Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2019, Vol. 45 ›› Issue (1): 18-25.doi: 10.3724/SP.J.1006.2019.84078

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Molecular identification of a new soybean germplasm Zhonghuang 608 lacking of 7S globulin alpha' subunit

Jun-Ying LI1,2(),Ru-Jian SUN2,3,Zhong-Feng LI2,Zhong-Yan WEI2,Yu-Long REN2,Jun WANG1,*(),Li-Juan QIU2,*()   

  1. 1 College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
    2 Key Laboratory of Crop Germplasm Utilization, Ministry of Agriculture, Institute of Crop Sciences, Chinese Academy of Agricultural Science, Beijing 100081, China / National Key Facility for Gene Resources and Genetic Improvement, Beijing 100081, China
    3 Hulun Buir Institution of Agricultural Sciences, Zhalantun 162650, Inner Mongolia, China
  • Received:2018-06-02 Accepted:2018-10-08 Online:2018-11-06 Published:2018-11-06
  • Contact: Jun WANG,Li-Juan QIU E-mail:13051379117@163.com;wjsoybean_2008@163.com;qiulijuan@caas.cn
  • Supported by:
    The study was supported by the National Key R&D Program for Crop Breeding(2016YFD0100201);the National Soybean Germplasm Resources Platform.(2016-004)

Abstract:

The content of alpha' subunit of 7S globulin has an important effect on the nutritional quality and processing characteristics in soybean. In this study, using polyacrylamide gel electrophoresis (SDS-PAGE) and Western blotting, Zhonghuang 608 (ZH608), an α' subunit deletion mutant, was identified from the Zhongpin 661 (ZP661) EMS mutant library. Zhonghuang 608 was crossed to the soybean variety Dengke 1, and self-pollinated to establish an F2 segregating population composed of 210 individuals. Genetic analysis showed that the alpha' subunit deletion trait in ZH608 was controlled by a single recessive nuclear gene. By linkage analysis we mapped the locus between SSR10-1489 and SSR10-1612 on chromosome 10. Coincidentally, in the mapping region Cgy-1 (Glyma.10G246300) was annotated as an alpha' subunit synthesis-related gene according to the Williams 82 reference genome. Further sequence analysis showed that the mutant had a single base change (G 84 to A 84) in the first exon of Cgy-1, which resulted in the premature termination of the amino acid sequence. Based on the newly discovered SNP mutation, a co-dominant molecular marker was developed, and used to detect the genotypes of those F2 individuals. The results indicated that the Cgy-1 genotype cosegregated with the alpha' subunit phenotype in the F2 segregating population of Zh608 and Dengke 1. This study not only provides new materials for quality improvement, but also offers technical support for molecular breeding in soybean.

Key words: soybean, alpha' sunbunit, mutant, 7S globulin, dCAPS marker

Table 1

Primers for amplifying the Cgy-1 by PCR"

引物名称
Name
引物序列
Sequence of primer (5'-3')
PCR产物长度
PCR product size (bp)
退火温度
Annealing temperature (℃)
Cgy1-A Forward: AGCCCAAAACATTCACCAAC 1598 58
Reverse: AGGACTGTTGAGCTTGAGTGC
Cgy1-B Forward: CGCCATACCCGTTAACAAAC 1702 58
Reverse: TTGTGGCAGGACATTGCTAC

Table 2

Primers and restriction endonuclease of the dCAPS marker"

标记
Marker
突变位点
SNP

Enzyme
引物序列
Sequence of primer (5'-3')
退火温度
Tm (℃)
PCR片段长度
PCR product
Size (bp)
酶切后片段长度
Product size after digestion by Taq I
GM7S-1 G/A Taq I F: TCTCATTTGGCATTGCGTATCG
R: TTGACCTTCTTCGCATTCT
55 158 158 bp/(138 bp+20 bp)

Fig. 1

Phenotype of the α' protein subunit mutant by SDS-PAGE a: protein profiles of the α' subunit deletion mutant ZH608 and the wild-type ZP661 by SDS-PAGE. b: α' subunit mutant trait of ten individuals derived from ZH608 validated by SDS-PAGE (lanes 1-8)."

Table 3

Genetic analysis of the α' subunit deletion mutant in an F2 segregated population of ZH608 and Dengke 1"

表型
Phenotype
观测值
Observed value
期望值
Excepted value
χ2(3:1) P
P-value
突变体(α'亚基缺失) Mutant (α' subunit deletion) 64 53 1.43 0.08
野生型 Wild type 146 157
共计 Total 210 210

Fig. 2

Genetic and physical mapping of the α' subunit deletion mutant Zhonghuang 608 a: the candidate gene Cgy-1 was mapped to between SSR marker SSR10-0982 and SSR10-1638 by using 210 F2 individuals. b: the candidate interval was reduced to SSR10-1489 and SSR10-1619 by SSR polymorphic markers. c: the mutation of eighty-fourth bases at the first exon of Cgy-1 gene in the mutant Zhonghuang 608, resulted in pre-terminating of encoding amino acid. Blue boxes, white boxes, and black lines represent exons, 5' UTR/3' UTR and introns, respectively."

Fig. 3

SDS-PAGE (a) and Western blot (b) results of mutants and wild type a: the result of SDS-PAGE showed that the mutant ZH608 lacked α' subunit. b: in antibody hybridization results showed that the wild type (ZH608) had two bands and the mutant (ZP661) lacked the α' subunit band."

Fig. 4

A agarose detection for amplified products and enzyme products a: the single fragment was detected for the amplified PCR product of both the wild type and the mutant by the primer GM7S-1. b: the PCR product of ZH608 was cleaved into two smaller fragments by the restriction enzyme Taq I."

Fig. 5

Genotyping of some F2 individuals by the dCAPS marker P1 is the female parent, and P2 male parent. G, A, and H represent the wild type, mutant, and heterozygous genotype, respectively."

Fig. 6

Distribution of 11S/7S ratio for materials with and without α' subunit in F2 population"

[1] Shu X O, Jin F, Dai Q, Wen W, Potter J D, Kushi L H, Ruan Z, Gao Y T, Zheng W . Soyfood intake during adolescence and subsequent risk of breast cancer among Chinese women. Cancer Epidemiol Biomarkers Prev, 2001,10:483-488.
doi: 10.1080/030144601300119061 pmid: 11352858
[2] Fukui K, Tachibana N, Wanezaki S, Tsuzaki S, Takamatsu K, Yamamoto T, Hashimoto Y Shimoda T . Isoflavone-free soy protein prepared by column chromatography reduces plasma cholesterol in rats. J Agric Food Chem, 2002,50:5717-5721.
doi: 10.1021/jf025642f pmid: 12236704
[3] Huang W, Wood C, L’Abbé M R, Gilani G S, Cockell K A, Xiao C W . Soy protein isolate increases hepatic thyroid hormone receptor content and inhibits its binding to target genes in rats. J Nutr, 2005,135:1631-1635.
doi: 10.1038/sj.ijo.0802967 pmid: 15987841
[4] Lo W M Y, Li-Chan E C Y . Angotensin I converting enzyme inhibitory peptides from in vitro pepsin-pencreatin digestion of soy protein. J Agric Food Chem, 2005,53:3369-3376.
doi: 10.1021/jf048174d pmid: 15853374
[5] Tsuruki T, Takahata K, Yoshikawa M . Anti-alopecia mechanisms of soymetide-4, an immunostimulating peptide derived from soy β-conglycinin. Peptides, 2005,26:707-711.
doi: 10.1016/j.peptides.2005.01.010 pmid: 15808899
[6] Cordle C T . Soy protein allergy: Incidence and relative severity. J Nutr, 2004,134:1213S-1219S.
doi: 10.1038/sj.ijo.0802613 pmid: 15113974
[7] Fukushima D . Recent progress of soybean protein foods: chemistry, technology and nutrition. Food Rev Int, 1991,7:323-351.
doi: 10.1080/87559129109540915
[8] 刘春, 王显生, 麻浩 . 大豆种子贮藏蛋白亚基特异种质的蛋白功能性评价. 中国油脂, 2008,33(8):31-36.
doi: 10.3321/j.issn:1003-7969.2008.08.009
Liu C, Wang X S, Ma H . Evaluations on functional properties of soybean protein isolates prepared from cultivars with seed storage protein subunits variation. China Oils Fats, 2008,33(8):31-36 (in Chinese with English abstract).
doi: 10.3321/j.issn:1003-7969.2008.08.009
[9] Wolf W J, Briggs D R . Ultracentrifugal investigation of the effect of neutral salts on the extraction of soybean proteins. Archives Biochem Biophys, 1956,63:40-49.
doi: 10.1016/0003-9861(56)90007-8 pmid: 13341041
[10] Krishnan H B, Kim W S, Jang S, Kerley M S . All three subunits of soybean beta-conglycinin are potential food allergens. J Agric Food Chem, 2011,57:938-943.
doi: 10.1021/jf802451g pmid: 19138084
[11] 周瑞宝, 周兵 . 大豆7S和11S球蛋白的结构和功能性质. 中国粮油学报, 1998, (6):39-42.
Zhou R B, Zhou B , The structure and functional properties of soybean 7S and 11S globulin proteins. J Chin Cereal Oil Ass, 1998, (6):39-42 (in Chinese with English abstract).
[12] Mohamad Ramlan B M, Maruyama N, Takahashi K, Yagasaki K, Higasa T, Matsumura Y, Utsumi S . Gelling properties of soybean beta-conglycinin having different subunit compositions. Biosci Biotechnol Biochem, 2004,68:1091-1096.
doi: 10.1271/bbb.68.1091 pmid: 15170114
[13] Fukushima D . Structures of plant storage proteins and their functions. Food Reviews Int, 1991,7:353-381.
doi: 10.1080/87559129109540916
[14] Fukushima D . Recent progress of soybean protein foods: chemistry, technology, and nutrition. Food Reviews Int, 1991,7:323-351.
doi: 10.1080/87559129109540915
[15] Kitamura K, Kaizuma N . Mutant strains with low level of subunits of 7S globulin in soybean (Glycine max Merr.) seed. Jpn J Breed, 2008,31:353-359.
[16] Takahashi K, Banba H, Kikuchi A, Ito M, Nakamura S . An induced mutant line lacking the alpha-subunit of beta-conglycininin soybean (Glycine max(L.) Merrill). Jpn J Breed, 1994,44:65-66.
[17] Kitamura K, Davies C S, Nielsen N C . Inheritance of alleles for Cgy 1 and Gy 4 storage protein genes in soybean. Theor Appl Genet, 1984,68:253-257.
doi: 10.1007/BF00266899 pmid: 24259062
[18] Teraishi M, Takahashi M, Hajika M, Matsunaga R, Uematsu Y, Ishimoto M . Suppression of soybean β-conglycinin genes by a dominant gene,Scg-1. Theor Appl Genet, 2001,103:1266-1272.
[19] 宋波, 蓝岚, 田福东, 拓云, 白月, 姜自芹, 申丽威, 李文滨, 刘珊珊 . 大豆7S球蛋白α'亚基缺失及(α'+α)亚基双缺失品系的回交转育. 作物学报, 2012,38:2297-2305.
doi: 10.3724/SP.J.1006.2012.02297
Song B, Lan L, Tian F D, Tuo Y, Bai Y, Jiang Z Q, Shen L W, Li W B, Liu S S . Development of soybean lines with α'-subunit or (α'+α)-subunits deficiency in 7S globulin by backcrossing, Acta Agron Sin, 2012,38:2297-2305 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2012.02297
[20] 刘珊珊, 王志坤, 葛玉君, 刁桂珠, 田福东, 高丽辉, 李文滨 . 大豆7S球蛋白亚基相对含量与品质性状间的相关分析. 中国油料作物学报, 2008,30:284-289.
doi: 10.3321/j.issn:1007-9084.2008.03.004
Liu S S, Wang Z K, Ge Y J, Diao G Z, Tian F D, Gao L H, Li W B . Correlations between relative content of individual subunit of 7S globulin and quality characteristics in soybean germplasm. J Chin Cereals Oils Assoc, 2008,30:284-289 (in Chinese with English abstract).
doi: 10.3321/j.issn:1007-9084.2008.03.004
[21] Song Q J, Jia G F, Zhu Y L, Grant D, Nelson R T, Hwang E Y . Abundance of SSR motifs and development of candidate polymorphic SSR markers (barcsoyssr_1.0) in soybean. Crop Sci, 2010,50:1950-1960.
doi: 10.2135/cropsci2009.10.0607
[22] Li Z F, Jiang L X, Ma Y S, Wei Z Y, Hong H L, Liu Z X, Lei J H, Liu Y, Guan R X, Guo Y, Jin L G, Zhang L J, Li Y H, Ren Y L, He W, Liu M, Nan M P, Liu L, Guo B F, Song J, Tan B, Liu G F, Li M Q, Zhang X L, Liu B, Shi X H, Han S N, Hua S N, Zhou F L, Yu L L, Li Y F, Wang S, Wang J, Chang R Z, Qiu L J . Development and utilization of a new chemically induced soybean library with a high mutation density. J Integr Plant Biol, 2017,59:60-74.
doi: 10.1111/jipb.12505 pmid: 5248594
[23] Murray M G, Thompson W F . Rapid isolation of high molecular weight plant DNA. Nucl Acids Res, 1980,8:4321-4325.
doi: 10.1093/nar/8.19.4321
[24] Yagasaki K, Takagi T, Sakai M, Kitamura K . Biochemical characterization of soybean protein consisting of different subunits of glycinin. J Agric Food Chem, 1997,45:656-660.
doi: 10.1021/jf9604394
[25] Harada J J, Barker S J, Goldberg R B . Soybean beta-conglycinin genes are clustered in several DNA regions and are regulated by transcriptional and posttranscriptional processes. Plant Cell, 1989,1:415-425.
doi: 10.2307/3869102 pmid: 2562562
[26] Poysa V, Woodrow L, Yu K . Effect of soy protein subunit composition on tofu quality. Food Res Int, 2006,39:309-317.
doi: 10.1016/j.foodres.2005.08.003
[27] 刘珊珊, 滕卫丽, 姜自芹, 张彬彬, 葛玉君, 刁桂珠, 郑天慧, 曾蕊, 李文滨 . 大豆7S球蛋白α-亚基缺失型种质创新. 作物学报, 2010,36:1409-1413.
doi: 10.3724/SP.J.1006.2010.01409
Liu S S, Teng W L, Jiang Z Q, Zhang B B, Ge Y J, Diao G Z, Zheng T H, Jiang Z Q, Zeng R, Wu S, Li W B . Development of soybean germplasm lacking of 7S globulin α-subunit. Acta Agron Sin, 2010,36:1409-1413 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2010.01409
[28] 宋波, 蓝岚, 田福东, 拓云, 白月, 姜自芹, 申丽威, 李文滨, 刘珊珊 . 大豆7S球蛋白α'亚基缺失及(α'+α)亚基双缺失品系的回交转育. 作物学报, 2012,38:2297-2305.
doi: 10.3724/SP.J.1006.2012.02297
Song B, Lan L, Tian F D, Tuo Y, Bai Y, Jiang Z Q, Shen L W, Li W B, Liu S S . Development of soybean lines with α'-subunit or (α'+α)-subunits deficiency in 7S globulin by backcrossing. Acta Agron Sin, 2012,38:2297-2305 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2012.02297
[29] 张国敏, 张亚琴, 舒英杰, 麻浩 . 三种大豆种子贮藏蛋白亚基缺失种质的筛选与鉴定. 大豆科学, 2015,34:1-8.
Zhang G M, Zhang Y Q, Shu Y J, Ma H . Screening and identification of three type of soybean lines lacking different seed storage protein subunits. Soybean Sci, 2015,34:1-8 (in Chinese with English abstract).
[30] 姜振峰, 赫卫, 汪洋, 李文滨 . 大豆种子7S、11S球蛋白及7S球蛋白亚基的研究. 中国油料作物学报, 2007,29:138-141.
doi: 10.3321/j.issn:1007-9084.2007.02.006
Jiang Z F, He W, Wang Y, Li W B . Study on 7S, 11S globulin of soybean seed. Chin J Oil Crop Sci, 2007,29:138-141 (in Chinese with English abstract).
doi: 10.3321/j.issn:1007-9084.2007.02.006
[31] Liu S, Ohta K, Dong C, Thanh VC, Ishimoto M, Qin Z, Hirata Y . Genetic diversity of soybean (Glycine max (L.) Merrill) 7S globulin protein subunits. Genet Resour Crop Evol, 2006,53:1209-1219.
doi: 10.1007/s10722-005-2434-y
[32] Kim S, Kim M Y, Van K, Lee Y H, Kim H S, Cai C M, Park B S, Seo H S, Lee S H . The development of a co-dominant marker for the β-conglycinin α′ subunit in soybeans. Euphytica, 2011,177:355-363.
doi: 10.1007/s10681-010-0251-7
[33] 张国敏 . 种子贮藏蛋白亚基缺失大豆种质的鉴定及其蛋白质功能性评价与α'亚基缺失的分子机制. 南京农业大学硕士学位论文,江苏南京, 2014.
Zhang G M . Identification of Soybean Lines Lacking Different Seed Storage Protein Subunits, Their Functional Properties of Proteins and the Molecular Mechanism of Lacking α' Subunit. MS Thesis of Nanjing Agriculture University, Nanjing, Jiangsu,China, 2014 (in Chinese with English abstract).
[34] Kitamura K, Kaizuma N . Mutant Strains with low level of subunits of 7S globulin in soybean (Glycine max Merr.) seed. Jpn J Breed, 2008,31:353-359.
[35] Krishnan, Hari B . Engineering soybean for enhanced sulfur amino acid content. Crop Sci, 2005,45:454-461.
doi: 10.2135/cropsci2005.0454
[1] CHEN Ling-Ling, LI Zhan, LIU Ting-Xuan, GU Yong-Zhe, SONG Jian, WANG Jun, QIU Li-Juan. Genome wide association analysis of petiole angle based on 783 soybean resources (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1333-1345.
[2] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[3] YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102.
[4] LI A-Li, FENG Ya-Nan, LI Ping, ZHANG Dong-Sheng, ZONG Yu-Zheng, LIN Wen, HAO Xing-Yu. Transcriptome analysis of leaves responses to elevated CO2 concentration, drought and interaction conditions in soybean [Glycine max (Linn.) Merr.] [J]. Acta Agronomica Sinica, 2022, 48(5): 1103-1118.
[5] PENG Xi-Hong, CHEN Ping, DU Qing, YANG Xue-Li, REN Jun-Bo, ZHENG Ben-Chuan, LUO Kai, XIE Chen, LEI Lu, YONG Tai-Wen, YANG Wen-Yu. Effects of reduced nitrogen application on soil aeration and root nodule growth of relay strip intercropping soybean [J]. Acta Agronomica Sinica, 2022, 48(5): 1199-1209.
[6] WANG Hao-Rang, ZHANG Yong, YU Chun-Miao, DONG Quan-Zhong, LI Wei-Wei, HU Kai-Feng, ZHANG Ming-Ming, XUE Hong, YANG Meng-Ping, SONG Ji-Ling, WANG Lei, YANG Xing-Yong, QIU Li-Juan. Fine mapping of yellow-green leaf gene (ygl2) in soybean (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(4): 791-800.
[7] DU Xiao-Fen, WANG Zhi-Lan, HAN Kang-Ni, LIAN Shi-Chao, LI Yu-Xin, ZHANG Lin-Yi, WANG Jun. Identification and analysis of RNA editing sites of chloroplast genes in foxtail millet [Setaria italica (L.) P. Beauv.] [J]. Acta Agronomica Sinica, 2022, 48(4): 873-885.
[8] LI Rui-Dong, YIN Yang-Yang, SONG Wen-Wen, WU Ting-Ting, SUN Shi, HAN Tian-Fu, XU Cai-Long, WU Cun-Xiang, HU Shui-Xiu. Effects of close planting densities on assimilate accumulation and yield of soybean with different plant branching types [J]. Acta Agronomica Sinica, 2022, 48(4): 942-951.
[9] DU Hao, CHENG Yu-Han, LI Tai, HOU Zhi-Hong, LI Yong-Li, NAN Hai-Yang, DONG Li-Dong, LIU Bao-Hui, CHENG Qun. Improving seed number per pod of soybean by molecular breeding based on Ln locus [J]. Acta Agronomica Sinica, 2022, 48(3): 565-571.
[10] XU Ning-Kun, LI Bing, CHEN Xiao-Yan, WEI Ya-Kang, LIU Zi-Long, XUE Yong-Kang, CHEN Hong-Yu, WANG Gui-Feng. Genetic analysis and molecular characterization of a novel maize Bt2 gene mutant [J]. Acta Agronomica Sinica, 2022, 48(3): 572-579.
[11] ZHOU Yue, ZHAO Zhi-Hua, ZHANG Hong-Ning, KONG You-Bin. Cloning and functional analysis of the promoter of purple acid phosphatase gene GmPAP14 in soybean [J]. Acta Agronomica Sinica, 2022, 48(3): 590-596.
[12] WANG Juan, ZHANG Yan-Wei, JIAO Zhu-Jin, LIU Pan-Pan, CHANG Wei. Identification of QTLs and candidate genes for 100-seed weight trait using PyBSASeq algorithm in soybean [J]. Acta Agronomica Sinica, 2022, 48(3): 635-643.
[13] ZHANG Guo-Wei, LI Kai, LI Si-Jia, WANG Xiao-Jing, YANG Chang-Qin, LIU Rui-Xian. Effects of sink-limiting treatments on leaf carbon metabolism in soybean [J]. Acta Agronomica Sinica, 2022, 48(2): 529-537.
[14] ZHAO Gai-Hui, LI Shu-Yu, ZHAN Jie-Peng, LI Yan-Bin, SHI Jia-Qin, WANG Xin-Fa, WANG Han-Zhong. Mapping and candidate gene analysis of silique number mutant in Brassica napus L. [J]. Acta Agronomica Sinica, 2022, 48(1): 27-39.
[15] LI Ling-Hong, ZHANG Zhe, CHEN Yong-Ming, YOU Ming-Shan, NI Zhong-Fu, XING Jie-Wen. Transcriptome profiling of glossy1 mutant with glossy glume in common wheat (Triticum aestivum L.) [J]. Acta Agronomica Sinica, 2022, 48(1): 48-62.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!