Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica

   

Comparative analysis of field traits among different generations of virus-free chewing cane

DING Chu-Wei1,**,LYU Yong-Ping1,**,WANG Yi-Ting1,2,MAO Ling-Rong3,MOU Hao-Jie1,LI Hai-Ying1,CHEN Jian-Ping1,2,4,CHEN Zhi1,*   

  1. 1 Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China; 2 Key Laboratory of Green Plant Protection, Zhejiang Province P.R. China, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China; 3 Wenling Agriculture, Rural Affairs and Water Resources Bureau, Taizhou 317599, Zhejiang, China; 4 Institute of Plant Virology, Ningbo University, Ningbo 315211, Zhejiang, China
  • Received:2025-03-02 Revised:2025-07-09 Accepted:2025-07-09 Published:2025-07-15
  • Contact: 陈志, E-mail: czdmh@163.com
  • Supported by:
    This study was supported by the Research and Development of Integrated Equipment System for Industrial-scale Plant Tissue Culture Production and Its Industrialization Application Fund (2024R30A24B02).

Abstract:

To investigate the effect of virus-free plantlets on chewing cane, a comparative analysis of field traits and juice quality was conducted using three types of planting materials: self-preserved cuttings, first-generation virus-free plantlets, and second-generation virus-free plantlets, with the chewing cane cultivar ‘Guangdong Huangpi’ as the experimental material. The results showed that the second-generation virus-free chewing cane exhibited the best field performance among the three sources. Compared with the self-preserved and first-generation virus-free plantlets, the second-generation plantlets showed increases in plant height by 9.08% and 5.80%, respectively (with edible stalk height increasing by 13.64% and 7.19%); stalk diameter increased by 13.98% and 9.71%; and yield increased by 47.76% and 63.72%, reaching 159.5 t hm?2. Juice extractionrate increased by 3.64% and 9.17%, respectively, while total sugar content in the juice decreased by 10.14% and 12.73%. No significant differences were observed among the three treatments in terms of juice density, Brix, or fiber content. Additionally, there were no significant differences in yield or juice quality between the self-preserved and first-generation virus-free materials. These findings suggest that virus-free tissue-cultured seedlings can be used as first-generation seedcane for producing virus-free chewing cane, with optimal transplanting time between March and April. Overall, compared to first-generation virus-free seedlings, the second-generation virus-free chewing cane seedlings—derived from seedcane harvested from the first-generation—are more suitable for commercial cultivation due to their superior growth and yield performance.

Key words: chewing cane, virus-free seedlings, cutting, field traits, yield

[1] Tripathy S K, Ithape D M. High-throughput in vitro culture system targeting genetic transformation in sugarcane. J Crop Sci Biotechnol, 2020, 23: 325335.

[2] 王敬湧, 谢洒洒, 盖倞尧, 王梓廷. 花叶病胁迫下甘蔗叶片叶绿素含量的高光谱预测模型. 光谱学与光谱分析, 2023, 43: 28852893.
Wang J Y, Xie S S, Gai J Y, Wang Z T. Hyperspectral prediction model of chlorophyll content in sugarcane leaves under stress of mosaic. Spectrosc Spectr Analy, 2023, 43: 28852893 (in Chinese with English abstract).

[3] Kamat D N, Krushalini J S, Singh R. Assessment of regenerative response of early sugarcane varieties under in vitro condition. Int J Environ Clim Change, 2023, 13: 625–631.

[4] Lin X R, Yang D, Zhu Y, Qin Y L, Liang T, Yang S D, Tan H W. Changes in root metabolites and soil microbial community structures in rhizospheres of sugarcanes under different propagation methods. Microb Biotechnol, 2024, 17: e14372.

[5] 钱永兰, 匡昭敏, 赵晓凤, 张艳红, 何延波, 李祎君, 王纯枝. 世界甘蔗种植及蔗糖生产流通演变. 甘蔗糖业, 2024, 53(2): 68–81.
Qian Y L, Kuang Z M, Zhao X F, Zhang Y H, He Y B, Li Y J, Wang C Z. Evolution of global sugarcane planting and cane sugar production and circulation. Sugar Canesugar, 2024, 53(2): 68–81 (in Chinese with English abstract).

[6] 张跃彬, 赵培方, 胡朝晖, 阙友雄. 近年我国甘蔗品种的育种成就与发展趋势. 中国糖料, 2024, 46(1): 8792.
Zhang Y B, Zhao P F, Hu Z H, Que Y X. The recent achievements and development trends of sugarcane improvement in China. Sugar Crops China, 2024, 46(1): 8792 (in Chinese with English abstract).

[7] 肖祎, 吕达, 陈道德. 我国果蔗研究新进展. 中国糖料, 2018, 40(1): 62–67.
Xiao Y, Lyu D, Chen D D. The latest research progress of chewing-cane in China. Sugar Crops China, 2018, 40(1): 62–67 (in Chinese with English abstract).

[8] 李鸿博, 严卓晟, 邓权清, 颜静婷, 吴佳, 钟坚文, 沈万宽. 超声波处理对果蔗产量品质及生理特性的影响. 华中农业大学学报, 2019, 38(3): 7–12.
Li H B, Yan Z S, Deng Q Q, Yan J T, Wu J, Zhong J W, Shen W K. Effects of ultrasonic treatment on yield, quality and physiological characteristics of chewing cane. J Huazhong Agric Univ, 2019, 38(3): 7–12 (in Chinese with English abstract).

[9] 张莉娟, 吴凤, 李今朝, 罗义灿, 单彬, 林垠孚. 中国糖料蔗和果蔗品种发展历史. 农业研究与应用, 2023, 36(6): 7986.
Zhang L J, Wu F, Li J ZLuo Y C, Shan B, Lin Y F. Development history of industrial cane and chewing cane varieties in China. J Agric Res Appl, 2023, 36(6): 7986 (in Chinese with English abstract).

[10] 周慧文, 范业赓, 黄杏, 陈荣发, 杨柳, 卢星高, 吴建明, 丘立杭, 李杨瑞. 甘蔗健康种苗原苗提前移栽对田间繁育的影响. 中国糖料, 2019, 41(3): 23–27.
Zhou H W, Fan Y G, Huang X, Chen R F, Yang L, Lu X G, Wu J M, Qiu L H, Li Y R. Effects of early transplanting on the growth and developments of virus-free sugarcane seedlings. Sugar Crops China, 2019, 41(3): 23–27 (in Chinese with English abstract).

[11] Yang D, Lin X R, Wei Y F, Li Z J, Zhang H D, Liang T, Yang S D, Tan H W. Can endophytic microbial compositions in cane roots be shaped by different propagation methods. PLoS One, 2023, 18: e0290167.

[12] Tayade A S, Geetha P, Anusha S. Standardizing planting agro-techniques for sugarcane tissue culture plantlets and bud chip settlings. Sugar Tech, 2021, 23: 10971104.

[13] Lu J J, Ali A, He E Q, Yan G Q, Arak T U, Gao S J. Establishment of an open, sugar-free tissue culture system for sugarcane micropropagation. Sugar Tech, 2020, 22: 8–14.

[14] Wang K L, Deng Q Q, Chen J W, Shen W K. Physiological and molecular mechanisms governing the effect of virus-free chewing cane seedlings on yield and quality. Sci Rep, 2020, 10: 10306. 

[15] Saptari R T, Aksa A A, Riyadi I, Prasetyo M E R B, Lindawati S, Setiawati Y, Minarsih H, Sinta M M, Sumaryono S. Genetic stability analysis of the temporary immersion bioreactors–derived sugarcane seedlings with simple sequence repeat (SSR) markers. Plant Cell Tissue Organ Cult, 2023, 156: 22.

[16] Abide M, Kidanemariam D, Yimam T, Worku Y, Kebede M, Abraham A. Protocol optimization for elimination of sugarcane bacilliform virus and rapid propagation of virus-free sugarcane using meristem tip culture. Trop Plant Pathol, 2022, 47: 693–697.

[17] Salokhe S. Development of an efficient protocol for tissue culture of sugarcane. Plant Cell Biotechnol Mol Biol, 2021, 22: 921.

[18] 林丽丽. “黄皮果蔗”脱毒苗配套栽培技术. 福建热作科技, 2024, 49(2): 34–36.
Lin L L. Healthy virus-free seedling and its cultivation technology of “yellow peel chewing cane”. Fujian Sci Technol Trop Crops, 2024, 49(2): 34–36 (in Chinese with English abstract).

[19] 吴转娣, 赵培方, 杨洪昌, 昝逢刚, 覃伟, 杨立凡, 郭家文. 高糖新品种云蔗1640花叶病原的检测与脱毒种苗生产. 中国糖料, 2024, 46(2): 18.
Wu Z D, Zhao P F, Yang H C, Zan F G, Qin W, Yang L F, Guo J W. Detection of mosaic disease and propagation of virus-free seedlings for high sugar new sugarcane variety Yunzhe 1640. Sugar Crops China, 2024, 46(2): 18 (in Chinese with English abstract).

[20] 周慧文, 覃兴云, 陈荣发, 范业赓, 韦素, 闫海锋, 丘立杭, 吴建明, 李杨瑞. 甘蔗健康种苗一代种茎生产力分析. 广西糖业, 2021, (3): 1519.
Zhou H W, Qin X Y, Chen R F, Fan Y G, Wei S, Yan H F, Qiu L H, Wu J M, Li Y R. Study on production performance of first generation stem of sugarcane virus-free plantlets. Guangxi Sugar Ind, 2021, (3): 1519 (in Chinese with English abstract).

[21] 劳方业, 何慧怡, 樊丽娜, 陈勇生, 黄俊坚, 齐永文. 果蔗脱毒种苗主要经济性状表现分析. 甘蔗糖业, 2021, 50(3): 37–42.
Lao F Y, He H Y, Fan L N, Chen Y S, Huang J J, Qi Y W. Analysis of the main economic characters of chewing cane virus-free seedlings. Sugar Canesugar, 2021, 50(3): 37–42 (in Chinese with English abstract).

[22] 刘红坚, 梁文燊, 何为中, 叶权, 刘丽敏, 何毅波, 卢曼曼, 刘俊仙, 李松, 林善海. 桂果蔗1号不同级数健康种苗生长特征及性状变异. 南方农业学报, 2021, 52(2): 288–296.
Liu H J, Liang W S, He W Z, Ye Q, Liu L M, He Y B, Lu M M, Liu J X, Li S, Lin S H. Growth characters and properties variation of different generations of chewing cane Guiguozhe 1 seedlings. J South Agric, 2021, 52(2): 288–296 (in Chinese with English abstract).

[23] Snyman S J, Shezi S N, Ramburan S. Field assessment of in vitro micropropagated NovaCane sugarcane (Saccharum spp. hybrids). Sugar Tech, 2018, 20: 609–612.

[24] Shezi S N, Ramburan S. Agronomic comparisons of sugarcane varieties derived from tissue culture (NovaCane) and conventional propagation under rainfed conditions. J Crop Improv, 2018, 32: 705716.

[25] 陆耀邦. 组培蔗在无性世代中农艺性状表现. 广西农学院学报, 1989, 8(3): 812.
Lu Y B. The expression of main agronomical characters in callus derived sugarcane in agamobiums. Genom Appl Biol, 1989, 8(3): 812 (in Chinese with English abstract).

[26] 陈引芝. 甘蔗腋芽组培苗与原种茎性能比较试验简报. 广西农学报, 1997, 12(2): 5–8.
Chen Y Z. A brief report on the comparision experiment between the characteristics of the tissue culture seedling of sugarcane axillary and the original sugarcane stem. J Guanxi Agric, 1997, 12(2): 5–8 (in Chinese with English abstract).

[27] 杨华春. 甘蔗芽培苗、组培苗和种茎苗的种性比较. 甘蔗, 2001, (4): 3031.
Yang C H. Comparison of seed characteristics among sugarcane sprouts, tissue culture seedlings, and stem seedlings. Sugarcane, 2001, (4): 3031 (in Chinese).

[28] 李松, 游建华, 余坤兴, 刘丽敏, 谭芳, 刘红坚, 淡明, 戴友铭. 黑皮果蔗茎尖脱毒不同代数种茎苗商品性能研究. 热带作物学报, 2010, 31(2): 176–181.
Li S, You J H, Yu K X, Liu L M, Tan F, Liu H J, Dan M, Dai Y M. Commercial performances of seedcanes in different generations of virus-free chewing cane (badila) from shoot apices. Chin J Trop Crops, 2010, 31(2): 176–181 (in Chinese with English abstract). 

[29] 韦海球, 唐利球, 黄珍玲, 何洪良, 秦昌鲜, 江清梅, 罗晟昇. 甘蔗组培苗田间种植效果初探. 中国热带农业, 2017, (4): 63–64.
Wei H Q, Tang L Q, Huang Z L, He H L, Qin C X, Jiang Q M, Luo S S. Preliminary study on field planting effect of sugarcane tissue culture seedlings. China Trop Agric, 2017, (4): 63–64 (in Chinese).

[30] 欧丽萍. 新台糖22号脱毒苗在百色蔗区快繁试验初报. 广西蔗糖, 2013, (1): 37.
Ou L P. A primary study on the rapid breeding experiment of the “new-tai sugar NO.22” virus-free seeding in baise sugarcane area. Guangxi Sugar Ind, 2013, (1): 37 (in Chinese with English abstract).

[31] 宿翠翠, 毋玲玲, 赵玺, 施志国, 周彦芳, 魏玉杰. 种植时间对甘肃引黄灌区红花生长发育、品质及产量的影响. 作物杂志, 2023, (1): 176183.
Su C C, Wu L L, Zhao X, Shi Z G, Zhou Y F, Wei Y J. Effects of sowing date on the growth, quality and yield of safflower in Gansu yellow river irrigation area. Crops, 2023, (1): 176183 (in Chinese with English abstract).

[32] 杨本鹏, 张树珍, 蔡文伟, 张洪溢, 龚康达, 王永壮, 冯翠莲, 王俊刚, 杨学. 甘蔗健康种苗田间栽培主要农艺性状比较. 热带作物学报, 2010, 31(2): 171–175.
Yang B P, Zhang S Z, Cai W W, Zhang H Y, Gong K D, Wang Y Z, Feng C L, Wang J G, Yang X. Agronomic characters of virus-free sugarcane seedlings. Chin J Trop Crops, 2010, 31(2): 171–175 (in Chinese with English abstract).

[33] 符策, 赵静. 甘蔗组培苗不同假植时期移栽效果比较. 农业研究与应用, 2014, 27(1): 21–23.
Fu C, Zhao J. Comparison of transplanting effects of sugarcane tissue culture seedlings in different heel in periods. Agric Res Appl, 2014, 27(1): 21–23 (in Chinese).

[34] Devarumath R M, Doule R B, Kawar P G, Naikebawane S B, Nerkar Y S. Field performance and RAPD analysis to evaluate genetic fidelity of tissue culture raised plantsvis-à-vis conventional setts derived plants of sugarcane. Sugar Tech, 2007, 9: 17–22.

[35] 吴松海, 李海明, 郑家祯, 林加根, 林一心. 不同代数黑皮果蔗脱毒种茎苗生产性状比较. 福建农业学报, 2014, 29: 1088–1091.
Wu S H, Li H M, Zheng J Z, Lin J G, Lin Y X. Comparing growth characters of detoxified seedling in different generations of chewing-cane badila’. Fujian J Agric Sci, 2014, 29: 1088–1091 (in Chinese with English abstract).

[36] 李恒锐. 甘蔗脱毒与非脱毒种苗田间比较试验. 中国糖料, 2014, 36(1): 42–43.
Li H R. Comparative trial between virus-free and non-virus free sugarcane seedling. Sugar Crops China, 2014, 36(1): 42–43 (in Chinese with English abstract).

[37] 叶燕平, 李杨瑞, 苏俊波, 黄诚梅, 唐军, 黄学. 果蔗脱毒健康种苗试验初报. 作物杂志, 2003, (6): 21–22.
Ye Y P, Li Y R, Su J B, Huang C M, Tang J, Huang X. Preliminary report on the experiment of virus-free healthy seedlings of fruit cane. Crops, 2003, (6): 21–22 (in Chinese with English abstract).

[38] 陈月桂, 谭嘉娜, 罗剑飘, 罗青文, 谢静, 杨俊贤, 李奇伟. 粤糖60号与新台糖22号健康种苗假植与田间对比试验. 广东农业科学, 2014, 41(18): 24–27.
Chen Y G, Tan J N, Luo J P, Luo Q W, Xie J, Yang J X, Li Q W. Temporary planting and field contrast experiments for sugarcane healthy seedings of Yuetang 60 and Roc 22. Guangdong Agric Sci, 2014, 41(18): 24–27 (in Chinese with English abstract).

[39] 邓万超, 胡朝仁, 陆丽英. 宁明县新台糖22号脱毒健康种苗田间试验初报. 广西糖业, 2015, 35(5): 11–14.
Deng W C, Hu C R, Lu L Y. Report on the field test of virus-free ROC22 seedlings in Ningming. Guangxi Sugar Ind, 2015, 35(5): 11–14 (in Chinese with English abstract).

[40] 谢静, 常海龙, 刘壮, 张垂明, 王勤南, 吴建涛. 果蔗脱毒种茎苗对农艺性状和品质的影响. 分子植物育种, 网络首发[2024-06-04], http://kns.cnki.net/kcms/detail/46.1068.S.20240604.1032.008.html.
Xie J, Chang H L, Liu Z, Zhang C M, Wang Q N, Wu J T. Effects of virus-free seedling of chewing cane on agronomic traits and quality. Mol Plant Breed, Published online [2024-06-04], http://kns.cnki.net/kcms/detail/46.1068.S.20240604.1032.008.html (in Chinese with English abstract).

[41] 邓展云, 刘海斌, 方锋学, 贤武, 唐仕云, 王伦旺, 刘晓静, 李鸣, 陆建勋, 徐林. 几个甘蔗新品种的健康种苗对比试验. 中国糖料, 2010, 32(4): 19–20.
Deng Z Y, Liu H B, Fang F X, Xian W, Tang S Y, Wang L W, Liu X J, Li M, Lu J X, Xu L. Comparison test of healthy seedcane on new sugarcane varieties. Sugar Crops China, 2010, 32(4): 19–20 (in Chinese with English abstract).

[42] 吴松海, 李海明, 张树河, 李瑞美, 林一心. 果蔗脱毒与常规种茎苗生产性状比较. 福建农业学报, 2012, 27: 821–825.
Wu S H, Li H M, Zhang S H, Li R M, Lin Y X. Growth differences between seedcanes of pathogen-free chewing and conventional sugarcanes. Fujian J Agric Sci, 2012, 27: 821–825 (in Chinese with English abstract).

[43] 李复琴, 李文风, 杨华. 关于还原糖作为甘蔗品种选育重要指标的探讨. 中国糖料, 2009, 31(2): 43–44.
Li F Q, Li W F, Yang H. Discussion on reducing sugar as important standard in sugarcane breeding. Sugar Crops China, 2009, 31(2): 43–44 (in Chinese with English abstract).

[1] WU Bin, CAO Yong-Gang, HU Fa-Long, YIN Wen, FAN Zhi-Long, FAN Hong, CHAI Qiang. Compensation effect of no-tillage rotation on yield reduction of nitrogen- reduced wheat [J]. Acta Agronomica Sinica, 2025, 51(7): 1959-1968.
[2] WU Liu-Ge, CHEN Jian, ZHANG Xin, DENG Ai-Xing, SONG Zhen-Wei, ZHENG Cheng-Yan, ZHANG Wei-Jian. Changes in yield and quality traits of nationally approved winter wheat varieties in China over last twenty years [J]. Acta Agronomica Sinica, 2025, 51(7): 1814-1826.
[3] LI Qiu-Yun, LI Shi-Gui, FAN Jun-Liang, LIU Hao-Tian, ZHAO Xiao-Bin, LYU Shuo, WANG Yan-Hao, YUE Yun, ZHANG Ning, SI Huai-Jun. Effects of ionic zinc and nano-zinc on physiological characteristics, yield, and quality of potato [J]. Acta Agronomica Sinica, 2025, 51(7): 1838-1849.
[4] ZHAO Jia-Wen, LI Zi-Hong, OU Xing-Yu, WANG Yi-Lang, DING Xiao-Fei, LIANG Yue-Yao, DING Wen-Jin, ZHANG Hai-Peng, MA Shang-Yu, FAN Yong-Hui, HUANG Zheng-Lai, ZHANG Wen-Jing. Effects of nitrogen and potassium fertilizer management on grain yield and quality of weak-gluten wheat [J]. Acta Agronomica Sinica, 2025, 51(7): 1914-1933.
[5] WAN Shu-Bo, ZHANG Jia-Lei, GAO Hua-Xin, WANG Cai-Bin. Advances and prospects of high-yield peanut cultivation in China [J]. Acta Agronomica Sinica, 2025, 51(7): 1703-1711.
[6] LI Bing-Lin, YE Xiao-Lei, XIAO Hong, XIAO Guo-Bin, LYU Wei-Sheng, LIU Jun-Quan, REN Tao, LU Zhi-Feng, LU Jian-Wei. Effects of magnesium fertilization rates on rapeseed yield, magnesium uptake, and yield loss caused by frost damage [J]. Acta Agronomica Sinica, 2025, 51(7): 1850-1860.
[7] HUO Jian-Zhe, YU Ai-Zhong, WANG Yu-Long, WANG Peng-Fei, YIN Bo, LIU Ya-Long, ZHANG Dong-Ling, JIANG Ke-Qiang, PANG Xiao-Neng, WANG Feng. Effect of organic manure substitution for chemical fertilizer on yield, quality, and nitrogen utilization of sweet maize in oasis irrigation areas [J]. Acta Agronomica Sinica, 2025, 51(7): 1887-1900.
[8] DONG Wei-Jin, ZHANG Ya-Feng, LI Qi-Yun, LU Yang, ZHANG Zheng-Kun, SUI Li. Effects of Beauveria bassiana colonization on maize growth and yield under elevated CO2 concentration [J]. Acta Agronomica Sinica, 2025, 51(7): 1874-1886.
[9] CHEN Ru-Xue, SUN Li-Fang, ZHANG Xin-Yuan, MU Hai-Meng, ZHANG Yong-Xin, YUAN Li-Xue, PENG Shi-Le, WANG Zhuang-Zhuang, WANG Yong-Hua. Effects of combined straw returning and microbial inoculant application on carbon-nitrogen metabolism in flag leaves and yield formation in winter wheat [J]. Acta Agronomica Sinica, 2025, 51(7): 1901-1913.
[10] LI Zi-Xiang, HUANG Rong, WANG Zhi-Chao, LI Hong-Yan, TAN Jun-Xing, CHENG Yu, DU Xue-Zhu, SHENG Feng. Effects of poly-γ-glutamate acid on lodging resistance of direct seeding rice [J]. Acta Agronomica Sinica, 2025, 51(6): 1654-1664.
[11] CUI Xin, GU He-He, SONG Yi, ZHANG Zhe, LIU Shi-Shi, LU Zhi-Feng, REN Tao, LU Jian-Wei. Effects of potassium fertilizer application rates on rapeseed yield and potassium absorption and yield reduction caused by frost damage [J]. Acta Agronomica Sinica, 2025, 51(6): 1629-1642.
[12] YAN Shang-Long, WANG Qi-Ming, CHAI Qiang, YIN Wen, FAN Zhi-Long, HU Fa-Long, LIU Zhi-Peng, WEI Jin-Gui. Grain yield and quality of maize in response to dense density and intercropped peas in oasis irrigated areas [J]. Acta Agronomica Sinica, 2025, 51(6): 1665-1675.
[13] ZHANG Shi-Bo, LI Hong-Yan, LI Pei-Fu, REN Rui-Hua, LU Hai-Dong. Effects of a 3-4℃ increase in air temperature under natural conditions on root-shoot senescence and yield in plastic-film mulched maize [J]. Acta Agronomica Sinica, 2025, 51(6): 1599-1617.
[14] ZHAO Gang, ZHANG Jian-Jun, DANG Yi, FAN Ting-Lu, WANG Lei, ZHOU Gang, WANG Shu-Ying, LI Xing-Mao, NI Sheng-Li, MI Wen-Bo, ZHOU Xu-Jiao, CHENG Wan-Li, LI Shang-Zhong. Effects of straw mulching on soil water temperature effect and winter wheat yield in different rainfall years in Dryland Loess Plateau [J]. Acta Agronomica Sinica, 2025, 51(6): 1643-1653.
[15] ZHENG Hao-Fei, YANG Nan, DU Jian, JIA Gai-Xiu, ZOU Yue, MA Wen-Hao, WANG Yan-Ting, SUO Dong-Rang, ZHAO Jian-Hua, SUN Ning-Ke, ZHANG Jian-Wen. Long-term combined application of organic and inorganic fertilizers achieving high yield and high quality of maize in northwest irrigated oasis [J]. Acta Agronomica Sinica, 2025, 51(6): 1618-1628.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!