Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2020, Vol. 46 ›› Issue (02): 214-227.doi: 10.3724/SP.J.1006.2020.94067


Candidate genes screening for plant height and the first branch height based on QTL mapping and genome-wide association study in rapessed (Brassica napus L.)

HUO Qiang1,2,YANG Hong1,2,CHEN Zhi-You1,2,JIAN Hong-Ju1,2,QU Cun-Min1,2,LU Kun1,2,LI Jia-Na1,2,*()   

  1. 1 College of Agronomy and Biotechnology, Southwest University / Chongqing Engineering Research Center for Rapeseed, Chongqing 400715, China
    2 Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
  • Received:2019-04-28 Accepted:2019-08-09 Online:2020-02-12 Published:2019-09-02
  • Contact: Jia-Na LI E-mail:ljn1950@swu.edu.cn
  • Supported by:
    This study was supported by the Special Project of Chongqing People’s Livelihood(cstc2016shms-ztzx80020);the National-Yunnan United Natural Science Foundation of China(U1302266);the National Key Research and Development Plan(2018YFD0100504-05)


Plant height (PH) and the first branch height (BH) are important agronomic traits closely related to thickness of pod canopy and harvest index of Brassica napus. There are many reports on quantitative trait locus (QTL) and genome-wide association study (GWAS) for PH, but few reports on QTL and GWAS localization and candidate gene screening for BH. In this study, QTLs for PH and BH using the 186 recombinant inbred lines (RIL) in the two environments of 2016 and 2017 were detected based on the high-density genetic linkage map. A total of eight PH QTLs located on chromosomes A03, A04, and A09 were detected in the two environments of 2016 and 2019, with the explained phenotypic variation of individual QTL range from 4.60% to 13.29%, among which overlapped QTLs (q-2017PH-A04-2 and q-BLUP-PH-A04-2) were detected both in 2017 and based on Best Linear Unbiased Prediction (BLUP). Nine BH QTLs located on chromosomes A01, A02, A05, A09, C01, and C05 were detected, in which a single QTL explained 5.12% to 19.10% of phenotypic variation. Among them, q-2017BH-A09-1, q-BLUP-BH-A09-2, and q-BLUP-BH-A09-3 were overlapped. GWAS for PH and BH was performed using 588 resequencing natural populations established by our previous study. A total of 50 SNPs associated with PH and 12 SNPs associated with BH were detected in two years. Thirteen PH candidate genes involved in cell proliferation, cell multiplication, cell cycle and cell wall activity and eleven BH candidate genes involved in the synthesis and metabolism of gibberellin and spermidine, ribosome composition, photosynthesis and germination were screened based on the physical locations of SNPs, and their expressions in extreme phenotypes by qRT-PCR. This result will provide a theoretical basis for improving plant architecture and subsequent functional studies of genes.

Key words: Brassica napus, plant height, first branch height, gene localization, candidate gene screening

Table 1

List of primer sequences for candidate genes"

Gene name
Primer sequence (5°-3°)

Table 2

Phenotypic variation of plant height and the first branch height in two populations"

Mean ± SD
CV (%)
h2 (%)
ZY821父本株高 RIL 2016 190.80±6.85
ZY821♂ PH 2017 184.33±11.74
GH06母本株高 RIL 2016 217.40±5.61
GH06♀ PH 2017 187.33±10.8
ZY821父本一次有效分枝高度 RIL 2016 86.25±5.35
ZY821♂ BH 2017 68.63±11.54
GH06母本一次有效分枝高度 RIL 2016 83.00±6.70
GH06♀ BH 2017 95.14±15.67
株高PH RIL 2016 213.82±11.20 187.0-241.6 5.24 75.45
2017 207.26±11.91 163.0-238.4 5.75
N 2016 211.84±18.15 162.2-259.0 8.57 87.42
2017 204.39±20.76 127.4-262.4 10.16
一次有效分枝高度BH RIL 2016 85.26±15.84 49.6-118.0 18.58 68.77
2017 82.85±14.69 50.1-123.6 17.73
N 2016 84.17±22.43 19.0-142.8 26.65 82.21
2017 82.90±23.09 11.0-141.1 27.86

Fig. 1

Frequency distribution of plant height and the first branch height in two populations PH: plant height; BH: the first branch height; RIL: recombinant inbred lines; N: natural population."

Fig. 2

Putative QTL locations of plant height and the first branch height on the SNP genetic map"

Table 3

Putative QTLs for plant height and the first branch height detected in two years"

LOD score
Additive effect
R2 (%)
SNP interval
Physical position (bp)
株高 PH
q-2016PH-A03-1 A03 2.87 4.27 13.29 SNP6093-SNP6075 18421721-18543828 2016
q-2016PH-A09-1 A09 3.51 -3.81 11.28 KS30880-H112B21-1 2016
q-2017PH-A04-1 A04 2.79 2.71 4.92 SNP8751-SNP8781 14085289-14244618 2017
q-2017PH-A04-2 A04 3.26 2.93 5.75 SNP8596-SNP8650 13373664-13531885 2017
q-2017PH-A09-1 A09 5.20 -5.58 9.63 SNP46371-SNP20466 22590345-23259990 2017
q-2017PH-A09-2 A09 4.16 -5.81 7.55 SNP20486-SNP20487 23517031-23521212 2017
q-2017PH-A09-3 A09 4.72 -5.40 8.51 SNP20492-SNP20496 23603951-23642701 2017
q-2017PH-A09-4 A09 4.31 -4.55 7.86 KS10551-KS10551 2017
q-BLUP-PH-A04-1 A04 4.25 1.43 7.60 SNP8701-SNP8801 13798050-14401987 BLUP
q-BLUP-PH-A04-2 A04 3.45 1.31 6.27 SNP8596-SNP8650 13373664-13531885 BLUP
q-BLUP-PH-A09-1 A09 2.60 -1.36 4.60 ENA22-niab_ssr003 BLUP
一次有效分枝高度 BH
q-2016BH-A02-1 A02 4.14 6.24 13.56 SNP3957-SNP3759 22556597-23778808 2016
q-2016BH-C05-1 C05 5.26 7.49 19.10 SNP26887-SNP26897 4224409-4258940 2016
q-2017BH-A01-1 A01 4.78 -5.53 9.15 SNP1148-SNP1370 17881769-19687948 2017
q-2017BH-A01-2 A01 3.08 -4.64 6.03 SNP47359-SNP1693 20189127-21190484 2017
q-2017BH-A09-1 A09 2.69 -3.46 5.36 SNP21394-SNP46209 32375997-32618214 2017
q-2017BH-C01-1 C01 6.16 6.22 12.17 SNP38247-SNP38236 11120369-11162114 2017
q-BLUP-BH-A05-1 A05 2.76 1.25 5.12 SNP11708-SNP11713 20293807-20374178 BLUP
q-BLUP-BH-A09-1 A09 4.60 -1.66 9.32 SNP21425-SNP21477 32728408-33029776 BLUP
q-BLUP-BH-A09-2 A09 6.52 -1.95 13.09 SNP21413-SNP21402 32435925-32608817 BLUP
q-BLUP-BH-A09-3 A09 4.62 -1.64 9.48 SNP21405-SNP21415 32514368-32619386 BLUP
q-BLUP-BH-C05-1 C05 2.77 1.23 5.51 SNP44674-SNP47114 11206177-11417643 BLUP


Quantile-quantile plot for six models and Manhattan plots of association analysis using the optimal model for plant height and the first branch height in two years PH: plant height; BH: the first branch height; BLUP: best linear unbiased prediction."

Supplementary table 1

Summary of significant SNPs for plant height and the first branch height by using the best model"

-lg (P)
R2 (%)
PH 2016 K+PCA S3_24415510 A03 24415510 5.69 20.05
2017 K+PCA S2_4664084 A02 4664084 5.84 6.72
S7_19604035 A07 19604035 6.24 7.41
S7_19609237 A07 19609237 6.01 6.81
S7_19665408 A07 19665408 5.85 7.06
S7_19781536 A07 19781536 5.87 7.36
S7_19889261 A07 19889261 5.64 7.20
S7_19890772 A07 19890772 5.66 6.94
S7_19902486 A07 19902486 5.77 7.52
S7_19993228 A07 19993228 5.63 6.59
S7_19993448 A07 19993448 6.07 6.88
S7_19993458 A07 19993458 5.69 6.42
S7_19994131 A07 19994131 6.45 7.69
S7_19997901 A07 19997901 5.71 6.67
S7_19998470 A07 19998470 6.37 7.52
S7_19999615 A07 19999615 6.07 7.05
S7_19999649 A07 19999649 5.63 7.52
S7_20000927 A07 20000927 6.31 7.47
S7_20003694 A07 20003694 5.79 6.83
S7_20005472 A07 20005472 6.67 7.80
S7_20006012 A07 20006012 6.50 7.73
S7_20006528 A07 20006528 5.87 7.09
S7_20009397 A07 20009397 5.86 6.67
S7_20009417 A07 20009417 6.19 7.04
S7_20033861 A07 20033861 6.11 6.88
S7_20050137 A07 20050137 5.96 8.10
S7_20050232 A07 20050232 6.22 7.74
S7_20053742 A07 20053742 6.72 7.72
S7_20056543 A07 20056543 5.65 6.53
S7_20079034 A07 20079034 5.76 7.36
S7_20107214 A07 20107214 7.69 9.22
S7_20107455 A07 20107455 6.40 7.44
S7_20107531 A07 20107531 6.31 8.24
S7_20108117 A07 20108117 5.75 6.74
S7_20125834 A07 20125834 6.37 7.28
S7_20144336 A07 20144336 6.16 7.20
S7_20154451 A07 20154451 6.42 8.22
S7_20160199 A07 20160199 5.84 7.20
S7_20171415 A07 20171415 5.87 6.65
S7_20171839 A07 20171839 6.46 7.34
S7_20178594 A07 20178594 6.55 7.85
S7_20178844 A07 20178844 6.23 7.54
S7_20178851 A07 20178851 5.93 7.18
S7_20186093 A07 20186093 5.79 6.56
S7_20188262 A07 20188262 5.83 6.87
S7_20207662 A07 20207662 5.72 6.70
S7_20547520 A07 20547520 5.71 6.83
S16_30960716 C06 30960716 6.60 7.81
S16_30960741 C06 30960741 7.02 8.31
S16_31108747 C06 31108747 5.89 6.78
BLUP K+PCA S2_4664084 A02 4664084 6.36 7.07
S2_5390778 A02 5390778 5.90 7.03
S7_19604035 A07 19604035 6.64 7.71
S7_19607230 A07 19607230 6.02 6.75
S7_19609237 A07 19609237 5.96 6.47
S7_19665408 A07 19665408 6.05 6.92
S7_19749218 A07 19749218 6.29 7.29
S7_19781536 A07 19781536 6.10 7.37
S7_19856864 A07 19856864 5.73 6.34
S7_19889261 A07 19889261 5.75 7.08
S7_19902486 A07 19902486 5.92 7.19
S7_19902495 A07 19902495 5.69 7.19
S7_19902618 A07 19902618 5.59 6.50
S7_19911177 A07 19911177 5.83 6.72
S7_19923829 A07 19923829 5.68 6.33
S7_19923850 A07 19923850 5.84 6.42
S7_19989673 A07 19989673 5.61 6.35
S7_19993448 A07 19993448 6.07 6.54
S7_19993458 A07 19993458 5.61 6.01
S7_19994131 A07 19994131 6.02 6.74
S7_19997901 A07 19997901 6.04 6.71
S7_19998042 A07 19998042 5.80 6.38
S7_19998470 A07 19998470 5.88 6.50
S7_19999615 A07 19999615 6.09 6.66
S7_20000927 A07 20000927 6.31 7.10
S7_20003694 A07 20003694 6.14 6.84
S7_20005472 A07 20005472 6.76 7.50
S7_20006012 A07 20006012 6.97 7.94
S7_20006186 A07 20006186 5.73 6.36
S7_20006210 A07 20006210 5.77 6.38
S7_20006234 A07 20006234 5.81 6.73
S7_20006528 A07 20006528 6.10 7.05
S7_20008610 A07 20008610 5.71 6.89
S7_20009397 A07 20009397 6.23 6.79
S7_20009417 A07 20009417 6.59 7.15
S7_20030774 A07 20030774 5.75 6.16
S7_20050137 A07 20050137 6.12 7.78
S7_20050232 A07 20050232 6.84 8.25
S7_20050979 A07 20050979 5.61 6.24
S7_20053742 A07 20053742 6.52 7.07
S7_20057981 A07 20057981 5.77 7.00
S7_20082865 A07 20082865 5.76 7.54
S7_20107214 A07 20107214 7.94 8.87
S7_20107455 A07 20107455 6.83 7.64
S7_20107531 A07 20107531 7.26 9.02
S7_20108117 A07 20108117 5.95 6.64
S7_20125834 A07 20125834 6.23 6.77
S7_20144336 A07 20144336 6.62 7.31
S7_20154451 A07 20154451 6.55 7.99
S7_20160199 A07 20160199 6.36 7.53
S7_20171415 A07 20171415 6.24 6.68
S7_20171839 A07 20171839 6.30 6.80
S7_20178594 A07 20178594 6.59 7.55
S7_20178844 A07 20178844 5.93 6.86
S7_20186093 A07 20186093 6.22 6.69
S7_20188262 A07 20188262 6.11 6.84
S7_20198799 A07 20198799 5.65 6.49
S7_20207662 A07 20207662 5.79 6.43
S7_20429083 A07 20429083 5.63 6.38
S7_20547520 A07 20547520 6.69 7.75
S7_20567053 A07 20567053 5.67 6.06
S12_38247607 C02 38247607 5.70 6.43
S16_30166343 C06 30166343 5.96 6.92
S16_30650628 C06 30650628 5.62 6.27
S16_30960716 C06 30960716 6.66 7.47
S16_30960741 C06 30960741 7.24 8.08
S16_31108747 C06 31108747 6.36 6.99
BH 2016 K S13_3400444 C03 3400444 5.67 16.87
S13_12620221 C03 12620221 5.70 16.89
S14_36535069 C04 36535069 5.76 18.36
S19_41983822 C09 41983822 5.75 17.28
2017 K+PCA S2_1549097 A02 1549097 5.80 7.63
S2_1553600 A02 1553600 6.39 7.73
S2_5424292 A02 5424292 6.14 7.01
S2_5503092 A02 5503092 6.19 7.32
S2_5827516 A02 5827516 6.66 7.95
S2_6130942 A02 6130942 5.76 7.02
S12_10249838 C02 10249838 6.06 6.23
S15_7059739 C05 7059739 5.92 6.80
BLUP K+PCA S2_1553600 A02 1553600 5.81 6.55
S2_5503092 A02 5503092 6.09 6.83
S2_5827516 A02 5827516 6.81 7.69
S2_9351215 A02 9351215 5.98 6.95
S2_9351221 A02 9351221 5.89 6.82
S12_10249838 C02 10249838 5.62 6.32
S15_7059739 C05 7059739 6.00 6.49

Table 4

Candidate genes for plant height and the first branch height"

Physical position
in A. thaliana
Functional annotation
BnaA02g09200D A02:4555438-4557323 AT5G55180 O-Glycosyl hydrolases family 17 protein (MCO15.13)
BnaA02g09270D A02:4576434-4582446 AT5G55120 GDP-L-galactose phosphorylase VITAMIN C DEFECTIVE 5 (VTC5)
BnaA03g47940D A03:24664280-24664459 AT4G26320 Arabinogalactan protein 13 (AGP13)
BnaA04g17050D A04:13894646-13897338 AT5G65940 Beta-hydroxyisobutyryl-CoA hydrolase 1 (CHY1)
BnaA04g17120D A04:13961721-13963012 AT2G29350 Senescence-associated gene 13 (SAG13)
BnaA04g17490D A04:14227152-14227949 AT2G30370 Allergen-like protein (CHAL)
BnaA07g27280D A07:19859720-19860312 AT1G68590 Ribosomal protein PSRP-3/Ycf65
BnaA07g28720D A07:20705370-20707220 AT1G70210 CYCD1;1/CYCLIN D1;1
BnaA07g28820D A07:20767232-20773649 AT1G70710 Glycosyl hydrolase 9B1 (GH9B1)
BnaC02g35320D C02:38070292-38074778 AT2G04030 Chaperone protein htpG family protein (CR88)
BnaC06g30260D C06:31058017-31061313 AT1G68580 Agenet domain-containing protein / bromo-adjacent homology (BAH) domain-containing protein (F24J5.18)
BnaC06g30400D C06:31172511-31173663 AT1G69220 Protein kinase superfamily protein (SIK1)
BnaC06g30410D C06:31173893-31177895 AT1G69220 Protein kinase superfamily protein (SIK1)
BnaA01g25960D A01:18111689-18112090 AT3G47370 Ribosomal protein S10p/S20e family protein (RPS20B)
BnaA01g27550D A01:19232447-19236961 AT3G16840 P-loop containing nucleoside triphosphate hydrolases superfamily protein (RH13)
BnaA01g28120D A01:19629034-19630394 AT3G16240 Delta tonoplast integral protein (DELTA-TIP)
BnaA01g29630D A01:20485424-20487751 AT3G14067 Subtilase family protein (SASP)
BnaA01g30830D A01:21042542-21043677 AT3G12145 Leucine-rich repeat (LRR) family protein (FLOR1)
BnaA02g37010D A02:1536206-1537938 AT5G61780 TUDOR-SN protein 2 (Tudor2)
BnaA02g31980D A02:23032463-23034656 AT5G25460 Transmembrane protein, putative (Protein of unknown function, DUF642) (DGR2)
BnaA09g48360D A09:32409788-32410789 AT1G09580 Emp24/gp25L/p24 family/GOLD family protein (F14J9.28)
BnaA09g49220D A09:32795595-32796344 AT1G07830 Ribosomal protein L29 family protein (F24B9.7)
BnaC02g14570D C02:10095432-10098417 AT5G53120 Spermidine synthase 3 (SPDS3)
BnaC02g14600D C02:10119161-10122317 AT5G53090 NAD(P)-binding Rossmann-fold superfamily protein (MFH8.1)

Fig. 4

Relative expression of the candidate genes of plant height in stem apex The error bar shows the standard deviation of three biological replicates. * and ** indicate significantly different expression in stem apex to the control at P < 0.05 and P < 0.01, respectively."

Fig. 5

Relative expression of the candidate genes of the first branch height in stem apex The error bar shows the standard deviation of three biological replicates. * and ** indicate significantly different expression in stem apex to the control at P < 0.05 and P < 0.01, respectively."

[1] Wang B, Smith S M, Li J . Genetic regulation of shoot architecture. Annu Rev Plant Biol, 2018,69:437-468.
doi: 10.1146/annurev-arplant-042817-040422 pmid: 29553800
[2] Cai G, Yang Q, Chen H, Yang Q, Zhang C, Fan C, Zhou Y . Genetic dissection of plant architecture and yield-related traits in Brassica napus. Sci Rep, 2016,6:21625.
doi: 10.1038/srep21625 pmid: 26880301
[3] Wang Y, Li J . Genes controlling plant architecture. Curr Opin Biotechnol, 2006,17:123-129.
doi: 10.1016/j.copbio.2006.02.004 pmid: 16504498
[4] Liu C, Wang J, Huang T, Wang F, Yuan F, Cheng X, Zhang Y, Shi S, Wu J, Liu K . A missense mutation in the VHYNP motif of a DELLA protein causes a semi-dwarf mutant phenotype in Brassica napus. Theor Appl Genet, 2010,121:249-258.
doi: 10.1007/s00122-010-1306-9
[5] Khush G S . Green revolution: the way forward. Nat Rev Genet, 2001,2:815.
doi: 10.1038/35093585 pmid: 11584298
[6] Dill A, Jung H S, Sun T P . The DELLA motif is essential for gibberellin-induced degradation of RGA. Proc Natl Acad Sci USA, 2001,98:14162-14167.
doi: 10.1073/pnas.251534098 pmid: 11717468
[7] Peng J, Carol P, Richards D E, King K E, Cowling R J, Murphy G P, Harberd N P . TheArabidopsis GAI gene defines a signaling pathway that negatively regulates gibberellin responses. Genes Dev, 1997,11:3194-3205.
doi: 10.1101/gad.11.23.3194 pmid: 9389651
[8] Rieu I, Ruiz-Rivero O, Fernandez-Garcia N, Griffiths J, Powers S J, Gong F, Linhartova T, Eriksson S, Nilsson O, Thomas S G, Phillips A L, Hedden P . The gibberellin biosynthetic genes AtGA20ox1 and AtGA20ox2 act, partially redundantly, to promote growth and development throughout theArabidopsis life cycle. Plant J, 2008,53:488-504.
doi: 10.1111/j.1365-313X.2007.03356.x pmid: 18069939
[9] Doebley J, Stec A, Hubbard L . The evolution of apical dominance in maize. Nature, 1997,386:485-488.
doi: 10.1038/386485a0 pmid: 9087405
[10] Lewis J M, Mackintosh C A, Shin S, Gilding E, Kravchenko S, Baldridge G, Zeyen R, Muehlbauer G J . Overexpression of the maizeTeosinte Branched1 gene in wheat suppresses tiller development. Plant Cell Rep, 2008,27:1217-1225.
doi: 10.1007/s00299-008-0543-8
[11] Schumacher K, Schmitt T, Rossberg M, Schmitz G, Theres K . The Lateral suppressor (Ls) gene of tomato encodes a new member of the VHIID protein family. Proc Natl Acad Sci USA, 1999,96:290-295.
doi: 10.1073/pnas.96.1.290 pmid: 9874811
[12] Long J, Barton M K . Initiation of axillary and floral meristems in Arabidopsis. Dev Biol, 2000,218:341-353.
doi: 10.1006/dbio.1999.9572 pmid: 10656774
[13] Li X, Qian Q, Fu Z, Wang Y, Xiong G, Zeng D, Wang X, Liu X, Teng S, Hiroshi F, Yuan M, Luo D, Han B, Li J . Control of tillering in rice. Nature, 2003,422:618-621.
doi: 10.1038/nature01518 pmid: 12687001
[14] Schmitz G, Tillmann E, Carriero F, Fiore C, Cellini F, Theres K . The tomato Blind gene encodes a MYB transcription factor that controls the formation of lateral meristems. Proc Natl Acad Sci USA, 2002,99:1064-1069.
doi: 10.1073/pnas.022516199 pmid: 11805344
[15] 付正莉, 刘蕊, 王宁宁, 朱克明, 陈松, 张洁夫, 谭小力 . 植物分枝发育调控的研究进展. 江苏农业科学, 2018,46(13):17-21.
Fu Z L, Liu R, Wang N N, Zhu K M, Chen S, Zhang J F, Tan X L . Advances in research on regulation of plant branch development. Jiangsu Agric Sci, 2018,46(13):17-21 (in Chinese).
[16] Li H, Li J, Song J, Zhao B, Guo C, Wang B, Zhang Q, Wang J, King G J, Liu K . An auxin signaling gene BnaA3.IAA7 contributes to improved plant architecture and yield heterosis in rapeseed. New Phytol, 2018,222:837-851.
doi: 10.1111/nph.15632 pmid: 30536633
[17] Han K, Lee H Y, Ro N Y, Hur O S, Lee J H, Kwon J K, Kang B C . QTL mapping and GWAS reveal candidate genes controlling capsaicinoid content in Capsicum. Plant Biotechnol J, 2018,16:1546-1558.
doi: 10.1111/pbi.12894 pmid: 29406565
[18] 王嘉, 荆凌云, 荐红举, 曲存民, 谌利, 李加纳, 刘列钊 . 甘蓝型油菜株高、第一分枝高和分枝数的QTL检测及候选基因筛选. 作物学报, 2018,41:1027-1038.
Wang J, Jing L Y, Jian H J, Qu C M, Chen L, Li J N, Liu L Z . Quantitative trait loci mapping for plant height, the first branch height, and branch number and possible candidate genes screening inBrassica napus L. Acta Agron Sin, 2018,41:1027-1038 (in Chinese with English abstract).
[19] Zhao W, Wang X, Wang H, Tian J, Li B, Chen L, Chao H, Long Y, Xiang J, Gan J, Liang W, Li M . Genome-wide identification of QTL for seed yield and yield-related traits and construction of a high-density consensus map for QTL comparison in Brassica napus. Front Plant Sci, 2016,7:17.
doi: 10.3389/fpls.2016.00017 pmid: 26858737
[20] Luo Z, Wang M, Long Y, Huang Y, Shi L, Zhang C, Liu X, Fitt B D L, Xiang J, Mason A S, Snowdon R J, Liu P, Meng J, Zou J . Incorporating pleiotropic quantitative trait loci in dissection of complex traits: seed yield in rapeseed as an example. Theor Appl Genet, 2018,130:1569-1585.
doi: 10.1007/s00122-017-2911-7 pmid: 28455767
[21] 贺亚军, 吴道明, 傅鹰, 钱伟 . 利用DH和IF2群体检测甘蓝型油菜株高相关性状QTL. 作物学报, 2018,44:533-541.
doi: 10.3724/SP.J.1006.2018.00533
He Y J, Wu D M, Fu Y, Qian W . Detection of QTLs for plant height related traits in Brassica napus L. using DH and immortalized F2 population. Acta Agron Sin, 2018,44:533-541 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2018.00533
[22] Shen Y, Xiang Y, Xu E, Ge X, Li Z . Major co-localized QTL for plant height, branch initiation height, stem diameter, and flowering time in an alien introgression derivedBrassica napus DH population. Front Plant Sci, 2018,9:390.
doi: 10.3389/fpls.2018.00390 pmid: 29643859
[23] Zheng M, Peng C, Liu H, Tang M, Yang H, Li X, Liu J, Sun X, Wang X, Xu J, Hua W, Wang H . Genome-wide association study reveals candidate genes for control of plant height, branch initiation height and branch number in rapeseed (Brassica napus L.). Front Plant Sci, 2017,8:1246.
doi: 10.3389/fpls.2017.01246 pmid: 28769955
[24] Sun C, Wang B, Yan L, Hu K, Liu S, Zhou Y, Guan C, Zhang Z, Li J, Zhang J, Chen S, Wen J, Ma C, Tu J, Shen J, Fu T, Yi B . Genome-wide association study provides insight into the genetic control of plant height in rapeseed (Brassica napus L.). Front Plant Sci, 2016,7:1102.
doi: 10.3389/fpls.2016.01102 pmid: 27512396
[25] Li F, Chen B, Xu K, Gao G, Yan G, Qiao J, Li J, Li H, Li L, Xiao X, Zhang T, Nishio T, Wu X . A genome-wide association study of plant height and primary branch number in rapeseed (Brassica napus). Plant Sci, 2016,242:169-177.
doi: 10.1016/j.plantsci.2015.05.012 pmid: 26566834
[26] Lu K, Wei L, Li X, Wang Y, Wu J, Liu M, Zhang C, Chen Z, Xiao Z, Jian H, Cheng F, Zhang K, Du H, Cheng X, Qu C, Qian W, Liu L, Wang R, Zou Q, Ying J, Xu X, Mei J, Liang Y, Chai Y R, Tang Z, Wan H, Ni Y, He Y, Lin N, Fan Y, Sun W, Li N N, Zhou G, Zheng H, Wang X, Paterson A H, Li J . Whole-genome resequencing revealsBrassica napus origin and genetic loci involved in its improvement. Nat Commun, 2019,10:1154.
doi: 10.1038/s41467-019-09134-9 pmid: 30858362
[27] Wang S, Basten C, Zeng Z . Windows QTL Cartographer v2.5. Department of statistics, North Carolina State University, 2007, Raleigh, N C.
[28] McCouch S R, Cho Y G, Yano M, Paul E, Blinstrub M, Morishima H, Kinoshita T . Report on QTL nomenclature. Rice Genet Newsl, 1997,14:11-13.
doi: 10.1007/s10142-013-0328-1 pmid: 23813016
[29] Yu J, Pressoir G, Briggs W H, Bi I V, Yamasaki M, Doebley J F, McMullen M D, Gaut B S, Nielsen D M, Holland J B . A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet, 2006,38:203-208.
doi: 10.1038/ng1702 pmid: 16380716
[30] Lu K, Xiao Z, Jian H, Peng L, Qu C, Fu M, He B, Tie L, Liang Y, Xu X, Li J . A combination of genome-wide association and transcriptome analysis reveals candidate genes controlling harvest index-related traits in Brassica napus. Sci Rep, 2016,6:36452.
doi: 10.1038/srep36452 pmid: 27811979
[31] Chalhoub B, Denoeud F, Liu S, Parkin I A P, Tang H, Wang X, Chiquet J, Belcram H, Tong C, Samans B, Corréa M, Da Silva C, Just J, Falentin C, Koh C S, Le Clainche I, Bernard M, Bento P, Noel B, Labadie K, Alberti A, Charles M, Arnaud D, Guo H, Daviaud C, Alamery S, Jabbari K, Zhao M, Edger P P, Chelaifa H, Tack D, Lassalle G, Mestiri I, Schnel N, Le Paslier M C, Fan G, Renault V, Bayer P E, Golicz A A, Manoli S, Lee T H, Thi V H D, Chalabi S, Hu Q, Fan C, Tollenaere R, Lu Y, Battail C, Shen J, Sidebottom C H D, Wang X, Canaguier A, Chauveau A, Bérard A, Deniot G, Guan M, Liu Z, Sun F, Lim Y P, Lyons E, Town C D, Bancroft I, Wang X, Meng J, Ma J, Pires J C, King G J, Brunel D, Delourme R, Renard M, Aury J M, Adams K L, Batley J, Snowdon R J, Tost J, Edwards D, Zhou Y, Hua W, Sharpe A G, Paterson A H, Guan C, Wincker P . Early allopolyploid evolution in the post-NeolithicBrassica napus oilseed genome. Science, 2014,345:950-953.
doi: 10.1126/science.1253435 pmid: 25146293
[32] Raboanatahiry N, Chao H, Dalin H, Pu S, Yan W, Yu L, Wang B, Li M . QTL alignment for seed yield and yield related traits in Brassica napus. Front Plant Sci, 1997,9:1127.
doi: 10.3389/fpls.2018.01127 pmid: 30116254
[33] Shi J, Li R, Qiu D, Jiang C, Long Y, Morgan C, Bancroft I, Zhao J, Meng J . Unraveling the complex trait of crop yield with quantitative trait loci mapping in Brassica napus. Genetics, 2009,182:851-861.
doi: 10.1534/genetics.109.101642 pmid: 19414564
[34] Schultz C J, Johnson K L, Currie G, Bacic A . The classical arabinogalactan protein gene family of Arabidopsis. Plant Cell, 2000,12:1751-1768.
doi: 10.1105/tpc.12.9.1751 pmid: 11006345
[35] 谢田田, 陈玉波, 黄吉祥, 张尧锋, 徐爱遐, 陈飞, 倪西源, 赵坚义 . 甘蓝型油菜不同发育时期株高QTL的动态分析. 作物学报, 2012,38:1802-1809.
doi: 10.3724/SP.J.1006.2012.01802
Xie T T, Chen Y B, Huang J X, Zhang Y F, Xu A X, Chen F, Ni X Y, Zhao J Y . Dynamic analysis of QTL for plant height of rapeseed at different developmental stages. Acta Agron Sin, 2012,38:1802-1809 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2012.01802
[36] Goda H, Sawa S, Asami T, Fujioka S, Shimada Y, Yoshida S . Comprehensive comparison of Auxin-regulated and brassinosteroid-regulated genes in Arabidopsis. Plant Physiol, 1997,134:1555-1573.
doi: 10.1104/pp.103.034736 pmid: 15047898
[37] Lee D J, Park J W, Lee H W, Kim J . Genome-wide analysis of the auxin-responsive transcriptome downstream of iaa1 and its expression analysis reveal the diversity and complexity of auxin-regulated gene expression. J Exp Bot, 2009,60:3935-3957.
doi: 10.1093/jxb/erp230 pmid: 19654206
[38] Redman J C, Haas B J, Tanimoto G, Town C D . Development and evaluation of anArabidopsis whole genome Affymetrix probe array. Plant J, 2004,38:545-561.
doi: 10.1111/j.1365-313X.2004.02061.x pmid: 15086809
[39] Kim D W, Jeon S J, Hwang S M, Hong J C, Bahk J D . The C3H-type zinc finger protein GDS1/C3H42 is a nuclear-speckle-localized protein that is essential for normal growth and development in Arabidopsis. Plant Sci, 2016,250:141-153.
doi: 10.1016/j.plantsci.2016.06.010 pmid: 27457991
[40] Deeken R, Engelmann J C, Efetova M, Czirjak T, Muller T, Kaiser W M, Tietz O, Krischke M, Mueller M J, Palme K, Dandekar T, Hedrich R . An integrated view of gene expression and solute profiles ofArabidopsis tumors: a genome-wide approach. Plant Cell, 2006,18:3617-3634.
doi: 10.1105/tpc.106.044743 pmid: 17172353
[41] Shani Z, Dekel M, Roiz L, Horowitz M, Kolosovski N, Lapidot S, Alkan S, Koltai H, Tsabary G, Goren R, Shoseyov O . Expression of endo-1,4-beta-glucanase (cel1) inArabidopsis thaliana is associated with plant growth, xylem development and cell wall thickening. Plant Cell Rep, 2006,25:1067-1074.
doi: 10.1007/s00299-006-0167-9
[42] Xiong J, Cui X, Yuan X, Yu X, Sun J, Gong Q . The Hippo/STE20 homolog SIK1 interacts with MOB1 to regulate cell proliferation and cell expansion in Arabidopsis. J Exp Bot, 2016,67:1461-1475.
doi: 10.1093/jxb/erv538 pmid: 26685188
[43] Wang Z, Chen F, Li X, Cao H, Ding M, Zhang C, Zuo J, Xu C, Xu J, Deng X, Xiang Y, Soppe W J J, Liu Y . Arabidopsis seed germination speed is controlled by SNL histone deacetylase-binding factor-mediated regulation of AUX1. Nat Commun, 2016,7:13412.
doi: 10.1038/ncomms13412 pmid: 27834370
[44] Rashotte A M, Carson S D, To J P, Kieber J J . Expression profiling of cytokinin action in Arabidopsis. Plant Physiol, 2003,132:1998-2011.
doi: 10.1104/pp.103.021436 pmid: 12913156
[45] Hanzawa Y, Imai A, Michael A J, Komeda Y, Takahashi T . Characterization of the spermidine synthase-related gene family in Arabidopsis thaliana. FEBS Lett, 2002,527:176-180.
doi: 10.1016/s0014-5793(02)03217-9 pmid: 12220656
[46] Liu S, Jia J, Gao Y, Zhang B, Han Y . The AtTudor2, a protein with SN-Tudor domains, is involved in control of seed germination in Arabidopsis. Planta, 2010,232:197-207.
doi: 10.1007/s00425-010-1167-0
[47] Gao Y, Badejo A A, Sawa Y, Ishikawa T . Analysis of two L-galactono-1,4-lactone-responsive genes with complementary expression during the development of Arabidopsis thaliana. Plant Cell Physiol, 2012,53:592-601.
doi: 10.1093/pcp/pcs014
[48] Martinez D E, Borniego M L, Battchikova N, Aro E M, Tyystjarvi E, Guiamet J J . SASP, a Senescence-Associated Subtilisin Protease, is involved in reproductive development and determination of silique number in Arabidopsis. J Exp Bot, 2015,66:161-174.
doi: 10.1093/jxb/eru409 pmid: 25371504
[49] Wei H, Brunecky R, Donohoe B S, Ding S Y, Ciesielski P N, Yang S, Tucker M P, Himmel M E . Identifying the ionically bound cell wall and intracellular glycoside hydrolases in late growth stage Arabidopsis stems: implications for the genetic engineering of bioenergy crops. Front Plant Sci, 2015,6:315.
doi: 10.3389/fpls.2015.00315 pmid: 26029221
[50] Gamboa A, Paez-Valencia J, Acevedo G F, Vazquez-Moreno L, Alvarez-Buylla R E . Floral transcription factor AGAMOUS interacts in vitro with a leucine-rich repeat and an acid phosphatase protein complex. Biochem Biophys Res Commun, 2001,288:1018-1026.
doi: 10.1006/bbrc.2001.5875 pmid: 11689012
[51] Torti S, Fornara F, Vincent C, Andres F, Nordstrom K, Gobel U, Knoll D, Schoof H, Coupland G . Analysis of the Arabidopsis shoot meristem transcriptome during floral transition identifies distinct regulatory patterns and a leucine-rich repeat protein that promotes flowering. Plant Cell, 2012,24:444-462.
doi: 10.1105/tpc.111.092791
[52] Acevedo F G, Gamboa A, Paéz-Valencia J, Jiménez-Garcı́a L F, Izaguirre-Sierra M, Alvarez-Buylla E R . FLOR1, a putative interaction partner of the floral homeotic protein AGAMOUS is a plant-specific intracellular LRR. Plant Sci, 2004,167:225-231.
doi: 10.1016/j.plantsci.2004.03.009
[1] HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356.
[2] CHEN Song-Yu, DING Yi-Juan, SUN Jun-Ming, HUANG Deng-Wen, YANG Nan, DAI Yu-Han, WAN Hua-Fang, QIAN Wei. Genome-wide identification of BnCNGC and the gene expression analysis in Brassica napus challenged with Sclerotinia sclerotiorum and PEG-simulated drought [J]. Acta Agronomica Sinica, 2022, 48(6): 1357-1371.
[3] YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102.
[4] WANG Ze, ZHOU Qin-Yang, LIU Cong, MU Yue, GUO Wei, DING Yan-Feng, NINOMIYA Seishi. Estimation and evaluation of paddy rice canopy characteristics based on images from UAV and ground camera [J]. Acta Agronomica Sinica, 2022, 48(5): 1248-1261.
[5] YUAN Da-Shuang, DENG Wan-Yu, WANG Zhen, PENG Qian, ZHANG Xiao-Li, YAO Meng-Nan, MIAO Wen-Jie, ZHU Dong-Ming, LI Jia-Na, LIANG Ying. Cloning and functional analysis of BnMAPK2 gene in Brassica napus [J]. Acta Agronomica Sinica, 2022, 48(4): 840-850.
[6] FU Mei-Yu, XIONG Hong-Chun, ZHOU Chun-Yun, GUO Hui-Jun, XIE Yong-Dun, ZHAO Lin-Shu, GU Jia-Yu, ZHAO Shi-Rong, DING Yu-Ping, XU Yan-Hao, LIU Lu-Xiang. Genetic analysis of wheat dwarf mutant je0098 and molecular mapping of dwarfing gene [J]. Acta Agronomica Sinica, 2022, 48(3): 580-589.
[7] HUANG Cheng, LIANG Xiao-Mei, DAI Cheng, WEN Jing, YI Bin, TU Jin-Xing, SHEN Jin-Xiong, FU Ting-Dong, MA Chao-Zhi. Genome wide analysis of BnAPs gene family in Brassica napus [J]. Acta Agronomica Sinica, 2022, 48(3): 597-607.
[8] WANG Rui, CHEN Xue, GUO Qing-Qing, ZHOU Rong, CHEN Lei, LI Jia-Na. Development of linkage InDel markers of the white petal gene based on whole-genome re-sequencing data in Brassica napus L. [J]. Acta Agronomica Sinica, 2022, 48(3): 759-769.
[9] WANG Ying, GAO Fang, LIU Zhao-Xin, ZHAO Ji-Hao, LAI Hua-Jiang, PAN Xiao-Yi, BI Chen, LI Xiang-Dong, YANG Dong-Qing. Identification of gene co-expression modules of peanut main stem growth by WGCNA [J]. Acta Agronomica Sinica, 2021, 47(9): 1639-1653.
[10] WANG Yan-Hua, LIU Jing-Sen, LI Jia-Na. Integrating GWAS and WGCNA to screen and identify candidate genes for biological yield in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(8): 1491-1510.
[11] HAN Yu-Zhou, ZHANG Yong, YANG Yang, GU Zheng-Zhong, WU Ke, XIE Quan, KONG Zhong-Xin, JIA Hai-Yan, MA Zheng-Qiang. Effect evaluation of QTL Qph.nau-5B controlling plant height in wheat [J]. Acta Agronomica Sinica, 2021, 47(6): 1188-1196.
[12] LI Jie-Hua, DUAN Qun, SHI Ming-Tao, WU Lu-Mei, LIU Han, LIN Yong-Jun, WU Gao-Bing, FAN Chu-Chuan, ZHOU Yong-Ming. Development and identification of transgenic rapeseed with a novel gene for glyphosate resistance [J]. Acta Agronomica Sinica, 2021, 47(5): 789-798.
[13] TANG Xin, LI Yuan-Yuan, LU Jun-Xing, ZHANG Tao. Morphological characteristics and cytological study of anther abortion of temperature-sensitive nuclear male sterile line 160S in Brassica napus [J]. Acta Agronomica Sinica, 2021, 47(5): 983-990.
[14] ZHOU Xin-Tong, GUO Qing-Qing, CHEN Xue, LI Jia-Na, WANG Rui. Construction of a high-density genetic map using genotyping by sequencing (GBS) for quantitative trait loci (QTL) analysis of pink petal trait in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 587-598.
[15] LI Shu-Yu, HUANG Yang, XIONG Jie, DING Ge, CHEN Lun-Lin, SONG Lai-Qiang. QTL mapping and candidate genes screening of earliness traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 626-637.
Full text



No Suggested Reading articles found!