JI Bai-Lu1,3,**,SUN Yi-Wen1,**,LIU Wan-Feng2,QIAN Ya-Xin1,3,JIANG Cai-Hong1,GENG Rui-Mei1,LIU Dan1,CHENG Li-Rui1,YANG Ai-Guo1,HUANG Li-Yu3,LI Xiao-Xu2,PU Wen-Xuan2,GAO Jun-Ping2,*,ZHANG Qiang4,*,WEN Liu-Ying1,*
[1] Suh M C, Kim H U, Nakamura Y. Plant lipids: trends and beyond. J Exp Bot, 2022, 73: 2715–2720. [2] Markham J E, Lynch D V, Napier J A, Dunn T M, Cahoon E B. Plant sphingolipids: function follows form. Curr Opin Plant Biol, 2013, 16: 350–357. [3] Kuźniak E, Gajewska E. Lipids and lipid-mediated signaling in plant-pathogen interactions. Int J Mol Sci, 2024, 25: 7255. [4] Wan X Y, Wu S W, Li Z W, An X L, Tian Y H. Lipid metabolism: critical roles in male fertility and other aspects of reproductive development in plants. Mol Plant, 2020, 13: 955–983. [5] Lim G H, Singhal R, Kachroo A, Kachroo P. Fatty acid- and lipid-mediated signaling in plant defense. Annu Rev Phytopathol, 2017, 55: 505–536.
[6] 李丽, 孙健, 何雪梅, 李昌宝, 零东宁, 饶川艳, 肖占仕, 盛金凤, 郑凤锦, 易萍. 逆境胁迫下植物磷脂酶D的生理功能和作用机制综述. 江苏农业科学, 2018, 46(8): 1–5.
[7] 刘俊羽, 杨帆, 毛爽, 李书鑫, 林海蛟, 阎秀峰, 蔺吉祥. 植物脂质应答逆境胁迫生理功能的研究进展. 生物工程学报, 2021, 37: 2658–2667. [8] Ohlrogge J, Browse J. Lipid biosynthesis. Plant Cell, 1995, 7: 957–970. [9] Yao H Y, Wang G L, Guo L, Wang X M. Phosphatidic acid interacts with a MYB transcription factor and regulates its nuclear localization and function in Arabidopsis. Plant Cell, 2013, 25: 5030–5042. [10] Zhang W H, Qin C B, Zhao J, Wang X M. Phospholipase D alpha 1-derived phosphatidic acid interacts with ABI1 phosphatase 2C and regulates abscisic acid signaling. Proc Natl Acad Sci USA, 2004, 101: 9508–9513. [11] Testerink C, Munnik T. Phosphatidic acid: a multifunctional stress signaling lipid in plants. Trends Plant Sci, 2005, 10: 368–375. [12] 陈四龙, 黄家权, 雷永, 任小平, 文奇根, 陈玉宁, 姜慧芳, 晏立英, 廖伯寿. 花生溶血磷脂酸酰基转移酶基因的克隆与表达分析. 作物学报, 2012, 38: 245–255. Chen S L, Huang J Q, Lei Y, Ren X P, Wen Q G, Chen Y N, Jiang H F, Yan L Y, Liao B S. Cloning and expression analysis of lysophosphatidic acid acyltransferase (LPAT) encoding gene in peanut. Acta Agron Sin, 2012, 38: 245–255 (in Chinese with English abstract). [13] Maisonneuve S, Bessoule J J, Lessire R, Delseny M, Roscoe T J. Expression of rapeseed microsomal lysophosphatidic acid acyltransferase isozymes enhances seed oil content in Arabidopsis. Plant Physiol, 2010, 152: 670–684. [14] Körbes A P, Kulcheski F R, Margis R, Margis-Pinheiro M, Turchetto-Zolet A C. Molecular evolution of the lysophosphatidic acid acyltransferase (LPAAT) gene family. Mol Phylogenet Evol, 2016, 96: 55–69. [15] Yu B, Wakao S, Fan J L, Benning C. Loss of plastidic lysophosphatidic acid acyltransferase causes embryo-lethality in Arabidopsis. Plant Cell Physiol, 2004, 45: 503–510. [16] Kim H U, Li Y B, Huang A H C. Ubiquitous and endoplasmic reticulum-located lysophosphatidyl acyltransferase, LPAT2, is essential for female but not male gametophyte development in Arabidopsis. Plant Cell, 2005, 17: 1073–1089. [17] Angkawijaya A E, Nguyen V C, Nakamura Y. LYSOPHOSPHATIDIC ACID ACYLTRANSFERASES 4 and 5 are involved in glycerolipid metabolism and nitrogen starvation response in Arabidopsis. New Phytol, 2019, 224: 336–351. [18] Shaikh A A, Alamin A, Jia C X, Gong W, Deng X J, Shen Q W, Hong Y Y. The examination of the role of rice lysophosphatidic acid acyltransferase 2 in response to salt and drought stresses. Int J Mol Sci, 2022, 23: 9796.
[19] 徐华祥, 鲁庚, 郭曦, 李圆圆, 张涛. 紫苏溶血磷脂酰转移酶基因PfLPAAT的克隆及功能研究. 作物学报, 2022, 48: 2494–2504. [20] Zhang K, Nie L L, Cheng Q Q, Yin Y T, Chen K, Qi F Y, Zou D S, Liu H H, Zhao W G, Wang B S, et al. Effective editing for lysophosphatidic acid acyltransferase 2/5 in allotetraploid rapeseed (Brassica napus L.) using CRISPR-Cas9 system. Biotechnol Biofuels, 2019, 12: 225.
[21] 魏春红, 李毅. 现代分子生物学实验技术. 北京: 高等教育出版社, 2006. [22] Meng H, Sun M M, Jiang Z P, Liu Y T, Sun Y, Liu D, Jiang C H, Ren M, Yuan G D, Yu W L, et al. Comparative transcriptome analysis reveals resistant and susceptible genes in tobacco cultivars in response to infection by Phytophthora nicotianae. Sci Rep, 2021, 11: 809.
[23] 刘昱彤. 烟草抗黑胫病主效位点分子标记开发及育种价值评价. 中国农业科学院硕士学位论文, 北京, 2022.
[24] 孙希芳. CORESTA青枯病共同试验分学组研究报告. 烟草科技, 2001, (11): 30–33. [25] Vasse J. Microscopic studies of intercellular infection and protoxylem invasion of tomato roots by Pseudomonas solanacearum. Mol Plant Microbe Interact, 1995, 8: 241.
[26] 翟中和, 王喜忠, 丁明孝. 细胞生物学(第4版). 北京: 高等教育出版社, 2011. [27] 鲁锦畅, 武耀康, 吕雪芹, 刘龙, 陈坚, 刘延峰. 神经酰胺类鞘脂的绿色生物制造. 合成生物学, 2024, 6: 422–444. Lu J C, Wu Y K, Lyu X Q, Liu L, Chen J, Liu Y F. Green biomanufacturing of ceramide-based sphingolipids. Synth Biol J, 2024. 2024, 6: 422–444 (in Chinese with English abstract). [28] Scholz J. Inositol trisphosphate, a new “second messenger” for positive inotropic effects on the heart? Klin Wochenschr, 1989, 67: 271–279.
[29] 张亚杰. 高等植物光系统II大量捕光色素蛋白复合体的稳定性研究. 中国科学院大学硕士学位论文, 北京, 2006.
[30] 沈梦千, 安昌, 秦源, 郑平. 植物生长和胁迫响应的脂质组学解析:脂质调控综览. 基因组学与应用生物学, 2024, 43: 738–754. [31] Yu L H, Zhou C, Fan J L, Shanklin J, Xu C C. Mechanisms and functions of membrane lipid remodeling in plants. Plant J, 2021, 107: 37–53. [32] Benghezal M, Roubaty C, Veepuri V, Knudsen J, Conzelmann A. SLC1 and SLC4 encode partially redundant acyl-coenzyme A 1-acylglycerol-3-phosphate O-acyltransferases of budding yeast. J Biol Chem, 2007, 282: 30845–30855.
[33] 叶雪影. 在油菜中分别超量表达AhLEC1和AhLPAAT基因对油菜含油量的影响. 湖北大学硕士学位论文, 湖北武汉, 2014. [34] Cai Y Q, Zhai Z Y, Blanford J, Liu H, Shi H, Schwender J, Xu C C, Shanklin J. Purple acid phosphatase2 stimulates a futile cycle of lipid synthesis and degradation, and mitigates the negative growth effects of triacylglycerol accumulation in vegetative tissues. New Phytol, 2022, 236: 1128–1139. [35] Yang Y, Benning C. Functions of triacylglycerols during plant development and stress. Curr Opin Biotechnol, 2018, 49: 191–198.
[36] 戚维聪. 油菜发育种子中油脂积累与Kennedy途径酶活性的关系研究. 南京农业大学硕士学位论文, 江苏南京, 2008. [37] Zhang K, He J J, Yin Y T, Chen K, Deng X, Yu P, Li H X, Zhao W G, Yan S X, Li M T. Lysophosphatidic acid acyltransferase 2 and 5 commonly, but differently, promote seed oil accumulation in Brassica napus. Biotechnol Biofuels Bioprod, 2022, 15: 83. [38] Chen S L, Lei Y, Xu X, Huang J Q, Jiang H F, Wang J, Cheng Z S, Zhang J N, Song Y H, Liao B S, et al. The peanut (Arachis hypogaea L.) gene AhLPAT2 increases the lipid content of transgenic Arabidopsis seeds. PLoS One, 2015, 10: e0136170. [39] Chen G Q, van Erp H, Martin-Moreno J, Johnson K, Morales E, Browse J, Eastmond P J, Lin J T. Expression of castor LPAT2 enhances ricinoleic acid content at the Sn-2 position of triacylglycerols in Lesquerella seed. Int J Mol Sci, 2016, 17: 507. [40] Pritchard S L, Charlton W L, Baker A, Graham I A. Germination and storage reserve mobilization are regulated independently in Arabidopsis. Plant J, 2002, 31: 639–647.
[41] 王文霞, 李曙光, 白雪芳, 杜昱光. 不饱和脂肪酸及其衍生物在植物抗逆反应中的作用. 植物生理学通讯, 2004, 40: 741–748.
[42] 王利民, 符真珠, 高杰, 董晓宇, 张晶, 袁欣, 蒋卉, 王慧娟, 李艳敏, 师曼, 等. 植物不饱和脂肪酸的生物合成及调控. 基因组学与应用生物学, 2020, 39: 254–258. [43] Miquel M, James D Jr, Dooner H, Browse J. Arabidopsis requires polyunsaturated lipids for low-temperature survival. Proc Natl Acad Sci USA, 1993, 90: 6208–6212. [44] Wang C, Chin C K, Chen A. Expression of the yeast Δ-9 desaturase gene in tomato enhances its resistance to powdery mildew. Physiol Mol Plant Pathol, 1998, 52: 371–383. [45] Madi L A, Wang X J, Kobiler I, Lichter A, Prusky D. Stress on avocado fruits regulates Δ9-stearoyl ACP desaturase expression, fatty acid composition, antifungal diene level and resistance to Colletotrichum gloeosporioides attack. Physiol Mol Plant Pathol, 2003, 62: 277–283. [46] Boudière L, Michaud M, Petroutsos D, Rébeillé F, Falconet D, Bastien O, Roy S, Finazzi G, Rolland N, Jouhet J, et al. Glycerolipids in photosynthesis: composition, synthesis and trafficking. Biochim Biophys Acta, 2014, 1837: 470–480.
[47] 刘潇潇, 巩迪, 高天鹏, 殷俐娜, 王仕稳. 植物类囊体主要膜脂及其生物合成. 植物学报, 2024, 59: 144–155. [48] Fujii S, Kobayashi K, Nakamura Y, Wada H. Inducible knockdown of MONOGALACTOSYLDIACYLGLYCEROL SYNTHASE 1 reveals roles of galactolipids in organelle differentiation in Arabidopsis cotyledons. Plant Physiol, 2014, 166: 1436–1449.
[49] 王俊斌. 烟草单半乳糖甘油二酯缺失对茉莉酸生物合成的影响. 中国科学院大学研究生硕士论文, 北京, 2007. |
[1] | YANG Xiao-Hui, YAN Xuan-Jun, YANG Wen-Yan, FU Jun-Jie, YANG Qin, XIE Yu-Xin. Effect evaluation and investigation on molecular mechanism of the ZmKL1 favorable allele in regulating maize kernel size [J]. Acta Agronomica Sinica, 2025, 51(6): 1501-1513. |
[2] | WANG Xiao-Lin, LIU Zhong-Song, KANG Lei, YANG Liu. Mapping of silique length and seeds per silique and transcriptome profiling of pod walls in Brassica napus L. [J]. Acta Agronomica Sinica, 2025, 51(4): 888-899. |
[3] | ZHANG Jin-Ze, ZHOU Qing-Guo, YANG Xu, WANG Qian, XIAO Li-Jing, JIN Hai-Run, OU-YANG Qing-Jing, YU Kun-Jiang, TIAN En-Tang. Analysis of genes associated with expression characteristics and high resistance in response to Sclerotinia sclerotiorum infection in Brassica juncea [J]. Acta Agronomica Sinica, 2025, 51(3): 621-631. |
[4] | SUN Cheng-Ming, ZHOU Xiao-Ying, CHEN Feng, ZHANG Wei, WANG Xiao-Dong, PENG Qi, GUO Yue, GAO Jian-Qin, HU Mao-Long, FU San-Xiong, ZHANG Jie-Fu. Functional analysis and prediction of long non-coding RNA (lncRNA) in the regulation of branch angle in Brassica napus L. [J]. Acta Agronomica Sinica, 2025, 51(3): 559-567. |
[5] | YE Liang, ZHU Ye-Lin, PEI Lin-Jing, ZHANG Si-Ying, ZUO Xue-Qian, LI Zheng-Zhen, LIU Fang, TAN Jing. Screening candidate resistance genes to ear rot caused by Fusarium verticillioides in maize by combined GWAS and transcriptome analysis [J]. Acta Agronomica Sinica, 2024, 50(9): 2279-2296. |
[6] | YU Hai-Long, WU Wen-Xue, PEI Xing-Xu, LIU Xiao-Yu, DENG Gen-Wang, LI Xi-Chen, ZHEN Shi-Cong, WANG Jun-Sen, ZHAO Yong-Tao, XU Hai-Xia, CHENG Xi-Yong, ZHAN Ke-Hui. Transcriptome sequencing and genome-wide association study of wheat stem traits [J]. Acta Agronomica Sinica, 2024, 50(9): 2187-2206. |
[7] | LIU Bo, CHI Ming, CAO Meng-Qi, TANG Da, YANG Heng-Zhao, ZHANG Wei-Hua, XUE Cong. Impact of potato StuPPO9 gene overexpression on drought resistance in Nicotiana benthamiana [J]. Acta Agronomica Sinica, 2024, 50(9): 2237-2247. |
[8] | XIAO Ming-Kun, YAN Wei, SONG Ji-Ming, ZHANG Lin-Hui, LIU Qian, DUAN Chun-Fang, LI Yue-Xian, JIANG Tai-Ling, SHEN Shao-Bin, ZHOU Ying-Chun, SHEN Zheng-Song, XIONG Xian-Kun, LUO Xin, BAI Li-Na, LIU Guang-Hua. Comparative transcriptome profiling of leaf in curled-leaf cassava and its mutant [J]. Acta Agronomica Sinica, 2024, 50(8): 2143-2156. |
[9] | ZHAO Na, LIU Yu-Xi, ZHANG Chao-Shu, SHI Ying. Transcriptomic analysis of differences in the starch content of different potatoes [J]. Acta Agronomica Sinica, 2024, 50(6): 1503-1513. |
[10] | CAO Song, YAO Min, REN Rui, JIA Yuan, XIANG Xing-Ru, LI Wen, HE Xin, LIU Zhong-Song, GUAN Chun-Yun, QIAN Lun-Wen, XIONG Xing-Hua. A combination of genome-wide association and transcriptome analysis reveal candidate genes affecting seed oil accumulation in Brassica napus [J]. Acta Agronomica Sinica, 2024, 50(5): 1136-1146. |
[11] | SONG Meng-Yuan, GUO Zhong-Xiao, SU Yu-Fei, DENG Kun-Peng, LAN Tian-Jiao, CHENG Yu-Xin, BAO Shu-Ying, WANG Gui-Fang, DOU Jin-Guang, JIANG Ze-Kai, WANG Ming-Hai, XU Ning. Transcriptome analysis of a stigma exsertion mutant in mungbean [J]. Acta Agronomica Sinica, 2024, 50(4): 957-968. |
[12] | LI Yang-Yang, WU Dan, XU Jun-Hong, CHEN Zhuo-Yong, XU Xin-Yuan, XU Jin-Pan, TANG Zhong-Lin, ZHANG Ya-Ru, ZHU Li, YAN Zhuo-Li, ZHOU Qing-Yuan, LI Jia-Na, LIU Lie-Zhao, TANG Zhang-Lin. Identification of candidate genes associated with drought tolerance based on QTL and transcriptome sequencing in Brassica napus L. [J]. Acta Agronomica Sinica, 2024, 50(4): 820-835. |
[13] | ZHANG Hui, ZHANG Xin-Yu, YUAN Xu, CHEN Wei-Da, YANG Ting. Transcriptome analysis of tobacco in response to cadmium stress [J]. Acta Agronomica Sinica, 2024, 50(4): 944-956. |
[14] | WANG Rui, ZHANG Fu-Yao, ZHAN Peng-Jie, CHU Jian-Qiang, JIN Min-Shan, ZHAO Wei-Jun, CHENG Qing-Jun. Identification of candidate genes implicated in low-nitrogen-stress tolerance based on RNA-Seq in sorghum [J]. Acta Agronomica Sinica, 2024, 50(3): 669-685. |
[15] | CHEN Tian, LI Yu-Ying, RONG Er-Hua, WU Yu-Xiang. Character identification and floral organ transcriptome analysis on artificial allotetraploids of Gossypium hirsutum L. [J]. Acta Agronomica Sinica, 2024, 50(2): 325-339. |
|