Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (10): 2493-2502.doi: 10.3724/SP.J.1006.2024.42007

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

QTL mapping for salt tolerance traits throughout the entire growth period of deep-water rice

XIA Xiu-Zhong1,**(), ZHANG Zong-Qiong1,**(), NONG Bao-Xuan1, FENG Rui1, GUO Hui1, CHEN Can1, LIANG Shu-Hui1, ZHUANG Jie1, LIAO Zu-Yu1, SONG Guo-Xian2, YANG Xing-Hai1,*(), LI Dan-Ting1,*()   

  1. 1Rice Research Institute, Guangxi Academy of Agricultural Sciences / Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning 530007, Guangxi, China
    2Qinzhou Institute of Agricultural Sciences, Qinzhou 535000, Guangxi, China
  • Received:2024-01-31 Accepted:2024-06-20 Online:2024-10-12 Published:2024-07-08
  • Contact: *E-mail: ricegl@163.com;E-mail: yangxinghai514@163.com
  • About author:
    **(Contributed equally to this work)
  • Supported by:
    National Key Research and Development Program of China(2021YFD1200505-2);National Natural Science Foundation of China(32260487);National Natural Science Foundation of China(32360519);Guangxi Science and Technology Major Program(Gui Ke AA23073004);Guangxi Science and Technology Program(Gui Ke AB21238009);Special Funds of Basic Scientific Research Foundation of Guangxi Academy of Agricultural Sciences(Gui Nong Ke 2021YT030)

Abstract:

Salinity stress is a major constraint to rice production in many coastal regions, particularly in the salt-fresh water interface areas. Salt tolerance in rice is a complex trait that can be localized through quantitative trait loci (QTL) mapping, which can facilitate the breeding of rice varieties with enhanced salt tolerance. In this study, an F9 mapping population consisting of 174 recombinant inbred lines was developed from a cross between the coastal deep-water rice variety Chihe (donor parent) and the U.S. rice variety Lemont (receptor parent). The population was subjected to salinity stress during the germination, seedling, and reproductive stages with NaCl concentrations of 15 g L-1, 5 g L-1, and 5-6 g L-1, respectively. Data were collected on relative germination rates, seedling salt tolerance grades, and seven phenotypic traits during the reproductive stages. Linkage genetic mapping and QTL mapping were performed using 142 simple sequence repeat (SSR) markers. The results indicated that Chihe was salt-sensitive at the germination stage but exhibited salt tolerance at the seedling and reproductive stages, while Lemont lines were consistently salt-sensitive. Approximately 70.11%, 50.57%, and 60.34% of the lines showed salt sensitivity in the germination, seedling, and reproductive stages, respectively, with a weak negative correlation of salt tolerance across the stages. A total of 33 QTLs were identified, with LOD values ranging from 2.52 to 10.32 and phenotypic variation explained ranging from 0.06% to 13.68%. Specifically, 4 QTLs were identified for the germination stage, 6 for the seedling stage, and 23 for the reproductive stage. Four overlapping QTLs were identified at the reproductive stage, and the QTLs contributing to the largest phenotypic variation were all derived from the salt-tolerant parent. Further investigation of these QTLs can provide new genetic resources for improving salt tolerance in rice breeding, thereby aiding the development of rice varieties with enhanced tolerance to salinity stress.

Key words: whole growth period, salt tolerance, deep-water rice, identification and evaluation, quantitative trait locus (QTL)

Fig. 1

Distribution of salt tolerance in germination stage of 174 RILs A: violin plot of germination rate distribution under control and salt tolerance treatment. B: evaluation of salt tolerance grade at germination stage. *** represents significant difference at the 0.001 probability level. Tukey test was used to calculate P-values."

Fig. 2

Distribution of salt tolerance in seedling stage of 174 RILs A: violin plot of plant height distribution under control and salt tolerance at seedling stage; B: distribution histogram of leaf blight rate under salt tolerance; C: evaluation of salt tolerance grade at seedling stage; *** represents significant difference at the 0.001 probability level. Tukey test was used to calculate P-values."

Table 1

Statistical results of salt tolerance phenotypes in reproductive stage"

处理
Treatment
性状
Trait
亲本Parentage 重组自交系Recombinant inbred lines
赤禾Chihe Lemont 均值
Mean
标准差
SD
变异系数CV 最小值Min. 最大值Max.
正常对照
Control
株高 PH (cm) 224.5 96.8 130.04* 25.28 0.19 83.33 185.00
有效穗 TN 7.6 9.3 10.41 2.44 0.23 6.33 18.00
穗长 SL (cm) 29.5 16.8 26.25 2.93 0.11 18.83 35.67
实粒数 FGN 170.6 115.8 124.32** 127.58 0.34 141.00 801.00
结实率 SSR (%) 89.4 82.5 74.12** 10.96 0.15 44.95 97.95
单株产量 PY (g) 14.7 12.8 7.90** 2.57 0.33 3.10 17.06
千粒重 TGW (g) 23.1 26.8 21.55 3.17 0.15 15.27 30.88
盐胁迫
Salt treatment
株高 PH (cm) 194.6 86.2 123.12 27.94 0.23 67.40 194.60
有效穗 TN 6.4 7.8 10.45 2.44 0.23 5.80 18.40
穗长 SL (cm) 25.7 15.5 26.15 2.91 0.11 17.93 33.27
实粒数 FGN 113.5 53.2 110.70 93.86 0.28 138.00 587.00
结实率 SSR (%) 59.5 37.9 0.69 0.13 0.19 34.46 92.26
单株产量 PY (g) 11.2 3.0 6.87 2.00 0.29 2.45 12.38
千粒重 TGW (g) 19.8 23.2 20.99 3.62 0.17 13.04 38.90

Fig. 3

Distribution of salt tolerance in reproductive stage A: violin plot of plant yield distribution under control and salt tolerance at the reproductive stage; B: distribution histogram of salt tolerance coefficient; C: evaluation of salt tolerance grade at reproductive stage; *** represents significant difference at the 0.001 probability level."

Fig. 4

Genetic linkage map of 142 SSR markers and location of QTL for salt tolerance"

Table 2

Associated QTL identified for salt tolerance at three rice growth period"

生长期
Growth period
QTL 分子标记
Marker interval
位置
Position (cM)
LOD值
LOD value
加性效应Additive effect 显性效应Dominant effect 贡献率
R2
芽期
Germination stage
qGR-7.1 RM11-RM10 55.17 10.32 1.037 1.914 13.68
qGR-7.2 RM10-RM3826 69.77 7.88 0.923 2.060 11.33
qGR-7.3 RM3286-RM505 73.91 2.55 -0.429 2.134 1.32
qGR-10 RM8201-RM596 38.16 3.29 -0.659 1.206 2.40
苗期
Seedling stage
qSDI-1 RM259-RM572 45.84 3.34 -0.224 -1.206 0.98
qSDI-2 RM525-RM1092 119.43 2.60 0.429 0.575 3.48
qSDI-4 RM335-RM5687 23.30 2.59 0.533 -2.083 5.98
qSDI-7.1 RM125-RM214 30.51 2.96 -0.515 -0.400 5.22
qSDI-7.2 RM8263-RM11 34.50 4.31 -0.683 -0.029 9.65
qSDI-10 RM6128-RM6824 46.81 2.62 0.460 -1.561 4.02
生殖生长期
Reproductive stage
qPH-2 RM3355-RM263 88.53 3.77 0.006 0.174 0.77
qPH-8 RM223-RM210 76.28 3.18 -0.005 0.072 0.59
qPH-9 RM215-RM205 64.98 3.20 -0.010 0.206 2.64
qTN-4 RM5687-RM273 58.40 2.64 -0.029 0.346 4.53
qTN-5.1 RM169-RM289 29.75 3.17 0.006 -0.123 0.20
qTN-5.2 RM274-RM1054 88.17 2.67 -0.044 0.020 8.83
qFGN-5 RM405-RM413 5.92 3.11 0.006 0.191 0.31
qFGN-7 RM505-RM3589 76.91 2.52 0.019 0.063 3.45
qSSR-5 RM413-RM5994 9.92 3.04 -0.005 0.274 0.12
qSSR-10 RM216-RM311 12.17 2.58 -0.031 0.122 5.78
qPY-2 RM5764-RM7581 9.65 2.54 0.029 0.040 4.48
qPY-3 RM16-RM227 108.01 2.68 -0.035 -0.013 6.24
qPY-5 RM413-RM5994 11.92 2.83 -0.012 0.306 0.74
qPY-9 RM201-RM215 57.47 2.61 -0.038 -0.018 8.02
qTGW-2.1 RM5764-RM7581 1.00 3.20 0.021 -0.002 8.01
qTGW-2.2 RM3355-RM263 90.53 2.57 0.001 0.280 0.06
qTGW-3.1 RM545-RM517 5.01 4.78 -0.004 0.219 0.35
qTGW-3.2 RM517-OSR13 11.11 4.14 -0.005 0.281 0.46
qTGW-4 RM5687-RM273 48.40 4.10 0.003 0.280 0.23
qTGW-6 RM3827-RM5371 77.46 2.80 0.004 0.188 0.31
qTGW-12.1 RM19-RM453 20.60 3.76 -0.015 0.088 4.13
qTGW-12.2 RM453-RM7003 27.44 4.47 -0.012 0.143 2.67
qTGW-12.3 RM309-RM235 71.71 2.96 -0.003 0.208 0.15
[1] Hoang T M L, Tran T N, Nguyen T K T, Williams B, Wurm P, Bellairs S, Mundree S. Improvement of salinity stress tolerance in rice: challenges and opportunities. Agronomy, 2016, 6: 54.
[2] Munns R, Tester M. Mechanisms of salinity tolerance. Annu Rev Plant Biol, 2008, 59: 651-681.
doi: 10.1146/annurev.arplant.59.032607.092911 pmid: 18444910
[3] Zhao C Z, Zhang H, Song C P, Zhu J K, Shabala S. Mechanisms of plant responses and adaptation to soil salinity. Innovation (NY), 2020, 1: 100017.
[4] FAO, ITPS. Status of the World’s Soil Resources (SWSR):Main Report. Food and Agriculture Organization of the United Nations and Intergovernmental Technical Panel on Soils. Rome: FAO, 2015. p 5.
[5] Thorat B S, Bagkar T A, Raut S M. Responses of rice under salinity stress: a review. Int J Chem Stud, 2018, 6: 1441-1447.
[6] 牛东玲, 王启基. 盐碱地治理研究进展. 土壤通报, 2002, 33: 449-455.
Niu D L, Wang Q J. Research progress on saline-alkali field control. Chin J Soil Sci, 2002, 33: 449-455 (in Chinese with English abstract).
[7] Zeng L, Shannon M C, Grieve C M. Evaluation of salt tolerance in rice genotypes by multiple agronomic parameters. Euphytica, 2002, 127: 235-245.
[8] Ganie S A, Molla K A, Henry R J, Bhat K V, Mondal T K. Advances in understanding salt tolerance in rice. Theor Appl Genet, 2019, 132: 851-870.
doi: 10.1007/s00122-019-03301-8 pmid: 30759266
[9] Moradi F, Ismail A M. Responses of photosynthesis, chlorophyll fluorescence and ROS-scavenging systems to salt stress during seedling and reproductive stages in rice. Ann Bot, 2007, 99: 1161-1173.
[10] Singh R K, Flowers T J. The physiology and molecular biology of the effects of salinity on rice. In: Pessarakli M, ed. Handbook of Plant and Crop Stress, 3rd edn. Florida: CRC Press, 2010. pp 899-939.
[11] Singh V, Singh A P, Bhadoria J, Giri J, Singh J, Vineeth T V, Sharma P C. Differential expression of salt-responsive genes to salinity stress in salt-tolerant and salt-sensitive rice (Oryza sativa L.) at seedling stage. Protoplasma, 2018, 255: 1667-1681.
[12] Asch F, Wopereis M C S. Responses of field-grown irrigated rice cultivars to varying levels of floodwater salinity in a semi-arid environment. Field Crops Res, 2001, 70: 127-137.
[13] Khan M A, Hamid A, Karim M A. Effect of sodium chloride on germination and seedling characters of different types of rice (Oryza sativa L.). J Agron Crop Sci, 1997, 179: 163-169.
[14] Khatun S, Flowers T J. Effects of salinity on seed set in rice. Plant Cell Environ, 1995, 18: 61-67.
[15] 井文, 章文华. 水稻耐盐基因定位与克隆及品种耐盐性分子标记辅助选择改良研究进展. 中国水稻科学, 2017, 31: 111-123.
doi: 10.16819/j.1001-7216.2017.6083
Jing W, Zhang W H. Research progress on gene mapping and cloning for salt tolerance and variety improvement for salt tolerance by molecular marker-assisted selection in rice. Chin J Rice Sci, 2017, 31: 111-123 (in Chinese with English abstract).
doi: 10.16819/j.1001-7216.2017.6083
[16] Batayeva D, Labaco B, Ye C R, Li X L, Usenbekov B, Rysbekova A, Dyuskalieva G, Vergara G, Reinke R, Leung H. Genome-wide association study of seedling stage salinity tolerance in temperate japonica rice germplasm. BMC Genet, 2018, 19: 2.
doi: 10.1186/s12863-017-0590-7 pmid: 29298667
[17] Li X, Guo D L, Xue M, Li G Z, Yan Q C, Jiang H X, Liu H Q, Chen J X, Gao Y F, Duan L P, Xie L Q. Genome-wide association study of salt tolerance at the seed germination stage in flax (Linum usitatissimum L.). Genes (Basel), 2022, 13: 486.
[18] Le T D, Gathignol F, Vu H T, Nguyen K L, Tran L H, Vu H T T, Dinh T X, Lazennec F, Pham X H, Véry A A, Gantet P, Hoang G T. Genome-wide association mapping of salinity tolerance at the seedling stage in a panel of vietnamese landraces reveals new valuable QTLs for salinity stress tolerance breeding in rice. Plants (Bsael), 2021, 10: 1088.
[19] Chen C, Norton G J, Price A H. Genome-wide association mapping for salt tolerance of rice seedlings grown in hydroponic and soil systems using the Bengal and Assam Aus Panel. Front Plant Sci, 2020, 11: 576479.
[20] Amoah N K A, Akromah R, Kena A W, Manneh B, Dieng I, Bimpong I K. Mapping QTLs for tolerance to salt stress at the early seedling stage in rice (Oryza sativa L.) using a newly identified donor ‘Madina Koyo’. Euphytica, 2020, 216: 156.
[21] Marè C, Zampieri E, Cavallaro V, Frouin J, Grenier C, Courtois B, Brottier L, Tacconi G, Finocchiaro F, Serrat X, Nogués S, Bundó M, San Segundo B, Negrini N, Pesenti M, Sacchi G A, Gavina G, Bovina R, Monaco S, Tondelli A, Cattivelli L, Valè G. Marker-assisted introgression of the salinity tolerance locus Saltol in temperate japonica rice. Rice (N Y), 2023, 16: 2.
[22] Krishnamurthy S L, Pundir P, Warraich A S, Rathor S, Lokeshkumar B M, Singh N K, Sharma P C. Introgressed Saltol QTL lines improves the salinity tolerance in rice at seedling stage. Front Plant Sci, 2020, 11: 833.
doi: 10.3389/fpls.2020.00833 pmid: 32595689
[23] Nutan K K, Kushwaha H R, Singla-Pareek S L, Pareek A. Transcription dynamics of Saltol QTL localized genes encoding transcription factors, reveals their differential regulation in contrasting genotypes of rice. Funct Integr Genomics, 2017, 17: 69-83.
[24] Bonilla P S, Dvorak J, Mackill D J, Deal K, Gregorio G B. RFLP and SSLP mapping of salinity tolerance genes in chromosome 1 of rice (Oryza sativa L.) using recombinant inbred lines. Philipp Agric, 2002, 85: 68-76.
[25] Ren Z H, Gao J P, Li L G, Cai X L, Huang W, Chao D Y, Zhu M Z, Wang Z Y, Luan S, Lin H X. A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nat Genet, 2005, 37: 1141-1146.
[26] Wang Z F, Wang J F, Bao Y M, Wu Y Y, Zhang H S. Quantitative trait loci controlling rice seed germination under salt stress. Euphytica, 2011, 178: 297-307.
[27] Sayed M A, Maurer A, Schmutzer T, Schnurbusch T, Borner A, Hansson M, Pillen K, Youssef H M. Genome-wide association study of salt tolerance-related traits during germination and seedling development in an intermedium-spike barley collection. Int J Mol Sci, 2022, 23: 11060.
[28] Nakhla W R, Sun W, Fan K, Yang K, Zhang C, Yu S. Identification of QTLs for salt tolerance at the germination and seedling stages in rice. Plants (Basel), 2021, 10: 428.
[29] Yu J, Zhao W, Tong W, He Q, Yoon M Y, Li F P, Choi B, Heo E B, Kim K W, Park Y J. A genome-wide association study reveals candidate genes related to salt tolerance in rice (Oryza sativa) at the germination stage. Int J Mol Sci, 2018, 19: 3145.
[30] Mondal S, Septiningsih E M, Singh R K, Thomson M J. Mapping QTLs for reproductive stage salinity tolerance in rice using a cross between Hasawi and BRRI dhan28. Int J Mol Sci, 2022, 23: 11376.
[31] Singh R K, Kota S, Flowers T J. Salt tolerance in rice: seedling and reproductive stage QTL mapping come of age. Theor Appl Genet, 2021, 134: 3495-3533.
doi: 10.1007/s00122-021-03890-3 pmid: 34287681
[32] Warraich A S, Krishnamurthy S L, Sooch B S, Vinaykumar N M, Dushyanthkumar B M, Bose J, Sharma P C. Rice GWAS reveals key genomic regions essential for salinity tolerance at reproductive stage. Acta Physiol Plant, 2020, 42: 134.
[33] Mohammadi R, Mendioro M S, Diaz G Q, Gregorio G B, Singh R K. Mapping quantitative trait loci associated with yield and yield components under reproductive stage salinity stress in rice (Oryza sativa L.). J Genet, 2013, 92: 433-443.
doi: 10.1007/s12041-013-0285-4 pmid: 24371165
[34] 陆岗, 梁耀懋, 黎坤爱, 李丹婷. 深水稻种质资源耐淹性及抗稻纹枯病特性研究. 西南农业学报, 2004, 17: 701-704.
Lu G, Liang Y M, Li K A, Li D T. Studies on resources of deep-water rice varieties. Southwest China J Agric Sci, 2004, 17: 701-704 (in Chinese with English abstract).
[35] 李丹婷, 农保选, 夏秀忠, 曾宇, 刘开强, 刘义明, 林竞鸿, 杨显志, 韩龙植, 张辉, 邓国富. 广西沿海受旱与咸酸田面积的分布与抗旱、耐盐种质资源鉴定. 植物遗传资源学报, 2014, 15: 12-17.
doi: 10.13430/j.cnki.jpgr.2014.01.002
Li D T, Nong B X, Xia X Z, Zeng Y, Liu K Q, Liu Y M, Lin J H, Yang X Z, Han L Z, Zhang H, Deng G F. Distribution of drought disaster area, acid paddy soil area and evaluation of drought resistance, salt tolerance crop resources in Guangxi coastal area. J Plant Genet Resour, 2014, 15: 12-17 (in Chinese with English abstract).
doi: 10.13430/j.cnki.jpgr.2014.01.002
[36] 陆岗, 李丹婷, 农保选, 夏秀忠, 梁耀懋, 黎坤爱. 深水稻品种赤禾纹枯病抗性QTLs定位. 西南农业学报, 2009, 22: 1577-1580.
Lu G, Li D T, Nong B X, Xia X Z, Liang Y M, Li K A. QTL analysis of sheath blight resistance in deepwater-rice Chihe (Oryza sativa L.). Southwest China J Agric Sci, 2009, 22: 1577-1580 (in Chinese with English abstract).
[37] Moradi F, Ismail A M, Gregorio G B, Egdane J A. Salinity tolerance of rice during reproductive development and association with tolerance at the seedling stage. Indian J Plant Physiol, 2003, 8: 105-116.
[38] Mardani Z, Rabiei B, Sabouri H, Sabouri A. Identification of molecular markers linked to salt-tolerant genes at germination stage of rice. Plant Breed, 2014, 133: 196-202.
[39] Jing W, Deng P, Cao C J, Zhang W H. Fine mapping of qSKC-1, a major quantitative trait locus for shoot K+ concentration, in rice seedlings grown under salt stress. Breed Sci, 2017, 67: 286-295.
[40] Lin H X, Zhu M Z, Yano M, Gao J P, Liang Z W, Su W A, Hu X H, Ren Z H, Chao D Y. QTLs for Na+ and K+ uptake of the shoots and roots controlling rice salt tolerance. Theor Appl Genet, 2004, 108: 253-260.
doi: 10.1007/s00122-003-1421-y pmid: 14513218
[41] Fukuda A, Nakamura A, Tanaka Y. Molecular cloning and expression of the Na+/H+ exchanger gene in Oryza sativa. Biochim Biophys Acta, 1999, 1446: 149-155.
doi: 10.1016/s0167-4781(99)00065-2 pmid: 10395929
[42] Zhou G A, Jiang Y, Yang Q, Wang J F, Huang J, Zhang H S. Isolation and characterization of a new Na+/H+ antiporter gene OsNHA1 from rice (Oryza sativa L.). DNA Seq, 2006, 17: 24-30.
[43] Yamaguchi T, Hamamoto S, Uozumi N. Sodium transport system in plant cells. Front Plant Sci, 2013, 4: 410.
doi: 10.3389/fpls.2013.00410 pmid: 24146669
[44] Koyama M L, Levesley A, Koebner R M, Flowers T J, Yeo A R. Quantitative trait loci for component physiological traits determining salt tolerance in rice. Plant Physiol, 2001, 125: 406-422.
doi: 10.1104/pp.125.1.406 pmid: 11154348
[45] Calapit-Palao C D, Vina C B, Thomson M J, Singh R K. QTL identification for reproductive-stage salinity tolerance in rice (Oryza sativa L.). In:Proceedings of SABRAO 13th Congress and International Conference. Bogor: Society for the Advancement of Breeding Research in Asia and Oceania (SABRAO), 2015. pp 14-16.
[46] Pundir P, Devi A, Krishnamurthy S L, Sharma P C, Vinaykumar N M. QTLs in salt rice variety CSR10 reveals salinity tolerance at reproductive stage. Acta Physiol Plant, 2021, 43: 35.
[47] Haque T, Elias S M, Razzaque S, Biswas S, Khan S F, Jewel G, Rahman M S, Juenger T E, Seraj Z I. Salt tolerance QTLs of an endemic rice landrace, Horkuch at seedling and reproductive stages. Sci Rep, 2022, 12: 17306.
doi: 10.1038/s41598-022-21737-9 pmid: 36243755
[48] Gao Q M, Wang H Y, Yin X L, Wang F C, Hu S C, Liu W H, Chen L B, Dai X J, Liang M Z. Identification of salt tolerance related candidate genes in ‘Sea Rice 86’ at the seedling and reproductive stages using QTL-seq and BSA-seq. Genes (Basel), 2023, 14: 458.
[49] 梁卫红, 毕佳佳, 彭威风, 张帆, 石宏浩, 李莉. 水稻促分裂原活化蛋白激酶基因OsMPK14的克隆及表达分析. 中国水稻科学, 2010, 24: 125-130.
doi: 10.3969/j.issn.1001-7216.2010.02.04
Liang W H, Bi J J, Peng W F, Zhang F, Shi H H, Li L. Cloning and expression analysis of a mitogen-activated protein kinase gene OSMPK14 from rice. Chin J Rice Sci, 2010, 24: 125-130 (in Chinese with English abstract).
[50] 邱生平, 周国安, 陆驹飞, 黄骥, 潘丽娟, 王建飞, 杨清, 张红生. 一个新的水稻液泡膜Na+/H+逆向转运蛋白基因的克隆及表达特征. 中国水稻科学, 2006, 20: 119-124.
Qiu S P, Zhou G A, Lu J F, Huang J, Pan L J, Wang J F, Yang Q, Zhang H S. Molecular cloning and expression analysis of a new vacuolar Na+/H+ antiporter gene in rice (Oryza sativa). Chin J Rice Sci, 2006, 20: 119-124 (in Chinese with English abstract).
[51] Fukuda A, Nakamura A, Hara N, Toki S, Tanaka Y. Molecular and functional analyses of rice NHX-type Na+/H+ antiporter genes. Planta, 2011, 233: 175-188.
[52] Lee S K, Kim B G, Kwon T R, Jeong M J, Park S C. Overexpression of the mitogen-activated protein kinase gene OsMAPK33 enhances sensitivity to salt stress in rice (Oryza sativa L.). J Biosci, 2011, 36: 139-151.
[53] Li C H, Wang G, Zhao J L, Zhang L Q, Ai L F, Han Y F, Sun D Y, Zhang S W, Sun Y. The receptor-like kinase SIT1 mediates salt sensitivity by activating MAPK3/6 and regulating ethylene homeostasis in rice. Plant Cell, 2014, 26: 2538-2553.
[54] Li D Q, Wu X B, Wang H F, Feng X, Yan S J, Wu S Y, Liu J X, Yao X F, Bai A N, Zhao H. Defective mitochondrial function by mutation in THICK ALEURONE 1 encoding a mitochondrion-targeted single-stranded DNA-binding protein leads to increased aleurone cell layers and improved nutrition in rice. Mol Plant, 2022, 15: 1638-1639.
[55] Luo J H, Liu H, Zhou T Y, Gu B G, Huang X H, Shangguan Y Y, Zhu J J, Li Y, Zhao Y, Wang Y C, Zhao Q, Wang A, Wang Z Q, Sang T, Wang Z X, Han B. An-1 encodes a basic helix-loop-helix protein that regulates awn development, grain size, and grain number in rice. Plant Cell, 2013, 25: 3360-3376.
[1] LIU Xin-Yue, GUO Xiao-Yang, WANG Xin-Ru, XIN Da-Wei, GUAN Rong-Xia, QIU Li-Juan. Establishment of screening method for salt tolerance at germination stage and identification of salt-tolerant germplasms in soybean [J]. Acta Agronomica Sinica, 2024, 50(8): 2122-2130.
[2] LI Hang, LIU Li, HUANG Qian, LIU Wen-Hao, SI Ai-Jun, KONG Xian-Hui, WANG Xu-Wen, ZHAO Fu-Xiang, MEI Yong-Jun, YU Yu. Identification and screening of salt tolerance of cotton germplasm resources at germination stage [J]. Acta Agronomica Sinica, 2024, 50(5): 1147-1157.
[3] SHI Yu-Xin, LIU Xin-Yue, SUN Jian-Qiang, LI Xiao-Fei, GUO Xiao-Yang, ZHOU Ya, QIU Li-Juan. Knockout of GmBADH1 gene using CRISPR/Cas9 technique to reduce salt tolerance in soybean [J]. Acta Agronomica Sinica, 2024, 50(1): 100-109.
[4] XU Yang, ZHANG Dai, KANG Tao, WEN Sai-Qun, ZHANG Guan-Chu, DING Hong, GUO Qing, QIN Fei-Fei, DAI Liang-Xiang, ZHANG Zhi-Meng. Effects of salt stress on ion dynamics and the relative expression level of salt tolerance genes in peanut seedlings [J]. Acta Agronomica Sinica, 2023, 49(9): 2373-2384.
[5] WANG Hui-Wei, ZHANG Xiang-Ge, LI Chun-Xin, XU Xin-Ran, HU Hai-Yan, ZHU Ya-Jing, WANG Yan, ZHANG Xin-You. Evaluation of salt tolerance in Cyperus esculentus and transcriptomic analysis of seedling roots under salt stress [J]. Acta Agronomica Sinica, 2023, 49(7): 1882-1894.
[6] LI Hui, LU Yi-Ping, WANG Xiao-Kai, WANG Lu-Yao, QIU Ting-Ting, ZHANG Xue-Ting, HUANG Hai-Yan, CUI Xiao-Yu. GmCIPK10, a CBL-interacting protein kinase promotes salt tolerance in soybean [J]. Acta Agronomica Sinica, 2023, 49(5): 1272-1281.
[7] XIA Xiu-Zhong, ZHANG Zong-Qiong, YANG Xing-Hai, ZHUANG Jie, ZENG Yu, DENG Guo-Fu, SONG Guo-Xian, HUANG Yu-Xiao, NONG Bao-Xuang, LI Dan-Ting. Genome wide association study of salt tolerance at the germination stage for core Germplasm of rice landrace in Guangxi, China [J]. Acta Agronomica Sinica, 2022, 48(8): 2007-2015.
[8] HU Liang-Liang, WANG Su-Hua, WANG Li-Xia, CHENG Xu-Zhen, CHEN Hong-Lin. Identification of salt tolerance and screening of salt tolerant germplasm of mungbean (Vigna radiate L.) at seedling stage [J]. Acta Agronomica Sinica, 2022, 48(2): 367-379.
[9] LI Hui, LI De-Fang, DENG Yong, PAN Gen, CHEN An-Guo, ZHAO Li-Ning, TANG Hui-Juan. Expression analysis of abiotic stress response gene HcWRKY71 in kenaf and transformation of Arabidopsis [J]. Acta Agronomica Sinica, 2021, 47(6): 1090-1099.
[10] MENG Jiang-Yu, LIANG Guang-Wei, HE Ya-Jun, QIAN Wei. QTL mapping of salt and drought tolerance related traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(3): 462-471.
[11] YAN Cai-Xia, WANG Juan, ZHAO Xiao-Bo, SONG Xiu-Xia, JIANG Chang-Song, SUN Quan-Xi, YUAN Cui-Ling, ZHANG Hao, SHAN Shi-Hua. Identification and screening of saline-alkali tolerant peanut cultivars during whole growth stage [J]. Acta Agronomica Sinica, 2021, 47(3): 556-565.
[12] LI Jian, WANG Yi-Ru, ZHANG Ling-Xiao, SUN Ming-Hao, QIN Yang, ZHENG Jun. Functional analysis of ZmCIPK24-2 gene from maize in response to salt stress [J]. Acta Agronomica Sinica, 2020, 46(9): 1351-1358.
[13] Li-Ge BAO,Ping LU,Meng-Sha SHI,Yue XU,Min-Xuan LIU. Screening and identification of Chinese sorghum landraces for salt tolerance at germination and seedling stages [J]. Acta Agronomica Sinica, 2020, 46(5): 734-744.
[14] Shan-Bin CHEN, Si-Fan SUN, Nan NIE, Bing DU, Shao-Zhen HE, Qing-Chang LIU, Hong ZHAI. Cloning of IbCAF1 and identification on tolerance to salt and drought stress in sweetpotato [J]. Acta Agronomica Sinica, 2020, 46(12): 1862-1869.
[15] WANG Xiao-Lei, LI Wei-Xing, ZENG Bo-Hong, SUN Xiao-Tang, OU-YANG Lin-Juan, CHEN Xiao-Rong, HE Hao-Hua, ZHU Chang-Lan. QTL detection and stability analysis of rice grain shape and thousand-grain weight based on chromosome segment substitution lines [J]. Acta Agronomica Sinica, 2020, 46(10): 1517-1525.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!