Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (12): 3188-3203.doi: 10.3724/SP.J.1006.2023.31014

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Mapping and effect analysis of QTL for phenology traits in wheat using 55K chip technology

WEN Ming-Xing1,2,*(), XIAO Jin2, XU Tao2, SUN Li2, WANG Zong-Kuan2, WANG Hai-Yan2, WANG Xiu-E2   

  1. 1Zhenjiang Institute of Agricultural Science, Jurong 212400, Jiangsu, China
    2State Key Laboratory of Crop Genetics and Germplasm Enhancement / Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
  • Received:2023-02-26 Accepted:2023-05-24 Online:2023-12-12 Published:2023-05-31
  • Contact: * E-mail: wmxcell2007@163.com
  • Supported by:
    Open Fund of the State Key Laboratory of Crop Genetics and Germplasm Enhancement(ZW20202009)

Abstract:

Phenology is an important agronomic trait for common wheat, which has a great impact to explore its genetic mechanism and effect for wheat breeding and application. In this study, 240 recombinant inbred lines (RILs) derived from Yangmai 158 and Hiller were used to identify the phenology traits in 2-4 environments. A total of 52 QTL were detected on chromosomes 2A, 2D, 3D, 4B, 4D, 5A, 5B, 5D, 6A, 6B, 7A, 7B, and 7D by using the constructed high-density genetic map. QJS/BS/HS/FS/MS.nau-5D.2, QJS/BS/HS/FS/MS.nau-2D.1, and QJS/BS/HS/FS/MS.nau-7B.1 were detected for several years, which explained 4.56%-46.86%, 1.32%-33.40%, and 2.37%-13.27% of phenotypic variation, respectively. QBS/HS.nau-2A.3, QHS/FS.nau-5B.2, QFS.nau-2A.5, QBS.nau-6A.2, QJS.nau-4D.2, QJS.nau-6A.3, QBS.nau-2A.2, QBS/HS.nau-6A.1, QFS.nau-7A.2, QMS.nau-3D, QMS.nau-4D.1, and QMS.nau-6B.1 were new QTL. Pyramiding of multiple phenology loci with large effects or repeated is an effective approach to shorten the growth period in different degrees, which could be used to cultivate early-maturing and high-yield wheat varieties.

Key words: Triticum aestivum L., phenology traits, QTL, SNP markers

Table 1

Phenotypic analysis of main phenology traits"

性状
Trait
环境
Environment
亲本Parent RIL群体RIL population 遗传力Heritability
扬麦158
Y158
密穗小麦HL 均值Mean 标准差SD 最大值Max. 最小值Min. 峰度Kurtosis 偏度Skewness 变异系数CV (%)
拔节期 Jointing stage (d) E2 114 119 114 5.59 125 106 -1.26 0.43 4.90 0.97
E3 94 97 96 3.08 106 89 0.75 0.60 3.21
BLUP 104 108 105 3.99 116 99 -0.83 0.50 3.80
孕穗期 Booting stage (d) E1 161 167 105 2.59 112 97 0.26 0.05 2.47 0.93
E2 143 149 147 4.42 157 137 -0.85 -0.07 3.01
E3 136 150 141 5.58 156 114 1.67 0.23 3.96
E4 141 149 147 3.34 158 139 0.79 0.66 2.28
BLUP 145 154 147 3.14 155 140 -0.35 0.21 2.14
抽穗期 Heading stage (d) E1 159 163 109 2.50 116 100 1.21 -0.07 2.29 0.79
E2 152 155 153 3.56 163 145 -0.35 0.50 2.33
E3 144 157 150 5.94 164 139 -0.89 -0.08 3.96
E4 146 157 154 4.12 167 145 -0.10 0.21 2.68
BLUP 149 158 146 3.98 157 138 -0.56 0.16 2.73
开花期 Flowering stage (d) E1 165 170 111 2.53 118 103 0.87 0.33 2.28 0.82
E2 157 164 161 3.21 169 153 -0.53 0.18 2.00
E3 155 166 161 4.84 173 147 -0.36 0.08 3.01
E4 156 167 164 3.46 174 155 -0.07 0.12 2.11
BLUP 159 167 155 3.42 164 147 -0.35 0.17 2.21
成熟期Maturity stage (d) E1 189 195 148 2.53 153 140 0.33 -0.44 1.71 0.75
E2 197 203 199 2.89 209 170 3.29 -3.44 1.45
E3 184 190 203 3.15 209 196 -0.76 -0.23 1.55
BLUP 189 195 190 2.33 197 179 1.92 -0.09 1.23

Table 2

Correlation of main phenology traits"

性状
Trait
拔节期
Jointing stage
孕穗期
Booting stage
抽穗期
Heading stage
开花期
Flowering stage
孕穗期 Booting stage 0.724**
抽穗期 Heading stage 0.683** 0.948**
开花期 Flowering stage 0.701** 0.941** 0.971**
成熟期 Maturity stage 0.464** 0.682** 0.743** 0.757**

Fig. 1

Phenotype of main phenology traits The best linear unbiased estimations across 2-4 environments for each trait was used."

Table 3

Main QTL for phenology traits mapped in this study"

性状
Trait
QTL 环境
Environment
物理位置
Physical position (Mb)
标记区间
Marker interval
LOD值
LOD value
贡献率
PVE (%)
加性效应
Add.b
已知基因/QTL/标记
Known gene/QTL/Marker
拔节期
Jointing stage
QJS.nau-2D.1 E2 32.97‒35.02 AX-111096297‒AX-109422526 4.33 2.21 ‒0.87 PPD-D1[8]
BLUP 7.18 3.80 ‒0.82
E3 35.02‒37.27 AX-109422526‒AX-110452779 6.73 6.02 ‒0.82
QJS.nau-2D.3 E2 414.99‒422.88 AX-110558888‒AX-110558245 4.11 2.00 ‒0.83 qHd-2D.1[27]
BLUP 3.93 1.92 ‒0.58
QJS.nau-5B.1 E3 572.17‒575.24 AX-110961703‒AX-110490429 13.23 11.75 1.15 PhyC[28]
BLUP 22.19 13.49 1.55
QJS.nau-5D.2 E2 468.16‒469.56 AX-108861262‒AX-109428027 55.03 46.86 ‒4.00 PhyC[28]
E3 21.62 21.08 ‒1.54
BLUP 51.52 42.61 ‒2.74
QJS.nau-7B.1 E2 9.75‒14.76 AX-111090034‒AX-111635682 4.62 2.37 ‒0.90 TaVRN3-7B[7]
E3 3.15 2.49 ‒0.53
BLUP 7.34‒9.75 AX-111636399‒AX-111090034 6.31 3.22 ‒0.75
孕穗期
Booting stage
QBS.nau-2A.3 E3 611.88‒666.62 AX-109283226‒AX-110464869 2.77 2.33 ‒0.83
E4 611.71‒611.82 AX-110711634‒AX-108837102 2.98 2.52 ‒0.53
BLUP 5.23 1.84 ‒0.54
QBS.nau-2D.1 E1 32.97‒35.02 AX-111096297‒AX-109422526 19.62 22.89 ‒1.22 PPD-D1[8]
E2 26.47 18.09 ‒1.99
E3 25.64 26.29 ‒2.77
E4 28.45 31.32 ‒1.87
BLUP 34.49 16.42 ‒1.60
QBS.nau-5D.1 E3 449.29‒451.17 AX-109855976‒AX-109453419 4.66 3.81 ‒1.06 PhyC[28]
BLUP 453.23‒456.31 AX-108843804‒AX-109042166 6.53 2.39 ‒0.61
QBS.nau-5D.2 E1 465.11‒465.86 AX-110717870‒AX-111262507 7.95 8.00 ‒0.72 PhyC[28]
E3 7.21 6.02 ‒1.33
E2 468.16‒469.56 AX-108861262‒AX-109428027 34.95 26.52 ‒2.42
E4 6.61 5.91 ‒0.81
BLUP 14.40 5.67 ‒0.94
QBS.nau-7A.3 E3 54.90‒55.33 AX-111665118‒AX-111639706 4.30 3.48 ‒1.01 VRN-A3/FT-A1[7]
E1 66.18‒68.32 AX-110952157‒AX-108820762 3.38 3.27 ‒0.46
E2 3.01 1.60 ‒0.59
E4 4.51 3.93 ‒0.67
BLUP 4.69 1.65 ‒0.51
QBS.nau-7B.1 E1 9.75‒14.76 AX-111090034‒AX-111635682 8.72 8.84 ‒0.76 TaVRN3-7B[7]
E2 16.77 10.17 ‒1.49
E3 12.99 11.45 ‒1.83
E4 10.19 9.13 ‒1.01
BLUP 7.34‒9.75 AX-111636399‒AX-111090034 18.04 7.32 ‒1.07
QBS.nau-7D.1 E1 63.48‒66.54 AX-108882010‒AX-111061288 3.18 3.14 0.45 VRN-D3/FT-D1[7]
E2 6.76 4.03 0.94
E4 6.94 6.58 0.86
BLUP 7.74 3.10 0.69
抽穗期
Heading stage
QHS.nau-2A.3 E4 611.71‒611.82 AX-110711634‒AX-108837102 3.78 2.83 ‒0.69
BLUP 3.24 1.86 ‒0.55
QHS.nau-2D.1 E1 32.97‒35.02 AX-111096297‒AX-109422526 26.07 27.08 ‒1.33 PPD-D1[8]
E2 23.33 17.29 ‒1.50
E3 30.21 28.27 ‒3.14
E4 33.09 33.40 ‒2.34
BLUP 36.68 29.45 ‒2.18















QHS.nau-5B.2 E1 593.48‒595.05 AX-108736770‒AX-109321892 3.17 2.60 0.42
E3 3.79 2.77 0.99
BLUP 4.24 2.52 0.64
QHS.nau-5D.2 E1 465.11‒465.86 AX-110717870‒AX-111262507 5.45 4.56 ‒0.55 PhyC[28]
E2 28.25 21.59 ‒1.69
E3 20.21 17.02 ‒2.45
BLUP 21.59 14.79 ‒1.56
E4 463.25‒465.11 AX-109924594‒AX-110717870 8.56 7.30 ‒1.10
QHS.nau-7A.3 E1 66.18‒68.32 AX-110952157‒AX-108820762 4.54 3.79 ‒0.50 VRN-A3/FT-A1[7]
E2 6.70 4.11 ‒0.74
E3 4.37 3.14 ‒1.05
E4 4.37 3.40 ‒0.75
BLUP 6.66 3.99 ‒0.81
QHS.nau-7B.1 E1 9.75‒14.76 AX-111090034‒AX-111635682 11.26 9.98 ‒0.81 TaVRN3-7B[7]
E2 19.19 13.27 ‒1.32
E3 11.96 9.24 ‒1.79
E4 13.47 10.95 ‒1.34
BLUP 18.40 12.17 ‒1.40
QHS.nau-7D.1 E1 63.48‒66.54 AX-108882010‒AX-111061288 5.44 4.63 0.55 VRN-D3/FT-D1[7]
E2 7.92 5.27 0.83
E3 4.25 3.48 1.10
E4 7.09 5.84 0.98
BLUP 9.92 6.58 1.03
开花期
Flowering stage
QFS.nau-2A.5 E1 557.00‒568.31 AX-111140902‒AX-108927651 3.44 3.47 ‒0.46
BLUP 3.08 2.01 ‒0.46
QFS.nau-2D.1 E1 32.97‒35.02 AX-111096297‒AX-109422526 17.27 20.19 ‒1.10 PPD-D1[8]
E2 27.27 16.10 ‒1.29
E3 26.25 26.64 ‒2.46
E4 32.56 32.00 ‒1.91
BLUP 33.93 28.29 ‒1.76
QFS.nau-2D.2 E1 370.12‒406.29 AX-109417243‒AX-110515536 3.87 3.90 ‒0.49 C[24]
E4 3.25 2.37 ‒0.52
QFS.nau-2D.3 E2 414.99‒422.88 AX-110558888‒AX-110558245 5.37 2.55 ‒0.51 qHd-2D.1[27]
E3 2.63 2.11 ‒0.69
BLUP 4.72 2.98 ‒0.57
QFS.nau-5B.2 E1 593.48‒595.05 AX-108736770‒AX-109321892 3.02 3.03 0.43
E3 5.44 4.53 1.02
BLUP 6.32 4.02 0.67
QFS.nau-5D.2 E1 465.11‒465.86 AX-110717870‒AX-111262507 4.58 4.59 ‒0.53 PhyC[28]
E3 14.96 13.34 ‒1.75
BLUP 19.73 14.11 ‒1.25
E4 463.25‒465.11 AX-109924594‒AX-110717870 10.13 8.20 ‒0.97
E2 468.16‒469.56 AX-108861262‒AX-109428027 37.59 25.12 ‒1.62
QFS.nau-7A.3 E1 66.18‒68.32 AX-110952157‒AX-108820762 4.67 4.67 ‒0.54 VRN-A3/FT-A1[7]
E2 11.46 5.65 ‒0.77
E3 4.14 3.33 ‒0.88
E4 5.08 3.86 ‒0.67
BLUP 6.80 4.34 ‒0.69
QFS.nau-7B.1 E1 9.75‒14.76 AX-111090034‒AX-111635682 8.22 8.89 ‒0.73 TaVRN3-7B[7]
E2 16.43 8.47 ‒0.94
E3 8.44 7.03 ‒1.26
E4 11.54 9.00 ‒1.02
BLUP 14.09 9.54 ‒1.02
QFS.nau-7D.1 E1 63.48‒66.54 AX-108882010‒AX-111061288 5.14 5.22 0.56 VRN-D3/FT-D1[7]
E2 8.20 3.95 0.64
E3 6.48 5.66 1.14
E4 10.62 8.35 0.98
BLUP 10.90 7.24 0.89
成熟期
Maturity stage
QMS.nau-2D.1 E1 32.97‒35.02 AX-111096297‒AX-109422526 10.41 16.34 ‒1.06 PPD-D1[8]
E3 15.62 18.67 ‒1.42
BLUP 18.79 21.34 ‒1.16
E2 35.02‒37.27 AX-109422526‒AX-110452779 6.52 1.32 ‒0.86
QMS.nau-4B E3 31.88‒40.90 AX-94434500‒AX-109850058 5.39 5.96 ‒0.80 Rht-B1/Rht1[35]
BLUP 4.20 4.23 ‒0.51
QMS.nau-5D.2 E3 465.11‒465.86 AX-110717870‒AX-111262507 5.20 5.45 ‒0.77 PhyC[28]
BLUP 463.25‒465.11 AX-109924594‒AX-110717870 5.63 6.22 ‒0.63
QMS.nau-7B.1 E1 7.34‒9.75 AX-111636399‒AX-111090034 2.87 4.07 ‒0.53 TaVRN3-7B[7]
E2 5.93‒7.34 AX-110953411‒AX-111636399 41.07 11.94 ‒2.60
E2 9.75‒14.76 AX-111090034‒AX-111635682 56.28 19.83 ‒3.35
E3 7.27 7.80 ‒0.92
BLUP 10.23 10.33 ‒0.81

Table S1

Main QTLs for phenology traits mapped in this study"

性状
Trait
QTL 环境
Environ.
物理位置
Physical position (Mb)
标记区间
Marker interval
LOD值
LOD value
贡献率
PVE (%)
加性效应Add.b 已知基因/QTL/标记
Known gene/QTL/Marker
拔节期
Jointing stage
QJS.nau-2A.1 E3 90.93-120.71 AX-108751507-AX-108800384 3.36 2.68 0.55 TaSuSy2[26]
QJS.nau-4D.2 E3 424.86-426.85 AX-110432863-AX-108781235 6.85 5.69 −0.80
QJS.nau-6A.3 E3 559.17-562.47 AX-109456124-AX-111131762 4.74 3.93 0.67
QJS.nau-7B.2 E2 192.97-240.90 AX-109966136-AX-111699859 7.29 3.71 1.12 TaSEP3-B1[29]
孕穗期
Booting stage
QBS.nau-2A.2 E1 163.10-172.02 AX-110617782-AX-109043229 3.61 3.59 −0.48
QBS.nau-5A.2 E1 396.22-396.68 AX-108757456-AX-110913394 2.87 2.78 −0.42 QFlt.dms-5A.2[30]
QBS.nau-6A.1 E1 6.27-12.23 AX-109498898-AX-110492549 2.78 2.78 −0.43
QBS.nau-6A.2 BLUP 445.61-446.73 AX-109396341-AX-111727948 51.65 29.47 −2.14
QBS.nau-6B.2 E3 705.64-707.18 AX-111502013-AX-89558700 3.07 2.61 −0.88 Xwmc105[31]
抽穗期
Heading stage
QHS.nau-6A.1 E1 6.27-12.23 AX-109498898-AX-110492549 2.75 2.33 −0.40
QHS.nau-7B.3 E2 553.19-558.93 AX-109902366-AX-108804002 3.42 2.03 0.52 QHD-7B[32]
QHS.nau-7D.2 E4 115.54-122.84 AX-111124984-AX-108895252 3.12 2.28 0.62 TaVRT-2[33]
开花期Flowering stage QFS.nau-5A.1 E2 21.42-26.14 AX-110033504-AX-108986214 3.15 1.47 −0.39 QHD-5A.3[32]
QFS.nau-7A.1 E2 25.54-25.85 AX-111504531-AX-110743905 5.06 2.36 −0.49 QMat.tam-7A[34]
QFS.nau-7A.2 E2 34.72-41.64 AX-110109325-AX-110429273 4.28 2.40 0.50
成熟期
Maturity stage
QMS.nau-3D E3 553.36-561.17 AX-108730721-AX-110362152 3.48 3.65 −0.63
QMS.nau-4D.1 E3 112.79-119.79 AX-110358075-AX-109071036 3.20 3.29 −0.60
QMS.nau-5D.1 E2 453.23-456.31 AX-108843804-AX-109042166 3.59 0.71 −0.63 PhyC[28]
QMS.nau-6B.1 E1 22.27-25.43 AX-109439077-AX-111106671 2.54 3.76 0.51
QMS.nau-7D.1 BLUP 63.48-66.54 AX-108882010-AX-111061288 2.80 2.92 0.43 VRN-D3/FT-D1[7]

Table 4

QTL clusters associated with two or more than two traits"

染色体Chromosome QTL名称
QTL name
物理位置
Physical position
(Mb)
平均LOD值
Average LOD value
平均贡献率
Average R2 value (%)
2A QBS.nau-2A.3, QHS.nau-2A.3 611.71-611.82 3.60 2.28
2D QJS.nau-2D.1, QBS.nau-2D.1, QHS.nau-2D.1, QFS.nau-2D.1, QMS.nau-2D.1 32.97-35.02 22.31 20.16
2D QJS.nau-2D.3, QFS.nau-2D.3 414.99-422.88 4.15 2.31
5B QHS.nau-5B.2, QFS.nau-5B.2 593.48-595.05 4.33 3.24
5D QBS.nau-5D.1, QMS.nau-5D.1 449.29-456.31 4.93 2.30
5D QJS.nau-5D.2, QBS.nau-5D.2, QHS.nau-5D.2, QFS.nau-5D.2, QMS.nau-5D.2 463.25-469.56 19.06 15.25
6A QBS.nau-6A.1, QHS.nau-6A.1 6.27-12.23 2.77 2.55
7A QBS.nau-7A.3, QHS.nau-7A.3, QFS.nau-7A.3 66.18-68.32 5.25 3.61
7B QJS.nau-7B.1, QBS.nau-7B.1, QHS.nau-7B.1, QFS.nau-7B.1, QMS.nau-7B.1 7.34-14.76 14.41 9.02
7D QBS.nau-7D.1, QHS.nau-7D.1, QFS.nau-7D.1, QMS.nau-7D.1 63.48-66.54 6.89 5.07

Fig. 2

QTL for phenology traits on chromosome 2D, 5D, and 7B"

Fig. 3

Genetic effect of elite alleles for phenology traits in RIL population JS, BS, HS, FS, and MS refer to jointing stage, booting stage, heading stage, flowering stage, and maturity stage, respectively. Lowercases letters indicate significant difference in the 0.05 probability level."

[1] 王一钊, 刘玉秀, 孟天琪, 魏仕, 张正茂. 小麦温光发育及相关基因研究进展. 麦类作物学报, 2023, 43: 14-25.
Wang Y Z, Liu Y X, Meng T Q, Wei S, Zhang Z M. Research progress on thermo-photoperiod development and related genes in wheat. J Triticeae Crops, 2023, 43: 14-25. (in Chinese with English abstract)
[2] Worland A J. The influence of flowering time genes on environmental adaptability in European wheats. Euphytica, 1996, 89: 49-57.
doi: 10.1007/BF00015718
[3] Worland A J, Borner A, Korzun V, Li W M, Petrovic S, Sayers E J. The influence of photoperiod genes on the adaptability of European winter wheats. Euphytica, 1998, 100: 385-394.
doi: 10.1023/A:1018327700985
[4] Snape J W, Butterworth K, Whitechurch E, Worland A J. Waiting for fine times: genetics of flowering time in wheat. Euphytica, 2001, 119: 185-190.
doi: 10.1023/A:1017594422176
[5] Yan L L, Loukoianov A, Tranquilli G, Helguera M, Fahima T, Dubcivsky J. Positional cloning of the wheat vernalization gene VRN1. Proc Natl Acad Sci USA, 2003, 100: 6263-6268.
doi: 10.1073/pnas.0937399100 pmid: 12730378
[6] Yan L L, Loukoianov A, Blechl A, Tranquilli G, Ramakrishna W, SanMiguel P, Bennetzen J L, Echenique V, Dubcovsky J. The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science, 2004, 303: 1640-1644.
doi: 10.1126/science.1094305
[7] Yan L L, Fu D, Li C, Blechl A, Tranquilli G, Bonafede M, Sanchez A, Valarik M, Yasuda S, Dubcovsky J. The wheat and barley vernalization gene VRN3 is an orthologue of FT. Proc Natl Acad Sci USA, 2006, 103: 19581-19586.
doi: 10.1073/pnas.0607142103 pmid: 17158798
[8] Beales J, Turner A, Griffiths S, Snape J W, Laurie D A. A Pseudo-response regulator is mis expressed in the photoperiod insensitive Ppd-D1a mutant of wheat (Triticum aestivum L.). Theor Appl Genet, 2007, 115: 721-733.
doi: 10.1007/s00122-007-0603-4 pmid: 17634915
[9] Wilhelm E P, Turner A S, Laurie D A. Photoperiod insensitive Ppd-A1a mutation in tetraploid wheat (Triticum aestivum L.). Theor Appl Genet, 2009, 118: 285-294.
doi: 10.1007/s00122-008-0898-9 pmid: 18839130
[10] Hoodgendoorn J. A reciprocal F1 monosomic analysis of the genetic control of time of ear emergence, number of leaves and number of spikelets in wheat (Triticum aestivum L.). Euphytica, 1985, 34: 545-558.
doi: 10.1007/BF00022954
[11] Scarth R, Law C N. The location of the photoperiod gene, Ppd2 and an additional genetic factor for ear emergence time on chromosome 2B of wheat. Heredity, 1983, 51: 607-619.
doi: 10.1038/hdy.1983.73
[12] Zemetra R S, Morris R, Schmidt J W. Gene location for heading date using reciprocal chromosome substitutions in winter wheat. Crop Sci, 1986, 26: 531-533.
doi: 10.2135/cropsci1986.0011183X002600030020x
[13] 宋彦霞, 景蕊莲, 霍纳新, 任正隆, 贾继增. 普通小麦(T. aestivum L.)不同作图群体抽穗期QTL分析. 中国农业科学, 2006, 39: 2186-2193.
Song Y X, Jing R L, Huo N X, Ren Z L, Jia J Z. Detection of QTLs for heading in common wheat (T. aestivum L.) using different population. Sci Agric Sin, 2006, 39: 2186-2193. (in Chinese with English abstract)
[14] 茹京娜, 于洋, 董凡凡, 吕欣迪, 曹译文, 纪志芳, 陈梦楠, 史雨刚, 王曙光, 孙黛珍. 小麦抽穗期QTL及其与环境的互作. 麦类作物学报, 2014, 34: 1185-1190.
Ru J N, Yu Y, Dong F F, Lyu X D, Cao Y W, Ji Z F, Chen M N, Shi Y G, Wang S G, Sun D Z. Analysis of QTL for heading date and interaction effects with environments in wheat. J Triticeae Crops, 2014, 34: 1185-1190. (in Chinese with English abstract)
[15] 王克森, 董爽爽, 李法计, 郭军, 台述强, 王利彬, 程敦公, 穆平, 刘建军, 李豪圣, 赵振东, 曹新有, 张玉梅. 小麦抽穗和开花期相关QTL定位与分析. 山东农业科学, 2020, 52(1): 17-23.
Wang K S, Dong S S, Li F J, Guo J, Tai S Q, Wang L B, Cheng D G, Mu P, Liu J J, Li H S, Zhao Z D, Cao X Y, Zhang Y M. QTL mapping and analysis of heading time and flowering time of wheat. Shandong Agric Sci, 2020, 52(1): 17-23. (in Chinese with English abstract)
[16] Chen Z Y, Cheng X J, Chai L L, Wang Z H, Du D J, Wang Z H, Bian R L, Zhao A J, Xin M M, Guo W L, Hu Z R, Peng H R, Yao Y Y, Sun Q X, Ni Z F. Pleiotropic QTL influencing spikelet number and heading date in common wheat (Triticum aestivum L.). Theor Appl Genet, 2020, 133: 1825-1838.
doi: 10.1007/s00122-020-03556-6
[17] 高德荣, 王慧, 刘巧, 朱冬梅, 张晓, 吕国锋, 张晓祥, 江伟, 李曼. 迟播早熟高产小麦新品种德选育. 中国农业科学, 2019, 52: 2379-2390.
doi: 10.3864/j.issn.0578-1752.2019.14.001
Gao D R, Wang H, Liu Q, Zhu D M, Zhang X, Lyu G F, Zhang X X, Jiang W, Li M. Breeding of new wheat varieties with early maturity and high yield under late sowing. Sci Agric Sin, 2019, 52: 2379-2390. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2019.14.001
[18] 董玉琛. 小麦的基因源. 麦类作物学报, 2000, 20: 78-81.
Dong Y C. Genepools of common on wheat. J Triticeae Crops, 2000, 20: 78-81. (in Chinese with English abstract)
[19] 张晓, 张伯桥, 江伟, 吕国锋, 张晓祥, 李曼, 高德荣. 扬麦系列品种品质性状相关基因的分子检测. 中国农业科学, 2015, 48: 3779-3793.
doi: 10.3864/j.issn.0578-1752.2015.19.001
Zhang X, Zhang B Q, Jiang W, Lyu G F, Zhang X X, Li M, Gao D R. Molecular detection for quality traits-related genes in Yangmai series wheat cultivars. Sci Agric Sin, 2015, 48: 3779-3793. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2015.19.001
[20] 姜朋, 何漪, 张旭, 吴磊, 张平平, 马鸿翔. 宁麦9号与扬麦158株高及其构成因素的遗传解析. 作物学报, 2020, 46: 858-868.
doi: 10.3724/SP.J.1006.2020.91063
Jiang P, He Y, Zhang X, Wu L, Zhang P P, Ma H X. Genetic analysis of plant height and its commonents for wheat (Triticum aestivum L.) cultivars Ningmai 9 and Yangmai 158. Acta Agron Sin, 2020, 46: 858-868. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2020.91063
[21] 姜朋, 张旭, 吴磊, 何漪, 张平平, 马鸿翔, 孔令让. 宁麦9号/扬麦158重组自交系群体产量性状的遗传解析. 作物学报, 2021, 47: 869-881.
doi: 10.3724/SP.J.1006.2021.01051
Jiang P, Zhang X, Wu L, He Y, Zhang P P, Ma H X, Kong L R. Genetic analysis for yield related traits of wheat (Triticum aestivum L.) based on a recombinant inbred line population from Ningmai 9 and Yangmai 158. Acta Agron Sin, 2021, 47: 869-881. (in Chinese with English abstract)
[22] 何贤芳, 王晓波, 司红起, 夏云祥, 马传喜. STS标记在扬麦158×淮麦18 F4群体中的应用及其与PPO活性的关系. 分子植物育种, 2008, 6: 499-503.
He X F, Wang X B, Si H Q, Xia Y X, Ma C X. The application of STS marker in Yangmai 158 × Huaimai 18 F4 separating plant lines and its relations with PPO activity. Mol Plant Breed, 2008, 6: 499-503. (in Chinese with English abstract)
[23] 吴纪中, 蔡士宾, 颜伟, 任丽娟, 陈怀谷, 吴小有, 张仙义. ARz×扬麦158群体对小麦赤霉病抗性的QTL分析. 江苏农业学报, 2006, 22: 339-345.
Wu J Z, Cai S B, Yan W, Ren L J, Chen H G, Wu X Y, Zhang X Y. QTL analysis of fusarium head blight resistance (FHB) in ARz×Yangmai 158 population. Jiangsu J Agric Sci, 2006, 22: 339-345. (in Chinese with English abstract)
[24] Wen M X, Su J X, Jiao C Z, Zhang X, Xu T, Wang T, Liu X X, Wang Z K, Sun L, Yuan C X, Wang H Y, Wang X E, Xiao J. Pleiotropic effect of the compactum gene and its combined effects with other loci for spike and grain-related traits in wheat. Plants, 2022, 11: 01837.
doi: 10.3390/plants11141837
[25] Zhu T, Wang L, Rimbert H, Rodriguez J C, Deal K R, Deolivera R, Choulet F, Keeble-Gagnere G, Tibbits J, Rogers J, Eversole K, Appels R, Guo Y Q, Mascher M, Dvorak J, Luo M C. Optical maps refine the bread wheat Triticum aestivum cv. Chinese Spring genome assembly. Plant J, 2021, 107: 303-314.
doi: 10.1111/tpj.v107.1
[26] Ma S W, Wang W, Wu J H, Guo W L, Chen Y M, Li G W, Wang Y P, Shi W M, Xia G M, Fu D L, Kang Z S, Ni F. WheatOmics: a platform combining multiple omics data to accelerate functional genomics studies in wheat. Mol Plant, 2021, 14: 1965-1968.
doi: 10.1016/j.molp.2021.10.006 pmid: 34715393
[27] Fan X L, Cui F, Ji J, Zhang W, Zhao X Q, Liu J J, Meng D Y, Tong Y P, Wang T, Li J M. Dissection of pleiotropic QTL regions controlling wheat spike characteristics under different nitrogen treatments using traditional and conditional QTL mapping. Front Plant Sci, 2019, 10: 187.
doi: 10.3389/fpls.2019.00187 pmid: 30863417
[28] Mizuno N, Nitta M, Sato K, Nasuda S. A wheat homologue of PHYTOCLOCK 1 is a candidate gene conferring the early heading phenotype to einkorn wheat. Genes Genet Syst, 2012, 87: 357-367.
doi: 10.1266/ggs.87.357
[29] Zhang L, Zhang H, Qiao L Y, Miao L F, Yan D, Liu P, Zhao G Y, Jia J Z, Gao L F. Wheat MADS-box gene TaSEP3-D1 negatively regulates heading date. Crop J, 2021, 9: 1115-1123.
doi: 10.1016/j.cj.2020.12.007
[30] Zou J, Semagn K, Chen H, Iqbal M, Asif M, Ndiaye A, Navabi A, Perez-lara E, Pozniak C, Yang R C, Graf R J, Randhawa H R, Spaner D. Mapping of QTLs associated with resistance to common bunt, tan spot, leaf rust, and stripe rust in a spring wheat population. Mol Breed, 2017, 37: 144.
doi: 10.1007/s11032-017-0746-1
[31] Griffiths S, Simmonds J, Leverington M, Wang Y K, Fish L, Sayers L, Alibert L, Orford S, Wingen L, Herry L, Faurer S, Laurie D, Biham L, Snape J. Meta-QTL analysis of the genetic control of ear emergence in elite European winter wheat germplasm. Theor Appl Genet, 2009, 119: 383-395.
doi: 10.1007/s00122-009-1046-x pmid: 19430758
[32] Hu J M, Wang X Q, Zhang G X, Jiang P, Chen W Y, Hao Y C, Ma X, Xu S S, Jia J Z, Kong L R, Wang H W. QTL mapping for yield-related traits in wheat based on four RIL population. Theor Appl Genet, 2020, 133: 917-933.
doi: 10.1007/s00122-019-03515-w
[33] Kane N A, Danyluk J, Tardif G, Quellet F, Laliberte J F, Limin A E, Fowler B, Sarhan F. TaVRT-2, a member of the StMADS-11 clade of flowering repressors, is regulated by vernalization and photoperiod in wheat. Plant Physiol, 2005, 138: 2354-2363.
doi: 10.1104/pp.105.061762 pmid: 16024692
[34] Mason R E, Hays D B, Mondal S, Ibrahim A M, Basnet B. QTL for yield, yield components and canopy temperature depression in wheat under late sown field conditions. Euphytica, 2013, 194: 243-259.
doi: 10.1007/s10681-013-0951-x
[35] Peng J, Richards D E, Hartley N M, Murphy G P, Devos K M, Flintham J E, Beales J, Fish L J, Worland A J, Pelica F, Sudhakar D, Christou P, Snape J W, Gale M D, Harberd N P. ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature, 1999, 400: 256-261.
doi: 10.1038/22307
[36] Wang R X, Hai L, Zhang X Y, You G X, Yan C S, Xiao S H. QTL mapping for grain filling rate and yield-related traits in RILs of the Chinese winter wheat population Heshangmai × Yu 8679. Theor Appl Genet, 2009, 118: 313-325.
doi: 10.1007/s00122-008-0901-5 pmid: 18853131
[37] Thambugala D, Brule-Babel A L, Blackwell B A, Fedak G, Foster A J, MacEachern D, Gillbert J, Henriquez M A, Martin R A, McCallum B D, Spaner D, Iqbal M, Pozniak C J, Diaye A N, McCartney C. Genetic analyses of native Fusarium head blight resistance in two spring wheat populations identifies QTL near the B1, Ppd-D1, Rht-1, Vrn-1, Fhb1, Fhb2, and Fhb5 loci. Theor Appl Genet, 2020, 133: 2775-2796.
doi: 10.1007/s00122-020-03631-y pmid: 32556394
[38] Addison C K, Mason R E, Brown-Guedira G, Guedira M, Hao Y F, Miller R G, Subramanian N, Lozada D N, Acuna A, Arguello M N, Johnson J W, Ibrahim A M H, Sutton R, Harrison S A. QTL and major genes influencing grain yield potential in soft red winter wheat adapted to the southern United States. Euphytica, 2016, 209: 665-677.
doi: 10.1007/s10681-016-1650-1
[39] Fatima S, Chaudhari S K, Akhtar S, Amjad M S, Akbar M, Iqbai M S, Arshad M, Shehzad T. Mapping QTLs for yield and yield components under drought stress in bread wheat (Triticum aestivum L.). Appl Ecol Environ Res, 2018, 16: 4431-4453.
doi: 10.15666/aeer
[40] Zhuang M J, Li C N, Wang J Y, Mao X G, Li L, Yin J, Du Y, Wang X, Jing R L. The wheat SHORT ROOT LENGTH 1 gene TaSRL1 controls root length in an auxin-dependent pathway. J Exp Bot, 2021, 72: 6977-6989.
doi: 10.1093/jxb/erab357
[41] Singh K, Saini D K, Saripalli G, Batra R, Gautam T, Singh R, Pal S, Kumar M, Jan I, Singh S, Kumar A, Sharma H, Chaudhary J, Kumar K, Kumar S, Singh V K, Singh V P, Kumar D, Sharma S, Kumar S, Kumar R, Sharma S, Gaurav S S, Sharma P K, Balyan H S, Gupta P K. Wheat QTLdb V2.0: a supplement to the database for wheat QTL. Mol Breed, 2022, 42: 56.
[42] 胡文静, 张勇, 陆成彬, 王凤菊, 刘金栋, 蒋正宁, 王金平, 朱展望, 徐小婷, 郝元峰, 何中虎, 高德荣. 小麦品种扬麦16赤霉病抗扩展QTL定位及分析. 作物学报, 2020, 46: 157-165.
doi: 10.3724/SP.J.1006.2020.91048
Hu W J, Zhang Y, Lu C B, Wang F J, Liu J D, Jiang Z N, Wang J P, Zhu Z W, Xu X T, Hao Y F, He Z H, Gao D R. Mapping and genetic analysis of QTLs for Fusarium head blight reistance to disease spread in Yangmai 16. Acta Agron Sin, 2020, 46: 157-165. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2020.91048
[43] Chen Z Y, Cheng X J, Chai L L, Wang Z H, Bian R L, Li J, Zhao A J, Xin M M, Guo W L, Hu Z R, Peng H R, Yao Y Y, Sun Q X, Ni Z F. Dissection of genetic factors underlying grain size and fine mapping of QTgw.cau-7D in common wheat (Triticum aestivum L.). Theor Appl Genet, 2020, 133: 149-162.
doi: 10.1007/s00122-019-03447-5
[44] Lin Y, Jiang X J, Hu H Y, Zhou K Y, Wang Q, Yu S F, Yang X L, Wang Z Q, Wu F K, Liu S H, Li C X, Deng M, Ma J, Chen G D, Wei Y M, Zheng Y L, Liu Y X. QTL mapping for grain number per spikelet in wheat using a high-density genetic map. Crop J, 2021, 9: 1108-1114.
doi: 10.1016/j.cj.2020.12.006
[1] HUANG Li, CHEN Wei-Gang, LI Wei-Tao, YU Bo-Lun, GUO Jian-Bin, ZHOU Xiao-Jing, LUO Huai-Yong, LIU Nian, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Identification of major QTLs for nodule formation in peanut [J]. Acta Agronomica Sinica, 2023, 49(8): 2097-2104.
[2] LI Xing, YANG Hui, LUO Lu, LI Hua-Dong, ZHANG Kun, ZHANG Xiu-Rong, LI Yu-Ying, YU Hai-Yang, WANG Tian-Yu, LIU Jia-Qi, WANG Yao, LIU Feng-Zhen, WAN Yong-Shan. QTLs mapping for single-seed weight of cultivated peanut [J]. Acta Agronomica Sinica, 2023, 49(8): 2160-2170.
[3] LIU Ting-Xuan, GU Yong-Zhe, ZHANG Zhi-Hao, WANG Jun, SUN Jun-Ming, QIU Li-Juan. Mapping soybean protein QTLs based on high-density genetic map [J]. Acta Agronomica Sinica, 2023, 49(6): 1532-1541.
[4] YANG Tai-Hua, YANG Fu-Quan, GAO Geng-Dong, YIN Shuai, JIN Qing-Dong, XU Lin-Shan, KUAI Jie, WANG Bo, XU Zheng-Hua, GE Xian-Hong, WANG Jing, ZHOU Guang-Sheng. Preliminary exploration of the role of LncRNA in the ecotype differentiation of Brassica napus L. [J]. Acta Agronomica Sinica, 2023, 49(5): 1197-1210.
[5] ZHOU Hai-Ping, ZHANG Fan, CHEN Kai, SHEN Cong-Cong, ZHU Shuang-Bing, QIU Xian-Jin, XU Jian-Long. Identification of rice blast resistance in xian and geng germplasms by genome- wide association study [J]. Acta Agronomica Sinica, 2023, 49(5): 1170-1183.
[6] YANG Jun-Fang, WANG Zhou, QIAO Lin-Yi, WANG Ya, ZHAO Yi-Ting, ZHANG Hong-Bin, SHEN DengGao, WANG HongWei, CAO Yue. QTL mapping of seed size traits based on a high-density genetic map in castor [J]. Acta Agronomica Sinica, 2023, 49(3): 719-730.
[7] XIANG Si-Qian, LI Ru-Xiang, XU Guang-Yi, DENG Ke-Li, YU Jin-Jin, LI Miao-Miao, YANG Zheng-Lin, LING Ying-Hua, SANG Xian-Chun, HE Guang-Hua, ZHAO Fang-Ming. Identification and pyramid analysis of QTLs for grain size based on rice long-large-grain chromosome segment substitution line Z66 [J]. Acta Agronomica Sinica, 2023, 49(3): 731-743.
[8] YANG Bin, QIAO Ling, ZHAO Jia-Jia, WU Bang-Bang, WEN Hong-Wei, ZHANG Shu-Wei, ZHENG Xing-Wei, ZHENG Jun. QTL mapping and validation of chlorophyll content of flag leaves in wheat (Triticum aestivum L.) [J]. Acta Agronomica Sinica, 2023, 49(3): 744-754.
[9] XU Jia-Bo, WU Peng-Hao, HUANG Bo-Wen, CHEN Zhan-Hui, MA Yue-Hong, REN Jiao-Jiao. QTL locating and genomic selection for tassel-related traits using F2:3 lineage haploids [J]. Acta Agronomica Sinica, 2023, 49(3): 622-633.
[10] YANG Shuo, WU Yang-Chun, LIU Xin-Lei, TANG Xiao-Fei, XUE Yong-Guo, CAO Dan, WANG Wan, LIU Ting-Xuan, QI Hang, LUAN Xiao-Yan, QIU Li-Juan. Fine mapping of qPRO-20-1 related to high protein content in soybean [J]. Acta Agronomica Sinica, 2023, 49(2): 310-320.
[11] ZHAO Die, HU Wen-Jing, CHENG Xiao-Ming, WANG Shu-Ping, ZHANG Chun-Mei, LI Dong-Sheng, GAO De-Rong. Detection and verification of QTL for plant height in Yangmai 4/Yanzhan 1 recombinant inbred lines population and their genetic effects on Fusarium head blight resistance [J]. Acta Agronomica Sinica, 2023, 49(12): 3215-3226.
[12] SUN Jian-Qiang, HONG Hui-Long, ZHANG Yong, GU Yong-Zhe, GAO Hua-Wei, ZHOU Ya, CAO Jie, QI Hang, ZHAO Quan, BAO Li-Gao, CHEN Qing-Shan, QIU Li-Juan. Mapping of stable QTL qSW20-1 for 100-seed weight and its effect on yield and quality in soybean [J]. Acta Agronomica Sinica, 2023, 49(10): 2621-2632.
[13] CAO Hui-Min, YANG Xian-Li, WANG Li-Zhi, LI Ping-Ping, ZHAI Lai-Yuan, JIANG Shu-Kun, ZHENG Tian-Qing, QIU Xian-Jin, XU Jian-Long. QTL identification and favorable allele mining of cold tolerance at seedling stage by reciprocal introgression and recombinant inbred line populations in rice [J]. Acta Agronomica Sinica, 2023, 49(10): 2633-2642.
[14] ZHAO Ling, LIANG Wen-Hua, ZHAO Chun-Fang, WEI Xiao-Dong, ZHOU Li-Hui, YAO Shu, WANG Cai-Lin, ZHANG Ya-Dong. Mapping of QTLs for heading date of rice with high-density bin genetic map [J]. Acta Agronomica Sinica, 2023, 49(1): 119-128.
[15] XUE Jiao, LU Dong-Bai, LIU Wei, LU Zhan-Hua, WANG Shi-Guang, WANG Xiao-Fei, FANG Zhi-Qiang, HE Xiu-Ying. Genetic analysis and fine mapping of a bacterial blight resistance major QTL qBB-11-1 in high-quality rice ‘Yuenong Simiao’ [J]. Acta Agronomica Sinica, 2022, 48(9): 2210-2220.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .
[10] XING Guang-Nan, ZHOU Bin, ZHAO Tuan-Jie, YU De-Yue, XING Han, HEN Shou-Yi, GAI Jun-Yi. Mapping QTLs of Resistance to Megacota cribraria (Fabricius) in Soybean[J]. Acta Agronomica Sinica, 2008, 34(03): 361 -368 .