Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica

   

Functional verification of the key gene NtLPAT involved in lipid biosynthesis in tobacco

JI Bai-Lu1,3,**,SUN Yi-Wen1,**,LIU Wan-Feng2,QIAN Ya-Xin1,3,JIANG Cai-Hong1,GENG Rui-Mei1,LIU Dan1,CHENG Li-Rui1,YANG Ai-Guo1,HUANG Li-Yu3,LI Xiao-Xu2,PU Wen-Xuan2,GAO Jun-Ping2,*,ZHANG Qiang4,*,WEN Liu-Ying1,*   

  1. 1 Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, Shandong, China; 2 China Tobacco Hunan Industrial Co., Ltd., Changsha 410007, Hunan, China; 3 School of Agriculture, Yunnan University, Kunming 650500, Yunnan, China; 4 Tobacco Institute of Shaanxi Province, Xi’an 710061, Shaanxi, China
  • Received:2024-12-24 Revised:2025-06-04 Accepted:2025-06-04 Published:2025-06-16
  • Supported by:
    This study was supported by the Agricultural Science and Technology Innovation Program of CAAS (ASTIP-TRIC01), the Natural Science Foundation of Shandong Province, China (ZR2023MC139), the Natural Science Foundation of Tobacco Genome Project of State Tobacco Monopoly Administration (110202201010(JY-17)), and the Technology Project of the Shaanxi Provincial Company of China National Tobacco Corporation (KJ-2023-02). 

Abstract:

Lysophosphatidyl transferase (LPAT) is a key enzyme in the lipid biosynthesis pathway, catalyzing the transfer of a fatty acyl group from fatty acyl-CoA (Acyl-CoA) to lysophosphatidic acid (LPA) to produce phosphatidic acid (PA). However, the functional role of LPAT in tobacco remains largely unexplored. In this study, we cloned the NtLPAT gene from the tobacco cultivar K326 and generated an NtLPAT knockout mutant (ntlpat) using CRISPR/Cas9 technology. The ntlpat mutant was evaluated for agronomic traits, disease resistance, and phenotypic appearance. In addition, lipidomic and transcriptomic analyses were conducted to assess the impact of NtLPAT loss of function. Our results showed that NtLPAT expression was induced by infection with Ralstonia solanacearum and Phytophthora parasitica. The ntlpat mutant exhibited reduced plant height but enhanced resistance to cucumber mosaic virus (CMV) and bacterial wilt. Lipidomic analysis revealed altered glyceride metabolism in the mutant: triacylglycerol (TAG) levels were significantly decreased, while the contents of two major glycerol glycolipids—monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG), both critical components of the thylakoid membrane—were increased. Additionally, changes were observed in sphingolipid and phosphatidylinositol compositions. Transcriptomic analysis indicated that genes involved in photosynthesis, carbon fixation, sphingolipid biosynthesis, and phosphatidylinositol signaling pathways were reprogrammed in ntlpat. These findings suggest that NtLPAT possesses acyltransferase activity, regulates de novo TAG biosynthesis, and plays a role in cellular signaling pathways, thereby affecting tobacco growth and resistance to CMV and R. solanacearum. This study provides valuable genetic resources and an experimental basis for tobacco breeding improvement.

Key words: lysophosphatidyl transferase, tobacco, gene knock-out, lipidomics, transcriptome

[1] Suh M C, Kim H U, Nakamura Y. Plant lipids: trends and beyond. J Exp Bot, 2022, 73: 2715–2720.

[2] Markham J E, Lynch D V, Napier J A, Dunn T M, Cahoon E B. Plant sphingolipids: function follows form. Curr Opin Plant Biol, 2013, 16: 350–357.

[3] Kuźniak E, Gajewska E. Lipids and lipid-mediated signaling in plant-pathogen interactions. Int J Mol Sci, 2024, 25: 7255.

[4] Wan X Y, Wu S W, Li Z W, An X L, Tian Y H. Lipid metabolism: critical roles in male fertility and other aspects of reproductive development in plants. Mol Plant, 2020, 13: 955–983.

[5] Lim G H, Singhal R, Kachroo A, Kachroo P. Fatty acid- and lipid-mediated signaling in plant defense. Annu Rev Phytopathol, 2017, 55: 505–536.

[6] 李丽, 孙健, 何雪梅, 李昌宝, 零东宁, 饶川艳, 肖占仕, 盛金凤, 郑凤锦, 易萍. 逆境胁迫下植物磷脂酶D的生理功能和作用机制综述. 江苏农业科学, 2018, 46(8): 1–5.
Li L, Sun J, He X M, Li C B, Ling D N, Rao C Y, Xiao Z S, Sheng J F, Zheng F J, Yi P. Physiological function and mechanism of phospholipase D in plants under stress: a review. Jiangsu Agric Sci, 2018, 46(8): 1–5 (in Chinese with English abstract).

[7] 刘俊羽, 杨帆, 毛爽, 李书鑫, 林海蛟, 阎秀峰, 蔺吉祥. 植物脂质应答逆境胁迫生理功能的研究进展. 生物工程学报, 2021, 37: 2658–2667.
Liu J Y, Yang F, Mao S, Li S X, Lin H J, Yan X F, Lin J X. Advances in the physiological functions of plant lipids in response to stresses. Chin J Biotechnol, 2021, 37: 2658–2667 (in Chinese with English abstract).

[8] Ohlrogge J, Browse J. Lipid biosynthesis. Plant Cell, 1995, 7: 957–970.

[9] Yao H Y, Wang G L, Guo L, Wang X M. Phosphatidic acid interacts with a MYB transcription factor and regulates its nuclear localization and function in Arabidopsis. Plant Cell, 2013, 25: 5030–5042.

[10] Zhang W H, Qin C B, Zhao J, Wang X M. Phospholipase D alpha 1-derived phosphatidic acid interacts with ABI1 phosphatase 2C and regulates abscisic acid signaling. Proc Natl Acad Sci USA, 2004, 101: 9508–9513.

[11] Testerink C, Munnik T. Phosphatidic acid: a multifunctional stress signaling lipid in plants. Trends Plant Sci, 2005, 10: 368–375.

[12] 陈四龙, 黄家权, 雷永, 任小平, 文奇根, 陈玉宁, 姜慧芳, 晏立英, 廖伯寿. 花生溶血磷脂酸酰基转移酶基因的克隆与表达分析. 作物学报, 2012, 38: 245255.

Chen S L, Huang J Q, Lei Y, Ren X P, Wen Q G, Chen Y N, Jiang H F, Yan L Y, Liao B S. Cloning and expression analysis of lysophosphatidic acid acyltransferase (LPAT) encoding gene in peanut. Acta Agron Sin, 2012, 38: 245–255 (in Chinese with English abstract).

[13] Maisonneuve S, Bessoule J J, Lessire R, Delseny M, Roscoe T J. Expression of rapeseed microsomal lysophosphatidic acid acyltransferase isozymes enhances seed oil content in Arabidopsis. Plant Physiol, 2010, 152: 670–684.

[14] Körbes A P, Kulcheski F R, Margis R, Margis-Pinheiro M, Turchetto-Zolet A C. Molecular evolution of the lysophosphatidic acid acyltransferase (LPAAT) gene family. Mol Phylogenet Evol, 2016, 96: 55–69.

[15] Yu B, Wakao S, Fan J L, Benning C. Loss of plastidic lysophosphatidic acid acyltransferase causes embryo-lethality in Arabidopsis. Plant Cell Physiol, 2004, 45: 503–510.

[16] Kim H U, Li Y B, Huang A H C. Ubiquitous and endoplasmic reticulum-located lysophosphatidyl acyltransferase, LPAT2, is essential for female but not male gametophyte development in Arabidopsis. Plant Cell, 2005, 17: 1073–1089.

[17] Angkawijaya A E, Nguyen V C, Nakamura Y. LYSOPHOSPHATIDIC ACID ACYLTRANSFERASES 4 and 5 are involved in glycerolipid metabolism and nitrogen starvation response in Arabidopsis. New Phytol, 2019, 224: 336–351.

[18] Shaikh A A, Alamin A, Jia C X, Gong W, Deng X J, Shen Q W, Hong Y Y. The examination of the role of rice lysophosphatidic acid acyltransferase 2 in response to salt and drought stresses. Int J Mol Sci, 2022, 23: 9796.

[19] 徐华祥, 鲁庚, 郭曦, 李圆圆, 张涛. 紫苏溶血磷脂酰转移酶基因PfLPAAT的克隆及功能研究. 作物学报, 2022, 48: 2494–2504.
Xu H X, Lu G, Guo X, Li Y Y, Zhang T. Cloning and functional study of lysophosphatidic acid acyltransferase gene in Perilla frutescens. Acta Agron Sin, 2022, 48: 2494–2504 (in Chinese with English abstract).

[20] Zhang K, Nie L L, Cheng Q Q, Yin Y T, Chen K, Qi F Y, Zou D S, Liu H H, Zhao W G, Wang B S, et al. Effective editing for lysophosphatidic acid acyltransferase 2/5 in allotetraploid rapeseed (Brassica napus L.) using CRISPR-Cas9 system. Biotechnol Biofuels, 2019, 12: 225.

[21] 魏春红, 李毅. 现代分子生物学实验技术. 北京: 高等教育出版社, 2006.
Wei C H, Li Y. Experimental Techniques in Modern Molecular Biology. Beijing: Higher Education Press, 2006 (in Chinese).

[22] Meng H, Sun M M, Jiang Z P, Liu Y T, Sun Y, Liu D, Jiang C H, Ren M, Yuan G D, Yu W L, et al. Comparative transcriptome analysis reveals resistant and susceptible genes in tobacco cultivars in response to infection by Phytophthora nicotianaeSci Rep, 2021, 11: 809.

[23] 刘昱彤. 烟草抗黑胫病主效位点分子标记开发及育种价值评价. 中国农业科学院硕士学位论文, 北京, 2022.
Liu Y T. Development of Molecular Markers for Major Loci Resistant to Black Shank in Tobacco and Evaluation of Their Breeding Value. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2022 (in Chinese with English abstract).

[24] 孙希芳. CORESTA青枯病共同试验分学组研究报告. 烟草科技, 2001, (11): 30–33.
Sun X F. CORESTA joint experimental subgroup report on ralstonia solanacearum. Tob Sci Technol, 2001, (11): 30–33 (in Chinese).

[25] Vasse J. Microscopic studies of intercellular infection and protoxylem invasion of tomato roots by Pseudomonas solanacearumMol Plant Microbe Interact, 1995, 8: 241.

[26] 翟中和, 王喜忠, 丁明孝. 细胞生物学(4)北京: 高等教育出版社, 2011.
Zhai Z H, Wang X Z, Ding M X. Cell Biology, 4th edn. Beijing: Higher Education Press, 2011 (in Chinese).

[27] 鲁锦畅, 武耀康, 吕雪芹, 刘龙, 陈坚, 刘延峰. 神经酰胺类鞘脂的绿色生物制造. 合成生物学, 2024, 6: 422444.

Lu J C, Wu Y K, Lyu X Q, Liu L, Chen J, Liu Y F. Green biomanufacturing of ceramide-based sphingolipids. Synth Biol J, 2024. 2024, 6: 422444 (in Chinese with English abstract).

[28] Scholz J. Inositol trisphosphate, a new “second messenger” for positive inotropic effects on the heart? Klin Wochenschr, 1989, 67: 271–279.

[29] 张亚杰. 高等植物光系统II大量捕光色素蛋白复合体的稳定性研究. 中国科学院大学硕士学位论文, 北京, 2006.
Zhang Y J. Stability Study of the Major Light-Harvesting Pigment-Protein Complex in Higher Plant Photosystem II. MS Thesis of Chinese Academy of Sciences, Beijing, China, 2006 (in Chinese with English abstract).

[30沈梦千, 安昌, 秦源, 郑平. 植物生长和胁迫响应的脂质组学解析:脂质调控综览. 基因组学与应用生物学, 2024, 43: 738–754.
Shen M Q, An C, Qin Y, Zheng P. Lipidomic analysis of plant growth and stress responses: an overview of lipid regulation. Genom Appl Biol, 2024, 43: 738–754 (in Chinese with English abstract).

[31] Yu L H, Zhou C, Fan J L, Shanklin J, Xu C C. Mechanisms and functions of membrane lipid remodeling in plants. Plant J, 2021, 107: 37–53. 

[32] Benghezal M, Roubaty C, Veepuri V, Knudsen J, Conzelmann A. SLC1 and SLC4 encode partially redundant acyl-coenzyme A 1-acylglycerol-3-phosphate O-acyltransferases of budding yeast. J Biol Chem, 2007, 282: 30845–30855.

[33] 叶雪影. 在油菜中分别超量表达AhLEC1AhLPAAT基因对油菜含油量的影响. 湖北大学硕士学位论文, 湖北武汉, 2014.
Ye X Y. Effects of Overexpression of AhLEC1 and AhLPAAT Genes on Oil Content in Rapeseed, Respectively. MS Thesis of Hubei University, Wuhan, Hubei, China, 2014 (in Chinese with English abstract).

[34] Cai Y Q, Zhai Z Y, Blanford J, Liu H, Shi H, Schwender J, Xu C C, Shanklin J. Purple acid phosphatase2 stimulates a futile cycle of lipid synthesis and degradation, and mitigates the negative growth effects of triacylglycerol accumulation in vegetative tissues. New Phytol, 2022, 236: 1128–1139.

[35] Yang Y, Benning C. Functions of triacylglycerols during plant development and stress. Curr Opin Biotechnol, 2018, 49: 191–198.

[36] 戚维聪. 油菜发育种子中油脂积累与Kennedy途径酶活性的关系研究. 南京农业大学硕士学位论文, 江苏南京, 2008.
Qi W C. Study on the Relationship between Oil Accumulation and Kennedy Pathway Enzyme Activity in Developing Seeds of Rapeseed. MS Thesis of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2008 (in Chinese with English abstract).

[37] Zhang K, He J J, Yin Y T, Chen K, Deng X, Yu P, Li H X, Zhao W G, Yan S X, Li M T. Lysophosphatidic acid acyltransferase 2 and 5 commonly, but differently, promote seed oil accumulation in Brassica napus. Biotechnol Biofuels Bioprod, 2022, 15: 83.

[38] Chen S L, Lei Y, Xu X, Huang J Q, Jiang H F, Wang J, Cheng Z S, Zhang J N, Song Y H, Liao B S, et al. The peanut (Arachis hypogaea L.) gene AhLPAT2 increases the lipid content of transgenic Arabidopsis seeds. PLoS One, 2015, 10: e0136170.

[39] Chen G Q, van Erp H, Martin-Moreno J, Johnson K, Morales E, Browse J, Eastmond P J, Lin J T. Expression of castor LPAT2 enhances ricinoleic acid content at the Sn-2 position of triacylglycerols in Lesquerella seed. Int J Mol Sci, 2016, 17: 507.

[40] Pritchard S L, Charlton W L, Baker A, Graham I A. Germination and storage reserve mobilization are regulated independently in Arabidopsis. Plant J, 2002, 31: 639–647.

[41] 王文霞, 李曙光, 白雪芳, 杜昱光. 不饱和脂肪酸及其衍生物在植物抗逆反应中的作用. 植物生理学通讯, 2004, 40: 741–748.
Wang W X, Li S G, Bai X F, Du Y G. Functions of unsaturated fatty acid and derivates in plant defense reactions. Plant Physiol Commun, 2004, 40: 741–748 (in Chinese with English abstract).

[42] 王利民, 符真珠, 高杰, 董晓宇, 张晶, 袁欣, 蒋卉, 王慧娟, 李艳敏, 师曼, . 植物不饱和脂肪酸的生物合成及调控. 基因组学与应用生物学, 2020, 39: 254–258.
Wang L M, Fu Z Z, Gao J, Dong X Y, Zhang J, Yuan X, Jiang H, Wang H J, Li Y M, Shi M, et al. Molecular mechanism of unsaturated fatty acids synthesis and regulation in plant. Genom Appl Biol, 2020, 39: 254–258 (in Chinese with English abstract).

[43] Miquel M, James D Jr, Dooner H, Browse J. Arabidopsis requires polyunsaturated lipids for low-temperature survival. Proc Natl Acad Sci USA, 1993, 90: 6208–6212.

[44] Wang C, Chin C K, Chen A. Expression of the yeast Δ-9 desaturase gene in tomato enhances its resistance to powdery mildew. Physiol Mol Plant Pathol, 1998, 52: 371–383.

[45] Madi L A, Wang X J, Kobiler I, Lichter A, Prusky D. Stress on avocado fruits regulates Δ9-stearoyl ACP desaturase expression, fatty acid composition, antifungal diene level and resistance to Colletotrichum gloeosporioides attack. Physiol Mol Plant Pathol, 2003, 62: 277–283.

[46] Boudière L, Michaud M, Petroutsos D, Rébeillé F, Falconet D, Bastien O, Roy S, Finazzi G, Rolland N, Jouhet J, et al. Glycerolipids in photosynthesis: composition, synthesis and trafficking. Biochim Biophys Acta, 2014, 1837: 470–480.

[47刘潇潇, 巩迪, 高天鹏, 殷俐娜, 王仕稳. 植物类囊体主要膜脂及其生物合成. 植物学报, 2024, 59: 144–155.
Liu X X, Gong D, Gao T P, Yin L N, Wang S W. Thylakoid membrane lipids in plants and their biosynthesis. Acta Bot, 2024, 59: 144–155 (in Chinese with English abstract).

[48] Fujii S, Kobayashi K, Nakamura Y, Wada H. Inducible knockdown of MONOGALACTOSYLDIACYLGLYCEROL SYNTHASE 1 reveals roles of galactolipids in organelle differentiation in Arabidopsis cotyledons. Plant Physiol, 2014, 166: 1436–1449.

[49王俊斌. 烟草单半乳糖甘油二酯缺失对茉莉酸生物合成的影响. 中国科学院大学研究生硕士论文, 北京, 2007.
Wang J B. The Impact of Tobacco Monogalactosyldiacylglycerol Deficiency on Jasmonate Biosynthesis. MS Thesis of Chinese Academy of Sciences, Beijing, China, 2007 (in Chinese with English abstract).

[1] YANG Xiao-Hui, YAN Xuan-Jun, YANG Wen-Yan, FU Jun-Jie, YANG Qin, XIE Yu-Xin. Effect evaluation and investigation on molecular mechanism of the ZmKL1 favorable allele in regulating maize kernel size [J]. Acta Agronomica Sinica, 2025, 51(6): 1501-1513.
[2] WANG Xiao-Lin, LIU Zhong-Song, KANG Lei, YANG Liu. Mapping of silique length and seeds per silique and transcriptome profiling of pod walls in Brassica napus L. [J]. Acta Agronomica Sinica, 2025, 51(4): 888-899.
[3] ZHANG Jin-Ze, ZHOU Qing-Guo, YANG Xu, WANG Qian, XIAO Li-Jing, JIN Hai-Run, OU-YANG Qing-Jing, YU Kun-Jiang, TIAN En-Tang. Analysis of genes associated with expression characteristics and high resistance in response to Sclerotinia sclerotiorum infection in Brassica juncea [J]. Acta Agronomica Sinica, 2025, 51(3): 621-631.
[4] SUN Cheng-Ming, ZHOU Xiao-Ying, CHEN Feng, ZHANG Wei, WANG Xiao-Dong, PENG Qi, GUO Yue, GAO Jian-Qin, HU Mao-Long, FU San-Xiong, ZHANG Jie-Fu. Functional analysis and prediction of long non-coding RNA (lncRNA) in the regulation of branch angle in Brassica napus L. [J]. Acta Agronomica Sinica, 2025, 51(3): 559-567.
[5] YE Liang, ZHU Ye-Lin, PEI Lin-Jing, ZHANG Si-Ying, ZUO Xue-Qian, LI Zheng-Zhen, LIU Fang, TAN Jing. Screening candidate resistance genes to ear rot caused by Fusarium verticillioides in maize by combined GWAS and transcriptome analysis [J]. Acta Agronomica Sinica, 2024, 50(9): 2279-2296.
[6] YU Hai-Long, WU Wen-Xue, PEI Xing-Xu, LIU Xiao-Yu, DENG Gen-Wang, LI Xi-Chen, ZHEN Shi-Cong, WANG Jun-Sen, ZHAO Yong-Tao, XU Hai-Xia, CHENG Xi-Yong, ZHAN Ke-Hui. Transcriptome sequencing and genome-wide association study of wheat stem traits [J]. Acta Agronomica Sinica, 2024, 50(9): 2187-2206.
[7] LIU Bo, CHI Ming, CAO Meng-Qi, TANG Da, YANG Heng-Zhao, ZHANG Wei-Hua, XUE Cong. Impact of potato StuPPO9 gene overexpression on drought resistance in Nicotiana benthamiana [J]. Acta Agronomica Sinica, 2024, 50(9): 2237-2247.
[8] XIAO Ming-Kun, YAN Wei, SONG Ji-Ming, ZHANG Lin-Hui, LIU Qian, DUAN Chun-Fang, LI Yue-Xian, JIANG Tai-Ling, SHEN Shao-Bin, ZHOU Ying-Chun, SHEN Zheng-Song, XIONG Xian-Kun, LUO Xin, BAI Li-Na, LIU Guang-Hua. Comparative transcriptome profiling of leaf in curled-leaf cassava and its mutant [J]. Acta Agronomica Sinica, 2024, 50(8): 2143-2156.
[9] ZHAO Na, LIU Yu-Xi, ZHANG Chao-Shu, SHI Ying. Transcriptomic analysis of differences in the starch content of different potatoes [J]. Acta Agronomica Sinica, 2024, 50(6): 1503-1513.
[10] CAO Song, YAO Min, REN Rui, JIA Yuan, XIANG Xing-Ru, LI Wen, HE Xin, LIU Zhong-Song, GUAN Chun-Yun, QIAN Lun-Wen, XIONG Xing-Hua. A combination of genome-wide association and transcriptome analysis reveal candidate genes affecting seed oil accumulation in Brassica napus [J]. Acta Agronomica Sinica, 2024, 50(5): 1136-1146.
[11] SONG Meng-Yuan, GUO Zhong-Xiao, SU Yu-Fei, DENG Kun-Peng, LAN Tian-Jiao, CHENG Yu-Xin, BAO Shu-Ying, WANG Gui-Fang, DOU Jin-Guang, JIANG Ze-Kai, WANG Ming-Hai, XU Ning. Transcriptome analysis of a stigma exsertion mutant in mungbean [J]. Acta Agronomica Sinica, 2024, 50(4): 957-968.
[12] LI Yang-Yang, WU Dan, XU Jun-Hong, CHEN Zhuo-Yong, XU Xin-Yuan, XU Jin-Pan, TANG Zhong-Lin, ZHANG Ya-Ru, ZHU Li, YAN Zhuo-Li, ZHOU Qing-Yuan, LI Jia-Na, LIU Lie-Zhao, TANG Zhang-Lin. Identification of candidate genes associated with drought tolerance based on QTL and transcriptome sequencing in Brassica napus L. [J]. Acta Agronomica Sinica, 2024, 50(4): 820-835.
[13] ZHANG Hui, ZHANG Xin-Yu, YUAN Xu, CHEN Wei-Da, YANG Ting. Transcriptome analysis of tobacco in response to cadmium stress [J]. Acta Agronomica Sinica, 2024, 50(4): 944-956.
[14] WANG Rui, ZHANG Fu-Yao, ZHAN Peng-Jie, CHU Jian-Qiang, JIN Min-Shan, ZHAO Wei-Jun, CHENG Qing-Jun. Identification of candidate genes implicated in low-nitrogen-stress tolerance based on RNA-Seq in sorghum [J]. Acta Agronomica Sinica, 2024, 50(3): 669-685.
[15] CHEN Tian, LI Yu-Ying, RONG Er-Hua, WU Yu-Xiang. Character identification and floral organ transcriptome analysis on artificial allotetraploids of Gossypium hirsutum L. [J]. Acta Agronomica Sinica, 2024, 50(2): 325-339.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!