Acta Agronomica Sinica ›› 2020, Vol. 46 ›› Issue (02): 214-227.doi: 10.3724/SP.J.1006.2020.94067
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
HUO Qiang1,2,YANG Hong1,2,CHEN Zhi-You1,2,JIAN Hong-Ju1,2,QU Cun-Min1,2,LU Kun1,2,LI Jia-Na1,2,*()
[1] |
Wang B, Smith S M, Li J . Genetic regulation of shoot architecture. Annu Rev Plant Biol, 2018,69:437-468.
doi: 10.1146/annurev-arplant-042817-040422 pmid: 29553800 |
[2] |
Cai G, Yang Q, Chen H, Yang Q, Zhang C, Fan C, Zhou Y . Genetic dissection of plant architecture and yield-related traits in Brassica napus. Sci Rep, 2016,6:21625.
doi: 10.1038/srep21625 pmid: 26880301 |
[3] |
Wang Y, Li J . Genes controlling plant architecture. Curr Opin Biotechnol, 2006,17:123-129.
doi: 10.1016/j.copbio.2006.02.004 pmid: 16504498 |
[4] |
Liu C, Wang J, Huang T, Wang F, Yuan F, Cheng X, Zhang Y, Shi S, Wu J, Liu K . A missense mutation in the VHYNP motif of a DELLA protein causes a semi-dwarf mutant phenotype in Brassica napus. Theor Appl Genet, 2010,121:249-258.
doi: 10.1007/s00122-010-1306-9 |
[5] |
Khush G S . Green revolution: the way forward. Nat Rev Genet, 2001,2:815.
doi: 10.1038/35093585 pmid: 11584298 |
[6] |
Dill A, Jung H S, Sun T P . The DELLA motif is essential for gibberellin-induced degradation of RGA. Proc Natl Acad Sci USA, 2001,98:14162-14167.
doi: 10.1073/pnas.251534098 pmid: 11717468 |
[7] |
Peng J, Carol P, Richards D E, King K E, Cowling R J, Murphy G P, Harberd N P . TheArabidopsis GAI gene defines a signaling pathway that negatively regulates gibberellin responses. Genes Dev, 1997,11:3194-3205.
doi: 10.1101/gad.11.23.3194 pmid: 9389651 |
[8] |
Rieu I, Ruiz-Rivero O, Fernandez-Garcia N, Griffiths J, Powers S J, Gong F, Linhartova T, Eriksson S, Nilsson O, Thomas S G, Phillips A L, Hedden P . The gibberellin biosynthetic genes AtGA20ox1 and AtGA20ox2 act, partially redundantly, to promote growth and development throughout theArabidopsis life cycle. Plant J, 2008,53:488-504.
doi: 10.1111/j.1365-313X.2007.03356.x pmid: 18069939 |
[9] |
Doebley J, Stec A, Hubbard L . The evolution of apical dominance in maize. Nature, 1997,386:485-488.
doi: 10.1038/386485a0 pmid: 9087405 |
[10] |
Lewis J M, Mackintosh C A, Shin S, Gilding E, Kravchenko S, Baldridge G, Zeyen R, Muehlbauer G J . Overexpression of the maizeTeosinte Branched1 gene in wheat suppresses tiller development. Plant Cell Rep, 2008,27:1217-1225.
doi: 10.1007/s00299-008-0543-8 |
[11] |
Schumacher K, Schmitt T, Rossberg M, Schmitz G, Theres K . The Lateral suppressor (Ls) gene of tomato encodes a new member of the VHIID protein family. Proc Natl Acad Sci USA, 1999,96:290-295.
doi: 10.1073/pnas.96.1.290 pmid: 9874811 |
[12] |
Long J, Barton M K . Initiation of axillary and floral meristems in Arabidopsis. Dev Biol, 2000,218:341-353.
doi: 10.1006/dbio.1999.9572 pmid: 10656774 |
[13] |
Li X, Qian Q, Fu Z, Wang Y, Xiong G, Zeng D, Wang X, Liu X, Teng S, Hiroshi F, Yuan M, Luo D, Han B, Li J . Control of tillering in rice. Nature, 2003,422:618-621.
doi: 10.1038/nature01518 pmid: 12687001 |
[14] |
Schmitz G, Tillmann E, Carriero F, Fiore C, Cellini F, Theres K . The tomato Blind gene encodes a MYB transcription factor that controls the formation of lateral meristems. Proc Natl Acad Sci USA, 2002,99:1064-1069.
doi: 10.1073/pnas.022516199 pmid: 11805344 |
[15] | 付正莉, 刘蕊, 王宁宁, 朱克明, 陈松, 张洁夫, 谭小力 . 植物分枝发育调控的研究进展. 江苏农业科学, 2018,46(13):17-21. |
Fu Z L, Liu R, Wang N N, Zhu K M, Chen S, Zhang J F, Tan X L . Advances in research on regulation of plant branch development. Jiangsu Agric Sci, 2018,46(13):17-21 (in Chinese). | |
[16] |
Li H, Li J, Song J, Zhao B, Guo C, Wang B, Zhang Q, Wang J, King G J, Liu K . An auxin signaling gene BnaA3.IAA7 contributes to improved plant architecture and yield heterosis in rapeseed. New Phytol, 2018,222:837-851.
doi: 10.1111/nph.15632 pmid: 30536633 |
[17] |
Han K, Lee H Y, Ro N Y, Hur O S, Lee J H, Kwon J K, Kang B C . QTL mapping and GWAS reveal candidate genes controlling capsaicinoid content in Capsicum. Plant Biotechnol J, 2018,16:1546-1558.
doi: 10.1111/pbi.12894 pmid: 29406565 |
[18] | 王嘉, 荆凌云, 荐红举, 曲存民, 谌利, 李加纳, 刘列钊 . 甘蓝型油菜株高、第一分枝高和分枝数的QTL检测及候选基因筛选. 作物学报, 2018,41:1027-1038. |
Wang J, Jing L Y, Jian H J, Qu C M, Chen L, Li J N, Liu L Z . Quantitative trait loci mapping for plant height, the first branch height, and branch number and possible candidate genes screening inBrassica napus L. Acta Agron Sin, 2018,41:1027-1038 (in Chinese with English abstract). | |
[19] |
Zhao W, Wang X, Wang H, Tian J, Li B, Chen L, Chao H, Long Y, Xiang J, Gan J, Liang W, Li M . Genome-wide identification of QTL for seed yield and yield-related traits and construction of a high-density consensus map for QTL comparison in Brassica napus. Front Plant Sci, 2016,7:17.
doi: 10.3389/fpls.2016.00017 pmid: 26858737 |
[20] |
Luo Z, Wang M, Long Y, Huang Y, Shi L, Zhang C, Liu X, Fitt B D L, Xiang J, Mason A S, Snowdon R J, Liu P, Meng J, Zou J . Incorporating pleiotropic quantitative trait loci in dissection of complex traits: seed yield in rapeseed as an example. Theor Appl Genet, 2018,130:1569-1585.
doi: 10.1007/s00122-017-2911-7 pmid: 28455767 |
[21] |
贺亚军, 吴道明, 傅鹰, 钱伟 . 利用DH和IF2群体检测甘蓝型油菜株高相关性状QTL. 作物学报, 2018,44:533-541.
doi: 10.3724/SP.J.1006.2018.00533 |
He Y J, Wu D M, Fu Y, Qian W . Detection of QTLs for plant height related traits in Brassica napus L. using DH and immortalized F2 population. Acta Agron Sin, 2018,44:533-541 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2018.00533 |
|
[22] |
Shen Y, Xiang Y, Xu E, Ge X, Li Z . Major co-localized QTL for plant height, branch initiation height, stem diameter, and flowering time in an alien introgression derivedBrassica napus DH population. Front Plant Sci, 2018,9:390.
doi: 10.3389/fpls.2018.00390 pmid: 29643859 |
[23] |
Zheng M, Peng C, Liu H, Tang M, Yang H, Li X, Liu J, Sun X, Wang X, Xu J, Hua W, Wang H . Genome-wide association study reveals candidate genes for control of plant height, branch initiation height and branch number in rapeseed (Brassica napus L.). Front Plant Sci, 2017,8:1246.
doi: 10.3389/fpls.2017.01246 pmid: 28769955 |
[24] |
Sun C, Wang B, Yan L, Hu K, Liu S, Zhou Y, Guan C, Zhang Z, Li J, Zhang J, Chen S, Wen J, Ma C, Tu J, Shen J, Fu T, Yi B . Genome-wide association study provides insight into the genetic control of plant height in rapeseed (Brassica napus L.). Front Plant Sci, 2016,7:1102.
doi: 10.3389/fpls.2016.01102 pmid: 27512396 |
[25] |
Li F, Chen B, Xu K, Gao G, Yan G, Qiao J, Li J, Li H, Li L, Xiao X, Zhang T, Nishio T, Wu X . A genome-wide association study of plant height and primary branch number in rapeseed (Brassica napus). Plant Sci, 2016,242:169-177.
doi: 10.1016/j.plantsci.2015.05.012 pmid: 26566834 |
[26] |
Lu K, Wei L, Li X, Wang Y, Wu J, Liu M, Zhang C, Chen Z, Xiao Z, Jian H, Cheng F, Zhang K, Du H, Cheng X, Qu C, Qian W, Liu L, Wang R, Zou Q, Ying J, Xu X, Mei J, Liang Y, Chai Y R, Tang Z, Wan H, Ni Y, He Y, Lin N, Fan Y, Sun W, Li N N, Zhou G, Zheng H, Wang X, Paterson A H, Li J . Whole-genome resequencing revealsBrassica napus origin and genetic loci involved in its improvement. Nat Commun, 2019,10:1154.
doi: 10.1038/s41467-019-09134-9 pmid: 30858362 |
[27] | Wang S, Basten C, Zeng Z . Windows QTL Cartographer v2.5. Department of statistics, North Carolina State University, 2007, Raleigh, N C. |
[28] |
McCouch S R, Cho Y G, Yano M, Paul E, Blinstrub M, Morishima H, Kinoshita T . Report on QTL nomenclature. Rice Genet Newsl, 1997,14:11-13.
doi: 10.1007/s10142-013-0328-1 pmid: 23813016 |
[29] |
Yu J, Pressoir G, Briggs W H, Bi I V, Yamasaki M, Doebley J F, McMullen M D, Gaut B S, Nielsen D M, Holland J B . A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet, 2006,38:203-208.
doi: 10.1038/ng1702 pmid: 16380716 |
[30] |
Lu K, Xiao Z, Jian H, Peng L, Qu C, Fu M, He B, Tie L, Liang Y, Xu X, Li J . A combination of genome-wide association and transcriptome analysis reveals candidate genes controlling harvest index-related traits in Brassica napus. Sci Rep, 2016,6:36452.
doi: 10.1038/srep36452 pmid: 27811979 |
[31] |
Chalhoub B, Denoeud F, Liu S, Parkin I A P, Tang H, Wang X, Chiquet J, Belcram H, Tong C, Samans B, Corréa M, Da Silva C, Just J, Falentin C, Koh C S, Le Clainche I, Bernard M, Bento P, Noel B, Labadie K, Alberti A, Charles M, Arnaud D, Guo H, Daviaud C, Alamery S, Jabbari K, Zhao M, Edger P P, Chelaifa H, Tack D, Lassalle G, Mestiri I, Schnel N, Le Paslier M C, Fan G, Renault V, Bayer P E, Golicz A A, Manoli S, Lee T H, Thi V H D, Chalabi S, Hu Q, Fan C, Tollenaere R, Lu Y, Battail C, Shen J, Sidebottom C H D, Wang X, Canaguier A, Chauveau A, Bérard A, Deniot G, Guan M, Liu Z, Sun F, Lim Y P, Lyons E, Town C D, Bancroft I, Wang X, Meng J, Ma J, Pires J C, King G J, Brunel D, Delourme R, Renard M, Aury J M, Adams K L, Batley J, Snowdon R J, Tost J, Edwards D, Zhou Y, Hua W, Sharpe A G, Paterson A H, Guan C, Wincker P . Early allopolyploid evolution in the post-NeolithicBrassica napus oilseed genome. Science, 2014,345:950-953.
doi: 10.1126/science.1253435 pmid: 25146293 |
[32] |
Raboanatahiry N, Chao H, Dalin H, Pu S, Yan W, Yu L, Wang B, Li M . QTL alignment for seed yield and yield related traits in Brassica napus. Front Plant Sci, 1997,9:1127.
doi: 10.3389/fpls.2018.01127 pmid: 30116254 |
[33] |
Shi J, Li R, Qiu D, Jiang C, Long Y, Morgan C, Bancroft I, Zhao J, Meng J . Unraveling the complex trait of crop yield with quantitative trait loci mapping in Brassica napus. Genetics, 2009,182:851-861.
doi: 10.1534/genetics.109.101642 pmid: 19414564 |
[34] |
Schultz C J, Johnson K L, Currie G, Bacic A . The classical arabinogalactan protein gene family of Arabidopsis. Plant Cell, 2000,12:1751-1768.
doi: 10.1105/tpc.12.9.1751 pmid: 11006345 |
[35] |
谢田田, 陈玉波, 黄吉祥, 张尧锋, 徐爱遐, 陈飞, 倪西源, 赵坚义 . 甘蓝型油菜不同发育时期株高QTL的动态分析. 作物学报, 2012,38:1802-1809.
doi: 10.3724/SP.J.1006.2012.01802 |
Xie T T, Chen Y B, Huang J X, Zhang Y F, Xu A X, Chen F, Ni X Y, Zhao J Y . Dynamic analysis of QTL for plant height of rapeseed at different developmental stages. Acta Agron Sin, 2012,38:1802-1809 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2012.01802 |
|
[36] |
Goda H, Sawa S, Asami T, Fujioka S, Shimada Y, Yoshida S . Comprehensive comparison of Auxin-regulated and brassinosteroid-regulated genes in Arabidopsis. Plant Physiol, 1997,134:1555-1573.
doi: 10.1104/pp.103.034736 pmid: 15047898 |
[37] |
Lee D J, Park J W, Lee H W, Kim J . Genome-wide analysis of the auxin-responsive transcriptome downstream of iaa1 and its expression analysis reveal the diversity and complexity of auxin-regulated gene expression. J Exp Bot, 2009,60:3935-3957.
doi: 10.1093/jxb/erp230 pmid: 19654206 |
[38] |
Redman J C, Haas B J, Tanimoto G, Town C D . Development and evaluation of anArabidopsis whole genome Affymetrix probe array. Plant J, 2004,38:545-561.
doi: 10.1111/j.1365-313X.2004.02061.x pmid: 15086809 |
[39] |
Kim D W, Jeon S J, Hwang S M, Hong J C, Bahk J D . The C3H-type zinc finger protein GDS1/C3H42 is a nuclear-speckle-localized protein that is essential for normal growth and development in Arabidopsis. Plant Sci, 2016,250:141-153.
doi: 10.1016/j.plantsci.2016.06.010 pmid: 27457991 |
[40] |
Deeken R, Engelmann J C, Efetova M, Czirjak T, Muller T, Kaiser W M, Tietz O, Krischke M, Mueller M J, Palme K, Dandekar T, Hedrich R . An integrated view of gene expression and solute profiles ofArabidopsis tumors: a genome-wide approach. Plant Cell, 2006,18:3617-3634.
doi: 10.1105/tpc.106.044743 pmid: 17172353 |
[41] |
Shani Z, Dekel M, Roiz L, Horowitz M, Kolosovski N, Lapidot S, Alkan S, Koltai H, Tsabary G, Goren R, Shoseyov O . Expression of endo-1,4-beta-glucanase (cel1) inArabidopsis thaliana is associated with plant growth, xylem development and cell wall thickening. Plant Cell Rep, 2006,25:1067-1074.
doi: 10.1007/s00299-006-0167-9 |
[42] |
Xiong J, Cui X, Yuan X, Yu X, Sun J, Gong Q . The Hippo/STE20 homolog SIK1 interacts with MOB1 to regulate cell proliferation and cell expansion in Arabidopsis. J Exp Bot, 2016,67:1461-1475.
doi: 10.1093/jxb/erv538 pmid: 26685188 |
[43] |
Wang Z, Chen F, Li X, Cao H, Ding M, Zhang C, Zuo J, Xu C, Xu J, Deng X, Xiang Y, Soppe W J J, Liu Y . Arabidopsis seed germination speed is controlled by SNL histone deacetylase-binding factor-mediated regulation of AUX1. Nat Commun, 2016,7:13412.
doi: 10.1038/ncomms13412 pmid: 27834370 |
[44] |
Rashotte A M, Carson S D, To J P, Kieber J J . Expression profiling of cytokinin action in Arabidopsis. Plant Physiol, 2003,132:1998-2011.
doi: 10.1104/pp.103.021436 pmid: 12913156 |
[45] |
Hanzawa Y, Imai A, Michael A J, Komeda Y, Takahashi T . Characterization of the spermidine synthase-related gene family in Arabidopsis thaliana. FEBS Lett, 2002,527:176-180.
doi: 10.1016/s0014-5793(02)03217-9 pmid: 12220656 |
[46] |
Liu S, Jia J, Gao Y, Zhang B, Han Y . The AtTudor2, a protein with SN-Tudor domains, is involved in control of seed germination in Arabidopsis. Planta, 2010,232:197-207.
doi: 10.1007/s00425-010-1167-0 |
[47] |
Gao Y, Badejo A A, Sawa Y, Ishikawa T . Analysis of two L-galactono-1,4-lactone-responsive genes with complementary expression during the development of Arabidopsis thaliana. Plant Cell Physiol, 2012,53:592-601.
doi: 10.1093/pcp/pcs014 |
[48] |
Martinez D E, Borniego M L, Battchikova N, Aro E M, Tyystjarvi E, Guiamet J J . SASP, a Senescence-Associated Subtilisin Protease, is involved in reproductive development and determination of silique number in Arabidopsis. J Exp Bot, 2015,66:161-174.
doi: 10.1093/jxb/eru409 pmid: 25371504 |
[49] |
Wei H, Brunecky R, Donohoe B S, Ding S Y, Ciesielski P N, Yang S, Tucker M P, Himmel M E . Identifying the ionically bound cell wall and intracellular glycoside hydrolases in late growth stage Arabidopsis stems: implications for the genetic engineering of bioenergy crops. Front Plant Sci, 2015,6:315.
doi: 10.3389/fpls.2015.00315 pmid: 26029221 |
[50] |
Gamboa A, Paez-Valencia J, Acevedo G F, Vazquez-Moreno L, Alvarez-Buylla R E . Floral transcription factor AGAMOUS interacts in vitro with a leucine-rich repeat and an acid phosphatase protein complex. Biochem Biophys Res Commun, 2001,288:1018-1026.
doi: 10.1006/bbrc.2001.5875 pmid: 11689012 |
[51] |
Torti S, Fornara F, Vincent C, Andres F, Nordstrom K, Gobel U, Knoll D, Schoof H, Coupland G . Analysis of the Arabidopsis shoot meristem transcriptome during floral transition identifies distinct regulatory patterns and a leucine-rich repeat protein that promotes flowering. Plant Cell, 2012,24:444-462.
doi: 10.1105/tpc.111.092791 |
[52] |
Acevedo F G, Gamboa A, Paéz-Valencia J, Jiménez-Garcı́a L F, Izaguirre-Sierra M, Alvarez-Buylla E R . FLOR1, a putative interaction partner of the floral homeotic protein AGAMOUS is a plant-specific intracellular LRR. Plant Sci, 2004,167:225-231.
doi: 10.1016/j.plantsci.2004.03.009 |
[1] | HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356. |
[2] | CHEN Song-Yu, DING Yi-Juan, SUN Jun-Ming, HUANG Deng-Wen, YANG Nan, DAI Yu-Han, WAN Hua-Fang, QIAN Wei. Genome-wide identification of BnCNGC and the gene expression analysis in Brassica napus challenged with Sclerotinia sclerotiorum and PEG-simulated drought [J]. Acta Agronomica Sinica, 2022, 48(6): 1357-1371. |
[3] | YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102. |
[4] | WANG Ze, ZHOU Qin-Yang, LIU Cong, MU Yue, GUO Wei, DING Yan-Feng, NINOMIYA Seishi. Estimation and evaluation of paddy rice canopy characteristics based on images from UAV and ground camera [J]. Acta Agronomica Sinica, 2022, 48(5): 1248-1261. |
[5] | YUAN Da-Shuang, DENG Wan-Yu, WANG Zhen, PENG Qian, ZHANG Xiao-Li, YAO Meng-Nan, MIAO Wen-Jie, ZHU Dong-Ming, LI Jia-Na, LIANG Ying. Cloning and functional analysis of BnMAPK2 gene in Brassica napus [J]. Acta Agronomica Sinica, 2022, 48(4): 840-850. |
[6] | FU Mei-Yu, XIONG Hong-Chun, ZHOU Chun-Yun, GUO Hui-Jun, XIE Yong-Dun, ZHAO Lin-Shu, GU Jia-Yu, ZHAO Shi-Rong, DING Yu-Ping, XU Yan-Hao, LIU Lu-Xiang. Genetic analysis of wheat dwarf mutant je0098 and molecular mapping of dwarfing gene [J]. Acta Agronomica Sinica, 2022, 48(3): 580-589. |
[7] | HUANG Cheng, LIANG Xiao-Mei, DAI Cheng, WEN Jing, YI Bin, TU Jin-Xing, SHEN Jin-Xiong, FU Ting-Dong, MA Chao-Zhi. Genome wide analysis of BnAPs gene family in Brassica napus [J]. Acta Agronomica Sinica, 2022, 48(3): 597-607. |
[8] | WANG Rui, CHEN Xue, GUO Qing-Qing, ZHOU Rong, CHEN Lei, LI Jia-Na. Development of linkage InDel markers of the white petal gene based on whole-genome re-sequencing data in Brassica napus L. [J]. Acta Agronomica Sinica, 2022, 48(3): 759-769. |
[9] | WANG Ying, GAO Fang, LIU Zhao-Xin, ZHAO Ji-Hao, LAI Hua-Jiang, PAN Xiao-Yi, BI Chen, LI Xiang-Dong, YANG Dong-Qing. Identification of gene co-expression modules of peanut main stem growth by WGCNA [J]. Acta Agronomica Sinica, 2021, 47(9): 1639-1653. |
[10] | WANG Yan-Hua, LIU Jing-Sen, LI Jia-Na. Integrating GWAS and WGCNA to screen and identify candidate genes for biological yield in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(8): 1491-1510. |
[11] | HAN Yu-Zhou, ZHANG Yong, YANG Yang, GU Zheng-Zhong, WU Ke, XIE Quan, KONG Zhong-Xin, JIA Hai-Yan, MA Zheng-Qiang. Effect evaluation of QTL Qph.nau-5B controlling plant height in wheat [J]. Acta Agronomica Sinica, 2021, 47(6): 1188-1196. |
[12] | LI Jie-Hua, DUAN Qun, SHI Ming-Tao, WU Lu-Mei, LIU Han, LIN Yong-Jun, WU Gao-Bing, FAN Chu-Chuan, ZHOU Yong-Ming. Development and identification of transgenic rapeseed with a novel gene for glyphosate resistance [J]. Acta Agronomica Sinica, 2021, 47(5): 789-798. |
[13] | TANG Xin, LI Yuan-Yuan, LU Jun-Xing, ZHANG Tao. Morphological characteristics and cytological study of anther abortion of temperature-sensitive nuclear male sterile line 160S in Brassica napus [J]. Acta Agronomica Sinica, 2021, 47(5): 983-990. |
[14] | ZHOU Xin-Tong, GUO Qing-Qing, CHEN Xue, LI Jia-Na, WANG Rui. Construction of a high-density genetic map using genotyping by sequencing (GBS) for quantitative trait loci (QTL) analysis of pink petal trait in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 587-598. |
[15] | LI Shu-Yu, HUANG Yang, XIONG Jie, DING Ge, CHEN Lun-Lin, SONG Lai-Qiang. QTL mapping and candidate genes screening of earliness traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 626-637. |
|