X.Identification, evolution and expression analysis of the LBD gene family in tomato.Sci Agric Sin, 2013, 46: 2501-2513 (in Chinese with English abstract)
[37] 许园园, 蔺经, 李晓刚, 常有宏. 梨CBL基因家族全基因组序列的鉴定及非生物胁迫下的表达分析. 中国农业科学, 2015, 48: 735-747
Xu Y Y, Lin J, Li X G, Chang Y H.Identification and expression analysis under abiotic stresses of theCBL gene family in pear. Sci Agric Sin, 2015, 48: 735-747 (in Chinese with English abstract)
[38] Jian H J, Lu K, Yang B, Wang T Y, Zhang L, Zhang A X, Wang J, Liu L Z, Qu C M, Li J N.Genome-wide analysis and expression profiling of theSUC and SWEET gene families of sucrose transporters in oilseed rape(Brassica napus L.). Front Plant Sci, 2016, 7: 1464-1480
[39] Yoo M J, Ma T Y, Zhu N, Liu L H, Harmon A C, Wang Q M, Chen S X.Genome-wide identification and homeolog-specific expression analysis of theSnRK2 genes in Brassica napus guard cells. Plant Mol Biol, 2016, 91: 211-227
[40] He Y J, Mao S S, Gao Y L, Wu D M, Cui Y X, Li J N, Qian W.Genome-wide identification and expression analysis of WRKY transcription factors under multiple stresses inBrassica napus. PLoS One, 2016, 11: e0157558
[41] Dun X L, Shen W H, Hu K N, Zhou Z F, Xia S Q, Wen J, Yi B, Shen J X, Ma C Z, Tu J X, Fu T D, Lagercrantz U.Neofunctionalization of duplicatedTic40 genes caused a gain-of-function variation related to male fertility in Brassica oleracea lineages. Plant Physiol, 2014, 166: 1403-1419
[42] Lysak M A, Cheung K, Kitschke M, Bureš P.Ancestral chromosomal blocks are triplicated in Brassiceae species with varying chromosome number and genome size.Plant Physiol, 2007, 145: 402-410
[43] Wang X W, Wang H Z, Wang J, Sun R F, Wu J, Liu S Y, Bai Y Q, Mun J H, Bancroft I, Cheng F, Huang S W, Li X X, Hua W, Wang J Y, Wang X Y, Freeling M, Pires J C, Paterson A H, Chalhoub B, Wang B, Hayward A, Sharpe A G, Park B S, Wesshaar B, Liu B H, Li B, Liu B, Tong C B, Song C, Duran C, Peng C F, Geng C Y, Koh C, Lin C Y, Edwards D, Mu D S, Shen D, Soumpourou E, Li F, Fraser F, Conant G, Lassalle G, King G J, Bommema G, Tang H B, Wang H P, Belcram H, Zhou H L, Hirakawa H, Abe H, Guo H, Wang H, Jin H Z, Parkin I A P, Batley J, Kim J S, Just J, Li J W, Xun J H, Deng J, Kim J A, Li J P, Yu J Y, Meng J L, Wang J P, Min J M, Poulain J, Wang J, Hatakeyama K, Wu K, Wang L, Fang L, Trick M, Links M G, Zhao M X, Jin M N, Ramchiary N, Drou N, Berkman P J, Cai Q L, Huang Q F, Li R Q, Tabata S, Cheng S F, Zhang S, Zhang S J, Huang S M, Sato S, Sun S L, Kwon S J, Choi S R, Lee T H, Fan W, Zhao X, Tan X, Xu X, Wang Y, Qiu Y, Yin Y, Li Y R, Du Y C, Liao Y C, Lim Y, Narusaka Y, Wang Y P, Wang Z Y, Li Z Y, Wang Z W, Xiong Z Y, Zhang Z H. The genome of the mesopolyploid crop speciesBrassica rapa. Nat Genet, 2011, 43: 1035-1039
[44] Liu S Y, Liu Y M, Yang X H, Tong C B, Edwards D, Parkin I A.P., Zhao M X, Ma J X, Yu J Y, Huang S M, Wang X Y, Wang J Y, Lu K, Fang Z Y, Bancroft I, Yang T, Hu Q, Wang X F, Yue Z, Li H J, Yang L F, Wu J, Zhou Q, Wang W X, King G J, Pires J C, Lu C X, Wu Z Y, Sampath P, Wang Z, Guo H, Pan S K, Yang L M, Zhang D, Jin D C, Li W S, Belcram H, Tu J X, Guan M, Qi C K, Du D Z, Li J N, Jiang L C, Batley J, Sharpe A G, Park B, Ruperao P, Cheng F, Waminal N E, Huang Y, Dong C H, Wang L, Li J P, Hu Z Y, Zhuang M, Huang Y, Huang J Y, Shi J Q, Mei D S, Liu J, Lee T, Wang J P, Jin H Z, Li Z Y, Li X, Zhang J F, Xiao L, Zhou Y M, Liu Z S, Liu X Q, Qin R, Tang X, Liu W B, Wang Y P, Zhang Y Y, Lee J , Kim H H, Denoeud F, Xu X, Liang X M, Hua W, Wang X W, Wang J, Chalhoub B, Paterson A H. The Brassica oleracea genome reveals the asymmetrical evolution of polyploidy genomes. Nat Commun, 2014, 5: 3930
[45] Chalhoub B, Denoeud F, Liu S, Parkin I A P, Tang H B, Wang X Y, Chiquet J, Belcram H, Tong C B, Samans B, Corréa, Silva C D, Just J, Falentin C, Koh C S, Clainche I L, Bernard M, Bento P, Noel B, Labadie K, Alberti A, Charles M, Arnaud D, Guo H, Daviaud C, Alamery S, Jabbari K, Zhao M X, Edger P P, Chelaifa H, Tack D, Lassalle G, Mestiri I, Schnel N, Paslier M L, Fan G Y, Renault V, Bayer P E, Golicz A A, Manoli S, Lee T, Thi V H D, Chalabi S, Hu Q, Fan C C, Tollenaere R, Lu Y H, Battail C, Shen J X, Sidebottom C H. D, Wang X F, Canaguier A, Chauveau A, Bérard A, Deniot G, Guan M, Liu Z S, Sun F M, Lim Y P, Lyons E, Town C D, Bancroft I, Wang X W, Meng J L, Ma J X, Pires J C, King G J, Brunel D, Delourme R, Renard M, Aury J, Adams K L, Batley J, Snowdon R J, Tost J, Ewards D, Zhou Y M, Hua W, Sharpe A G, Paterson A H, Guan C Y, Wincker P. Early allopolyploid evolution in the post-NeolithicBrassica napus oilseed genome. Science, 2014, 345: 950-953
[46] Xu G X, Guo C, Shan H Y, Kong H Z.Divergence of duplicate genes in exon-intron structure.Proc Natl Acad Sci USA, 2012, 109: 1187-1192
[47] Rogozin I B, Sverdlov A V, Babenko V N, Koonin E V.Analysis of evolution of exon-intron structure of eukaryotic genes.Briefings Bioinform, 2005, 6: 118-134
[48] Johansson I, Karlsson M, Johanson U, Larsson C, Kjellbom P.The role of aquaporins in cellular and whole plant water balance.Biochim Biophys Acta, 2000, 1465: 324-342
[49] Volkert K, Debast S, Voll L M, Voll H, Schießl I, Hofmann J, Schneider S, Börnke F.Loss of the two major leaf isoforms of sucrose-phosphate synthase inArabidopsis thaliana limits sucrose synthesis and nocturnal starch degradation but does not alter carbon partitioning during photosynthesis. J Exp Bot, 2014, 65: 5217-5229
[50] Hirose T, Hashida Y, Aoki N, Okamura M, Yonekura M, Ohto C, Terao T, Ohsugi R.Analysis of gene-disruption mutants of a sucrose phosphate synthase gene in rise,OsSPS1, shows the importance of sucrose synthesis in pollen germination. Plant Sci, 2014, 225: 102-106
[51] Chen S, Hajirezaei M, Börnke F.Differential expression of sucrose-phosphate synthase isoenzymes in tobacco reflects their functional specialization during dark-governed starch mobilization in source leaves.Plant Physiol, 2005, 139: 1163-1174
[52] Lu K, Xiao Z C, Jian H J, Peng L, Qu C M, Fu M L, He B, Tie L M, Liang Y, Xu X F, Li J N.A combination of genome-wide association and transcriptome analysis reveals candidate genes controlling harvest index-related traits inBrassica napus. Sci Rep, 2016, 6: 36452
[1] CHEN Song-Yu, DING Yi-Juan, SUN Jun-Ming, HUANG Deng-Wen, YANG Nan, DAI Yu-Han, WAN Hua-Fang, QIAN Wei. Genome-wide identification of BnCNGC and the gene expression analysis in Brassica napus challenged with Sclerotinia sclerotiorum and PEG-simulated drought [J]. Acta Agronomica Sinica, 2022, 48(6): 1357-1371.
[2] JIN Min-Shan, QU Rui-Fang, LI Hong-Ying, HAN Yan-Qing, MA Fang-Fang, HAN Yuan-Huai, XING Guo-Fang. Identification of sugar transporter gene family SiSTPs in foxtail millet and its participation in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 825-839.
[3] YUAN Da-Shuang, DENG Wan-Yu, WANG Zhen, PENG Qian, ZHANG Xiao-Li, YAO Meng-Nan, MIAO Wen-Jie, ZHU Dong-Ming, LI Jia-Na, LIANG Ying. Cloning and functional analysis of BnMAPK2 gene in Brassica napus [J]. Acta Agronomica Sinica, 2022, 48(4): 840-850.
[4] HUANG Cheng, LIANG Xiao-Mei, DAI Cheng, WEN Jing, YI Bin, TU Jin-Xing, SHEN Jin-Xiong, FU Ting-Dong, MA Chao-Zhi. Genome wide analysis of BnAPs gene family in Brassica napus [J]. Acta Agronomica Sinica, 2022, 48(3): 597-607.
[5] WANG Rui, CHEN Xue, GUO Qing-Qing, ZHOU Rong, CHEN Lei, LI Jia-Na. Development of linkage InDel markers of the white petal gene based on whole-genome re-sequencing data in Brassica napus L. [J]. Acta Agronomica Sinica, 2022, 48(3): 759-769.
[6] WANG Yan-Hua, LIU Jing-Sen, LI Jia-Na. Integrating GWAS and WGCNA to screen and identify candidate genes for biological yield in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(8): 1491-1510.
[7] SU Ya-Chun, LI Cong-Na, SU Wei-Hua, YOU Chui-Huai, CEN Guang-Li, ZHANG Chang, REN Yong-Juan, QUE You-Xiong. Identification of thaumatin-like protein family in Saccharum spontaneum and functional analysis of its homologous gene in sugarcane cultivar [J]. Acta Agronomica Sinica, 2021, 47(7): 1275-1296.
[8] YIN Ming, YANG Da-Wei, TANG Hui-Juan, PAN Gen, LI De-Fang, ZHAO Li-Ning, HUANG Si-Qi. Genome-wide identification of GRAS transcription factor and expression analysis in response to cadmium stresses in hemp (Cannabis sativa L.) [J]. Acta Agronomica Sinica, 2021, 47(6): 1054-1069.
[9] LI Jie-Hua, DUAN Qun, SHI Ming-Tao, WU Lu-Mei, LIU Han, LIN Yong-Jun, WU Gao-Bing, FAN Chu-Chuan, ZHOU Yong-Ming. Development and identification of transgenic rapeseed with a novel gene for glyphosate resistance [J]. Acta Agronomica Sinica, 2021, 47(5): 789-798.
[10] TANG Xin, LI Yuan-Yuan, LU Jun-Xing, ZHANG Tao. Morphological characteristics and cytological study of anther abortion of temperature-sensitive nuclear male sterile line 160S in Brassica napus [J]. Acta Agronomica Sinica, 2021, 47(5): 983-990.
[11] ZHOU Xin-Tong, GUO Qing-Qing, CHEN Xue, LI Jia-Na, WANG Rui. Construction of a high-density genetic map using genotyping by sequencing (GBS) for quantitative trait loci (QTL) analysis of pink petal trait in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 587-598.
[12] LI Shu-Yu, HUANG Yang, XIONG Jie, DING Ge, CHEN Lun-Lin, SONG Lai-Qiang. QTL mapping and candidate genes screening of earliness traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 626-637.
[13] JIA Xiao-Ping, LI Jian-Feng, ZHANG Bo, QUAN Jian-Zhang, WANG Yong-Fang, ZHAO Yuan, ZHANG Xiao-Mei, WANG Zhen-Shan, SANG Lu-Man, DONG Zhi-Ping. Responsive features of SiPRR37 to photoperiod and temperature, abiotic stress and identification of its favourable allelic variations in foxtail millet (Setaria italica L.) [J]. Acta Agronomica Sinica, 2021, 47(4): 638-649.
[14] TANG Jing-Quan, WANG Nan, GAO Jie, LIU Ting-Ting, WEN Jing, YI Bin, TU Jin-Xing, FU Ting-Dong, SHEN Jin-Xiong. Bioinformatics analysis of SnRK gene family and its relation with seed oil content of Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(3): 416-426.
[15] YUE Jie-Ru, BAI Jian-Fang, ZHANG Feng-Ting, GUO Li-Ping, YUAN Shao-Hua, LI Yan-Mei, ZHANG Sheng-Quan, ZHAO Chang-Ping, ZHANG Li-Ping. Cloning and potential function analysis of ascorbic peroxidase gene of hybrid wheat in seed aging [J]. Acta Agronomica Sinica, 2021, 47(3): 405-415.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!