Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2018, Vol. 44 ›› Issue (04): 505-511.doi: 10.3724/SP.J.1006.2018.00505

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Improvement of Resistance of Wheat Cultivars to Fusarium Head Blight in the Yellow-Huai Rivers Valley Winter Wheat Zone with Functional Marker Selection of Fhb1 Gene

Hong-Jun ZHANG1(), Zhen-Qi SU2,3, Gui-Hua BAI3,4, Xu ZHANG5, Hong-Xiang MA5, Teng LI1, Yun DENG6, Chun-Yan MAI7, Li-Qiang YU8, Hong-Wei LIU1, Li YANG1, Hong-Jie LI1,*(), Yang ZHOU1,*()   

  1. 1 National Key Facility for Crop Gene Resources and Genetic Improvement / Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    2 Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050035, Hebei, China
    3 Department of Agronomy, Kansas State University, Manhattan, KS 66506, USA
    4 USDA-ARS / Hard Winter Wheat Genetics Research Unit, Manhattan, KS 66506, USA
    5 Jiangsu Academy of Agricultural Sciences / Jiangsu Provincial Key Laboratory of Agrobiology, Nanjing 210014, Jiangsu, China
    6 Nanping Institute of Agricultural Sciences of Fujian Province, Jianyang 354200, Fujian, China
    7 Xinxiang Innovation Center for Breeding Technology of Dwarf-Male-Sterile Wheat, Xinxiang 453731, Henan, China
    8 Zhaoxian Experiment Station, Shijiazhuang Academy of Agriculture and Forestry Sciences, Zhaoxian 515300, Hebei, China
  • Received:2017-07-19 Accepted:2018-01-08 Online:2018-01-29 Published:2018-01-29
  • Contact: Hong-Jie LI,Yang ZHOU E-mail:zhanghongjun01@caas.cn;lihongjie@caas.cn;zhouyang@caas.cn
  • Supported by:
    This study was supported by the National Key Research and Development Program of China (2016YFD0101802, 2017YFD0100600) and the National Engineering Laboratory of Crop Molecular Breeding.

Abstract:

Fusarium head blight (FHB) becomes a major disease in the wheat production of the Yellow-Huai Rivers Valley Winter Wheat Zone of China. Improving FHB resistance is one of the major breeding targets in this region. The donors of Fhb1 gene, including Ningmai 9, Shengxuan 6, Jianyang 798, Jianyang 84, Sumai 3, and Ningmai 13, were moderately or highly resistant to FHB. Six backcrossing populations were developed by crossing these donors with a dwarfing and male-sterile wheat near isogenic line Zhoumai 16, and backcrossing with Zhoumai 16. The progenies were subjected to phenotypic evaluation of FHB by both the floret-inoculation method and natural infection in a field disease nursery. Fhb1 was detected by a functional Kompetitive Allele Specific PCR (KASP) marker. The backcrossing progenies with Fhb1 gene were moderately susceptible to FHB. Compared with the backcrossing progenies without Fhb1 gene, mean number of diseased spikelets and disease index reduced by 4.2 (P < 0.01) and 4.0 in the progenies with Fhb1 gene, respectively. The mean number of diseased spikelets and disease index for the backcrossing progenies with Fhb1 gene were 8.1 (P < 0.01) and 28.4 (P < 0.01) lower than those of the recurrent parent Zhoumai 16. There were significant differences in resistance among the backcrossing progenies from different donors. The progenies from Shengxuan 6 had better performance in number of diseased spikelets and disease index compared with those from any other donors. The results from this study indicate that Fhb1 gene can efficiently improve the FHB resistance of wheat cultivars grown in the Yellow-Huai Rivers Valley Winter Wheat Zone.

Key words: Triticum aestivum L., Fusarium head blight resistance, Fhb1 gene, molecular marker-assisted selection

Fig. 1

Performance of FHB resistance in the backcrossing progenies with or without Fhb1 gene from different donors, recurrent parent and controls using the floret-inoculation method The number of diseased spikelets of backcrossing progenies with Fhb1 gene from donors Ningmai 9 (NM 9, A), Shengxuan 6 (SX 6, B), Jianyang 798 (JY 798, C), Jianyang 84 (JY 84, D), Sumai 3 (SM 3, E), and Ningmai 13 (NM 13, F) were obviously lower than the backcrossing progenies without Fhb1 gene. The recurrent parent Zhoumai 16 (ZM 16) and the highly susceptible control Annong 8455 (AN 8455) had more number of diseased spikelets than Huaimai 20 (HM 20), the moderately susceptible control (G) and Yangmai 158 (YM 158), the moderately resistant control (H). +: Fhb1 genotype; –: non-Fhb1 genotype; RP: recurrent parent; MS: moderately susceptible; HS: highly susceptible; MR: moderately resistant."

Fig. 2

Comparison of number of diseased spikelets and disease index between backcrossing progenies with Fhb1 gene from different donors and recurrent parent, moderately susceptible control and the backcrossing progenies without Fhb1 gene Comparisons of the number of diseased spikelets and disease index were carried out between all Fhb1 backcrossing progenies and the recurrent parent Zhoumai 16 (A), the moderately susceptible control Huaimai 20 (B) and all non-Fhb1 backcrossing progenies (C), and between non-Fhb1 and Fhb1 backcrossing progenies from the donor cultivars Ningmai 9 (D), Shengxuan 6 (E), Jianyang 798 (F), Jianyang 84 (G), Sumai 3 (H) and Ningmai 13 (I). NDS: number of diseased spikelets (floret-inoculation method); DI: disease index (natural infection nursery); ++: all Fhb1 backcrossing progenies; RP: recurrent parent; MS: moderately susceptible control; ––: all Fhb1 backcrossing progenies; +: Fhb1 backcrossing progenies; –: non-Fhb1 backcrossing progenies. * and ** above the error bars indicate significant difference at P < 0.05 and P < 0.01, respectively."

Table 1

Comparison of number of diseased spikelets and disease index among the backcrossing progenies with Fhb1 gene from different donors"

品种(系)或回交后代
Cultivars (lines) or backcrossing progenies
病小穗数 No. of diseased spikelets 病情指数Disease index
平均值±标准差 Mean±SD 范围
Range
平均值±标准差 Mean±SD 范围
Range
宁麦9号回交后代 Ningmai 9 backcrossing progenies 6.5±3.4 de 1.0-13.0 70.9±6.1 ab 61.8-78.8
生选6号回交后代 Shengxuan 6 backcrossing progenies 3.9±3.2 f 1.0-10.0 56.4±7.5 c 48.8-63.8
建阳798回交后代 Jianyang 798 backcrossing progenies 9.5±4.8 c 1.0-20.0 65.6±10.9 c 52.4-76.4
建阳84回交后代 Jianyang 84 backcrossing progenies 5.6±3.9 e 1.0-12.0 65.9±19.7 ab 34.4-86.1
苏麦3号回交后代 Sumai 3 backcrossing progenies 4.8±4.1 ef 1.0-13.0 70.8±12.3 ab 48.1-84.7
宁麦13回交后代 Ningmai 13 backcrossing progenies 7.4±5.6 d 1.0-20.0 81.5±16.4 ab 63.2-95.0
轮回亲本-周麦16 Recurrent parent-Zhoumai 16 14.4±6.0 b 7.0-20.0 96.1±1.4 a 95.0-97.6
中感对照-淮麦20 MS control-Huaimai 20 6.2±2.2 de 2.0-12.0 68.6±11.3 ab 56.9-81.0
中抗对照-扬麦158 MR control-Yangmai 158 3.2±2.2 f 1.0-10.0
高感对照-安农8455 HS control-Annong 8455 19.7±1.4 a 12.0-20.0
[1] Yin Y, Liu X, Li B, Ma Z.Characterization of sterol demethylation inhibitor-resistant isolates of Fusarium asiaticum and F. graminearum collected from wheat in China. Phytopathology, 2009, 99: 487-497
[2] 程顺和, 张勇, 别同德, 高德荣, 张伯桥. 中国小麦赤霉病的危害及抗性遗传改良. 江苏农业学报, 2012, 28: 938-942
Cheng S H, Zhang Y, Bie T D, Gao D R, Zhang B Q.Damage of wheat Fusarium head blight epidemics and genetic improvement of wheat for scab resistance in China.Jiangsu J Agric Sci, 2012, 28: 938-942 (in Chinese with English abstract)
[3] 刘新月, 裴磊, 卫云宗, 张正斌, 高辉明, 徐萍. 气温变化背景下中国黄淮旱地冬小麦农艺性状的变化特征——以山西临汾为例. 中国农业科学, 2015, 48: 1942-1954
Liu X Y, Pei L, Wei Y Z, Zhang Z B, Gao H M, Xu P.Agronomic traits variation analysis of Huanghuai dryland winter wheat under temperature change background in China: taking Linfen, Shanxi as an example.Sci Agric Sin, 2015, 48: 1942-1954 (in Chinese with English abstract)
[4] Anderson J A, Stack R W, Liu S, Waldron B L, Fjeld A D, Coyne C, Moreno-Sevilla B, Fetch J M, Song Q J, Cregan P B, Frohberg R C.DNA markers for Fusarium head blight resistance QTLs in two wheat populations.Theor Appl Genet, 2001, 102: 1164-1168
[5] Cuthbert P A, Somers D J, Thomas J, Cloutier S, Brulé-Babel A.Fine mapping Fhb1, a major gene controlling Fusarium head blight resistance in bread wheat(Triticum aestivum L.). Theor Appl Genet, 2006, 112: 1465-1472
[6] Cuthbert P A, Somers D J, Brulé-Babel A.Mapping of Fhb2 on chromosome 6BS: a gene controlling Fusarium head blight field resistance in bread wheat(Triticum aestivum L.). Theor Appl Genet, 2007, 114: 429-437
[7] Qi L L, Pumphre M O, Friebe B, Chen P D, Gill B S.Molecular cytogenetic characterization of alien introgressions with gene Fhb3 for resistance to Fusarium head blight disease of wheat. Theor Appl Genet, 2008, 117: 1155-1166
[8] Guo J, Zhang X, Hou Y, Cai J, Shen X, Zhou T, Xu H, Ohm H W, Wang H, Li A, Han F, Wang H, Kong L.High-density mapping of the major FHB resistance geneFhb7 derived from Thinopyrum ponticum and its pyramiding with Fhb1 by marker-assisted selection. Theor Appl Genet, 2015, 128: 2301-2316
[9] Xue S, Li G, Jia H, Xu F, Lin F, Tang M, Wang Y, An X, Xu H, Zhang L, Kong Z, Ma Z.Fine mapping Fhb4, a major QTL conditioning resistance to Fusarium infection in bread wheat (Triticum aestivum L.). Theor Appl Genet, 2010, 121: 147-156
[10] Xue S, Xu F, Tang M, Zhou Y, Li G, An X, Lin F, Xu H, Jia H, Zhang L, Kong Z, Ma Z.Precise mapping Fhb5, a major QTL conditioning resistance to Fusarium infection in bread wheat ( Triticum aestivum L.). Theor Appl Genet, 2011, 123: 1055-1063
[11] 刘易科, 佟汉文, 朱展望, 陈泠, 邹娟, 张宇庆, 焦春海, 高春保. 小麦赤霉病抗性改良研究进展. 麦类作物学报, 2016, 36: 51-57
Liu Y K, Tong H W, Zhu Z W, Chen L, Zou J, Zhang Y Q, Jiao C H, Gao B C.Review on improvement of Fusarium head blight resistance in wheat.J Triticeae Crops, 2016, 36: 51-57 (in Chinese with English abstract)
[12] Brown-Guedira G, Griffey C, Kolb F, McKendry A, Murphy J, Sanford D. Breeding FHB-resistant soft winter wheat: Progress and prospects.Cereal Res Commun, 2008, 36: 31-35
[13] Bernardo A, Bai G, Yu J, Kolb F, Bockus W, Dong Y.Registration of near-isogenic winter wheat germplasm contrasting in Fhb1 for Fusarium head blight resistance. J Plant Regist, 2013, 8: 106-108
[14] Randhawa H S, Asif M, Pozniak C, Clarke J M, Graf R J, Fox S L, Humphreys D G, Knox R E, DePauw R M, Singh A K, Cuthbert R D, Hucl P, Spaner D. Application of molecular markers to wheat breeding in Canada.Plant Breed, 2013, 132: 458-471
[15] Xie G Q, Zhang M C, Chakraborty S, Liu C J.The effect of 3BS locus of Sumai 3 on Fusarium head blight resistance in Australian wheats.Aust J Exp Agric, 2007, 47: 603-607
[16] Oda S.Advances in Wheat Genetics:From Genome to Field. Berlin Heidelberg: Springer-Verlag Press, 2015. pp 311-318
[17] 张旭, 任丽娟, 谭秀云, 藏宇辉, 马鸿翔, 秦浚川, 陆维忠. 利用分子标记研究小麦遗传群体的赤霉病抗性鉴定方法. 南京大学学报(自然科学), 2005, 41: 125-132
Zhang X, Ren L J, Tan X Y, Zang Y H, Ma H X, Qin J C, Lu W Z.Evaluation method of wheat Fusarium head blight resistance for genetic population based on molecular markers.J Nanjing Univ(Nat Sci), 2005, 41: 125-132 (in Chinese with English abstract)
[18] 中华人民共和国农业部. 小麦抗病虫性评价技术规范——第4部分: 小麦抗赤霉病评价技术规范, 2007. pp 1-6
Ministry of Agriculture of the People’s Republic of China. Rules for Resistance Evaluation of Wheat to Diseases and Insect Pests—Part 4: Rules for Resistance Evaluation of Wheat to Wheat Scab (Fusarium graminearum Schwabe [Teleomorph Gibberella zeae (Schwein) Petch]), 2007. pp 1-6 (in Chinese)
[19] Rasheed A, Wen W, Gao F, Zhai S, Jin H, Liu J, Guo Q, Zhang Y, Dreisigacker S, Xia X, He Z.Development and validation of KASP assays for genes underpinning key economic traits in bread wheat.Theor Appl Genet, 2016, 129: 1843-1860
[20] 刘秉华, 杨丽. “矮败”小麦的选育. 中国农业科学, 1990, 23(3): 86-87
Liu B H, Yang L.Breeding of dwarfing and male-sterile wheat.Sci Agric Sin, 1990, 23(3): 86-87 (in Chinese)
[21] 刘秉华, 杨丽. “矮败”小麦的选育及利用前景. 科学通报, 1991, 36: 306-308
Liu B H, Yang L.Breeding and application of dwarfing and male-sterile wheat. Chin Sci Bull, 1991, 36: 306-308 (in Chinese)
[22] 陆维忠. 小麦赤霉病抗性分子标记的筛选及其利用. 江苏农业学报, 2011, 27: 243-249
Lu W Z.Screening and application of molecular markers linked to wheat scab resistance.Jiangsu J Agric Sci, 2011, 27: 243-249 (in Chinese with English abstract)
[23] Liu S, Pumphrey M, Gill B, Trick H, Zhang J, Dolezel J, Chalhoub B, Anderson J.Toward positional cloning of Fhb1, a major QTL for Fusarium head blight resistance in wheat. Cereal Res Commun, 2008, 36: 195-201
[24] Zhou W C, Kolb F L, Bai G H, Domier L L, Yao J B.Effect of individual Sumai 3 chromosomes on resistance to scab spread within spikes and deoxynivalenol accumulation within kernels in wheat. Hereditas, 2002, 137: 81-89
[25] Pumphrey M O, Bernardo R, Anderson J A.Validating the Fhb1 QTL for Fusarium head blight resistance in near-isogenic wheat lines developed from breeding populations. Crop Sci, 2007, 47: 200-206
[26] 陆维忠, 马鸿翔. 高产抗赤霉病小麦新品种生选6号的选育. 江苏农业科学, 2010, 38(3): 153-154
Lu W Z, Ma H X.Breeding of wheat cultivar Shengxuan 6 for high-resistant Fusarium head blight.Jiangsu Agric Sci, 2010, 38(3): 153-154 (in Chinese)
[27] 姚金保, 陆维忠. 小麦新品种生选6号的丰产稳产性和赤霉病抗性分析. 麦类作物学报, 2012, 32: 793-798
Yao J B, Lu W Z.Analysis of yield potential, yield stability and resistance to Fusarium head blight of new wheat cultivar Shengxuan 6.J Triticeae Crops, 2012, 32: 793-798 (in Chinese with English abstract)
[28] 张旭, 姜朋, 叶人元, 吴磊, 张瑜, 马鸿翔. 宁麦9号及其衍生品种的赤霉病抗性分析与抗性溯源. 分子植物育种, 2017, 15: 1053-1060
Zhang X, Jiang P, Ye R Y, Wu L, Zhang Y, Ma H X.Evaluation and source tracing of resistance to Fusarium head blight in wheat variety Ningmai 9 and its derivatives.Mol Plant Breed, 2017, 15: 1053-1060 (in Chinese with English abstract)
[1] MA Hong-Bo, LIU Dong-Tao, FENG Guo-Hua, WANG Jing, ZHU Xue-Cheng, ZHANG Hui-Yun, LIU Jing, LIU Li-Wei, YI Yuan. Application of Fhb1 gene in wheat breeding programs for the Yellow-Huai Rivers valley winter wheat zone of China [J]. Acta Agronomica Sinica, 2022, 48(3): 747-758.
[2] HUANG Yi-Wen, DAI Xu-Ran, LIU Hong-Wei, YANG Li, MAI Chun-Yan, YU Li-Qiang, YU Guang-Jun, ZHANG Hong-Jun, LI Hong-Jie, ZHOU Yang. Relationship between the allelic variations at the Ppo-A1 and Ppo-D1 loci and pre-harvest sprouting resistance in wheat [J]. Acta Agronomica Sinica, 2021, 47(11): 2080-2090.
[3] LIU Pei-Xun,MA Xiao-Fei,WAN Hong-Shen,ZHENG Jian-Min,LUO Jiang-Tao,PU Zong-Jun. Comparative proteomic analysis of two wheat genotypes with contrasting grain softness index [J]. Acta Agronomica Sinica, 2020, 46(8): 1275-1282.
[4] HAO Zhi-Ming,GENG Miao-Miao,WEN Shu-Min,YAN Gui-Jun,WANG Rui-Hui,LIU Gui-Ru. Development and validation of markers linked to genes resistant to Sitodiplosis mosellana in wheat [J]. Acta Agronomica Sinica, 2020, 46(02): 179-193.
[5] Ping ZHANG,Yi-Mei JIANG,Peng-Hui CAO,Fu-Lin ZHANG,Hong-Ming WU,Meng-Ying CAI,Shi-Jia LIU,Yun-Lu TIAN,Ling JIANG,Jian-Min WAN. Introducing qSS-9 Kas into Ningjing 4 by molecular marker-assisted selection to improve its seed storage ability [J]. Acta Agronomica Sinica, 2019, 45(3): 335-343.
[6] HU E-E, ZHANG Na, LI Lin-Mao, YANG Wen-Xiang, LIU Da-Qun. Analysis of Wheat Leaf Rust Resistance Genes in 14 Wheat Cultivars or Lines [J]. Acta Agron Sin, 2011, 37(12): 2158-2166.
[7] ZHANG Hong-Gen, HU Zuo-Peng, LI Peng, LI Bo, LIU Chao, ZHU Bang-Hui, XU Ji-Fen, CHOU Zhong-Yi, TANG Shu-Zhu, LIANG Guo-Hua, GU Ming-Hong. Improving the Resistance of Wuyunjing 8 to Rice Stripe Virus via Molecular Marker-Assisted Selection [J]. Acta Agron Sin, 2011, 37(05): 745-754.
[8] XU Zhong-Qing, ZHANG Shu-Ying, WANG Rui, WANG Wen-Li, ZHOU Xin-Li, YIN Jun-Liang, CHEN Jie, JING Jin-Xue. Genetic Analysis and Molecular Mapping of Stripe Rust Resistance Gene in Wheat Line M8003-5 [J]. Acta Agron Sin, 2010, 36(12): 2116-2123.
[9] ZHANG Wen-Long, YANG Wen-Peng, CHEN Zhi-Wei, WANG Ming-Chun, YANG Liu-Qi, CAI Yi-Lin. Molecular Marker-Assisted Selection for Corn o2 Introgression Lines with o16 Gene [J]. Acta Agron Sin, 2010, 36(08): 1302-1309.
[10] DING Yan-Hong, LIU Huan, SHI Li-Hong, WEN Xiao-Lei, ZHANG Na, YANG Wen-Xiang, LIU Da-Qun. Wheat Leaf Rust Resistance in 28 Chinese Wheat Mini-Core Collections [J]. Acta Agron Sin, 2010, 36(07): 1126-1134.
[11] LIU Wu-Ge;WANG Feng;JIN Su-Juan;ZHU Xiao-Yuan;LI Jin-Hua;LIU Zhen-Rong;LIAO Yi-Long;ZHU Man-Shan;HUANG Hui-Jun; FU Fu-Hong;LIU Yi-Bai. Improvement of Rice Blast Resistance in TGMS Line by Pyramiding of Pi-1 and Pi-2 through Molecular Marker-Assisted Selection [J]. Acta Agron Sin, 2008, 34(07): 1128-1136.
[12] LI Jin-Bo;WANG Chun-Lian;XIA Ming-Yuan;ZHAO Kai-Jun ;QI Hua-Xiong ;WAN Bing-Liang;ZHA Zhong-Ping;LU Xing-Gui. Enhancing Bacterial Blight Resistance of Hybrid Rice Restorer Lines through Marker-Assisted Selection of the Xa23 Gene [J]. Acta Agron Sin, 2006, 32(10): 1423-1429.
[13] LIU Qiao-Quan;CAI Xiu-Ling;LI Qian-Feng;TANG Shu-Zhu;GONG Zhi-Yun;YU Heng-Xiu;YAN Chang-Jie;WANG Zong-Yang and GU Ming-Hong. Molecular Marker-assisted Selection for Improving Cooking and Eating Quality in Teqing and Its Hybrid Rice [J]. Acta Agron Sin, 2006, 32(01): 64-69.
[14] YI Cheng-Xin;WANG Ye-Chun;GUO Wang-Zhen;ZHU Xie-Fei;ZHANG Tian-Zhen. Pyramid Breeding by Marker-assisted Recurrent Selection in Upland Cotton [J]. Acta Agron Sin, 2004, 30(07): 680-685.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!