Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (7): 1959-1968.doi: 10.3724/SP.J.1006.2025.41078

• RESEARCH NOTES • Previous Articles     Next Articles

Compensation effect of no-tillage rotation on yield reduction of nitrogen-reduced wheat

WU Bin,CAO Yong-Gang,HU Fa-Long,YIN Wen,FAN Zhi-Long,FAN Hong,CHAI Qiang*   

  1. State Key Laboratory of Arid Land Crop Science / College of Agronomy, Gansu Agricultural University, Lanzhou 730070, Gansu, China
  • Received:2024-11-12 Revised:2025-01-23 Accepted:2025-01-23 Online:2025-07-12 Published:2025-02-08
  • Supported by:
    This study was supported by the National Natural Science Foundation of China (U21A20218) and Gansu Provincial Science and Technology Major Project (24ZDNA008).

Abstract:

To address the challenges of continuous wheat cropping and excessive use of nitrogen fertilizer in the Hexi Oasis irrigation area, this study evaluated the effects of crop rotation combined with no-tillage on the yield and biomass of wheat under reduced nitrogen application. The goal was to provide a basis for optimizing wheat cultivation management. From 2022 to 2023, a split-plot experiment was conducted with three planting systems as the main plots: no-till rotational wheat (NTRW), tilled rotational wheat (CTRW), and tilled continuous wheat (CTCW). Two nitrogen application rates were assigned as subplots: 225 kg hm-2 (convention, N1) and 180 kg hm-2 (20% reduction, N2). The study focused on the effects of the preceding maize crop and treatments (no-tillage stubble, plowing) on dry matter accumulation, yield, and yield components of wheat under reduced nitrogen conditions. The results showed that crop rotation significantly increased grain yield and biomass compared to continuous cropping, and rotation effectively compensated for the yield reduction caused by nitrogen reduction. This compensatory effect was further enhanced when combined with no-tillage. Specifically, compared to CTCW, grain yield and biomass increased by 31.7% and 15.3% under NTRW and by 17.3% and 10.3% under CTRW, respectively. A 20% reduction in nitrogen application resulted in decreases in grain yield and biomass by 6.2% and 3.7%, respectively. However, the biomass of CTRWN2 was 4.6% higher than that of CTCWN1, with no significant difference in grain yield. Moreover, NTRWN2 achieved 21.9% and 11.6% higher grain yield and biomass, respectively, compared to CTCWN1. Compared to CTCW, the CGR of NTRW and CTRW during the booting to maturity stages increased by 22.4% and 13.6%, while Vmean across the entire growth period increased by 15.0% and 10.2%, respectively. A 20% nitrogen reduction caused CGR and Vmean to decrease by 3.8% and 3.6%, respectively. However, CTRWN2 exhibited 6.3% and 4.5% higher CGR and Vmean compared to CTCWN1, while NTRWN2 showed 19.3% and 11.6% higher CGR and Vmean, respectively, than CTCWN1. Compared to CTCW, kernel number per spike increased by 12.0% under NTRW and by 4.7% under CTRW, harvest index increased by 14.4% and 6.5%, and spike number increased by 5.0% and 8.0%, respectively. A 20% reduction in nitrogen resulted in decreases of 2.5%, 2.9%, and 2.3% in kernel number per spike, harvest index, and spike number, respectively. However, CTRWN2 exhibited a 4.3% higher spike number than CTCWN1, with no significant differences in kernel number per spike or harvest index. NTRWN2 achieved 10.3% and 9.3% higher kernel number per spike and harvest index, respectively, compared to CTCWN1, with no significant difference in spike number. In conclusion, no-tillage rotational wheat combined with a nitrogen application rate of 180 kg ha-1 is an effective, nitrogen-saving strategy for enhancing wheat yield in the Hexi Oasis irrigation area. This approach is suitable for widespread adoption and utilization in the region.

Key words: nitrogen fertilizer reduction, no-tillage, rotation, compensation, yield

[1] Lassaletta L, Billen G, Garnier J, Bouwman L, Velazquez E, Mueller N D, Gerber J S. Nitrogen use in the global food system: past trends and future trajectories of agronomic performance, pollution, trade, and dietary demand. Environ Res Lett, 2016, 11: 095007.

[2] Wang C, Shen Y, Fang X T, Xiao S Q, Liu G Y, Wang L G, Gu B J, Zhou F, Chen D L, Tian H Q, et al. Reducing soil nitrogen losses from fertilizer use in global maize and wheat production. Nat Geosci, 2024, 17: 1008–1015.

[3] Legesse N, Wu S, Wang Y, Gan M Q, Liu P S, Huang Y, Xu H J, Hu H X, Ma Y H. Optimal fertilizer rates towards the improvement of nitrogen use efficiency and reduction of nitrogen export in paddy rice-wheat intensive farming. Front Environ Sci, 2023, 11: 1239785.

[4] 赵亚南, 宿敏敏, 吕阳, 况福虹, 陈轩敬, 张跃强, 石孝均. 减量施肥下小麦产量、肥料利用率和土壤养分平衡. 植物营养与肥料学报, 2017, 23: 864–873.

Zhao Y N, Su M M, Lü Y, Kuang F H, Chen X J, Zhang Y Q, Shi X J. Wheat yield, nutrient use efficiencies and soil nutrient balance under reduced fertilizer rate. J Plant Nutr Fert, 2017, 23: 864–873 (in Chinese with English abstract).

[5] 李凌云, 和爱玲, 杨焕焕, 刘高远, 郭中义, 杜君. 氮肥减施对黄褐土区小麦: 玉米轮作体系产量和氮素吸收利用的影响. 河南农业科学, 2023, 52(11): 21–32.

L L Y, He A L, Yang H H, Liu G Y, Guo Z Y, Du J. Effect of reduction of nitrogen fertilizer rate on yield and nitrogen utilization of wheat-maize rotation system in yellow-cinnamon soil area. J Henan Agric Sci, 2023, 52(11): 21–32 (in Chinese with English abstract).

[6] 张军, 胡川, 周起晖, 任开明, 董誓言, 刘傲寒, 吴金芝, 黄明, 李友军. 减氮及有机肥替代对旱地冬小麦干物质积累、转运、分配和产量的影响. 作物学报, 2025, 51: 207–220.

Zhang J, Hu C, Zhou Q H, Ren K M, Dong S Y, Liu A H, Wu J Z, Huang M, Li Y J. Effects of nitrogen reduction and organic fertilizer substitution on dry matter accumulation, translocation, distribution, and yield of dryland winter wheat. Acta Agron Sin, 2025, 51: 207–220.

[7] Li H Y, Zhang Y H, Sun Y G, Liu P Z, Zhang Q, Wang X L, Wang R, Li J. Long-term effects of optimized fertilization, tillage and crop rotation on soil fertility, crop yield and economic profit on the Loess Plateau. Eur J Agron, 2023, 143: 126731.

[8] Renard D, Tilman D. National food production stabilized by crop diversity. Nature, 2019, 571: 257–260.

[9] Beillouin D, Ben-Ari T, Malézieux E, Seufert V, Makowski D. Positive but variable effects of crop diversification on biodiversity and ecosystem services. Glob Chang Biol, 2021, 27: 4697–4710.

[10] Zhao J, Yang Y D, Zhang K, Jeong J, Zeng Z H, Zang H D. Does crop rotation yield more in China? A meta-analysis. Field Crops Res, 2020, 245: 107659.

[11] Wang J J, Qian R, Li J X, Wei F N, Ma Z M, Gao S S, Sun X, Zhang P, Cai T, Zhao X N, et al. Nitrogen reduction enhances crop productivity, decreases soil nitrogen loss and optimize its balance in wheat-maize cropping area of the Loess Plateau, China. Eur J Agron, 2024, 161: 127352.

[12] 李波, 赵财, 殷民兴, 王岩, 白春生, 曹悦, 杨莉莉. 轮作及减氮对绿洲灌区农田温室气体排放及土壤酶活性的影响.干旱地区农业研究, 2024, 42(4): 210–220.

    Li B, Zhao C, Yin M X, Wang Y, Bai C S, Cao Y, Yang L L. Effects of rotation and nitrogen reduction on greenhouse gas emissions and soil enzyme activities in oasis irrigation areas. Agric Res Arid Areas, 2024, 42(4): 210–220 (in Chinese with English abstract).

[13] 易琼, 张秀芝, 何萍, 杨利, 熊桂云. 氮肥减施对稻-麦轮作体系作物氮素吸收、利用和土壤氮素平衡的影响.植物营养与肥料学报, 2010, 16: 1069–1077.

   Yi Q, Zhang X Z, He P, Yang L, Xiong G Y. Effects of reducing N application on crop N uptake, utilization, and soil N balance in rice-wheat rotation system. J Plant Nutr Fert, 2010, 16: 1069–1077 (in Chinese with English abstract).

[14] Su Y, Gabrielle B, Makowski D. A global dataset for crop production under conventional tillage and no tillage systems. Sci Data, 2021, 8: 33.

[15] Pittelkow C M, Linquist B A, Lundy M E, Liang X Q, van Groenigen K J, Lee J, van Gestel N, Six J, Venterea R T, van Kessel C. When does no-till yield more? A global meta-analysis. Field Crops Res, 2015, 183: 156–168.

[16] 沈晓琳, 王丽丽, 汪洋, 王明亮, 杨殿林, 赵建宁, 李刚, 轩清霞, 王亮. 保护性耕作对土壤团聚体、微生物及线虫群落的影响研究进展. 农业资源与环境学报, 2020, 37: 361–370.

Shen X L, Wang L L, Wang Y, Wang M L, Yang D L, Zhao J N, Li G, Xuan Q X, Wang L. Progress on the effects of conservation tillage on soil aggregates, microbes, and nematode communities. J Agric Resour Environ, 2020, 37: 361–370 (in Chinese with English abstract).

[17] Guo Y, Yin W, Hu F L, Fan Z L, Fan H, Zhao C, Yu A Z, Chai Q, Coulter J A. Reduced irrigation and nitrogen coupled with no-tillage and plastic mulching increase wheat yield in maize-wheat rotation in an arid region. Field Crops Res, 2019, 243: 107615.

[18] Rusinamhodzi L, Corbeels M, van Wijk M T, Rufino M C, Nyamangara J, Giller K E. A meta-analysis of long-term effects of conservation agriculture on maize grain yield under rain-fed conditions. Agron Sustain Dev, 2011, 31: 657–673.

[19] Veresoglou S D, Chen J J, Du X H, Fu Q, Geng Q L, Huang C Y, Huang X L, Hu N, Hun Y M, Li G C, et al. No tillage outperforms conventional tillage under arid conditions and following fertilization. Soil Ecol Lett, 2023, 5: 137–141.

[20] 王旭敏, 雒文鹤, 刘朋召, 张琦, 王瑞, 李军. 节水减氮对夏玉米干物质和氮素积累转运及产量的调控效应. 中国农业科学, 2021, 54: 3183–3197.

Wang X M, Luo W H, Liu P Z, Zhang Q, Wang R, Li J. Regulation effects of water saving and nitrogen reduction on dry matter and nitrogen accumulation, transportation and yield of summer maize. Sci Agric Sin, 2021, 54: 3183–3197 (in Chinese with English abstract).

[21] 殷文, 陈桂平, 郭瑶, 樊志龙, 胡发龙, 范虹, 于爱忠, 赵财, 柴强. 春小麦秸秆还田对后茬玉米干物质积累及产量形成的调控效应. 中国生态农业学报(中英文), 2020, 28: 1210–1218.

Yin W, Chen G P, Guo Y, Fan Z L, Hu F L, Fan H, Yu A Z, Zhao C, Chai Q. Responses of dry matter accumulation and yield in a following maize crop to spring wheat straw returning. Chin J Eco-Agric, 2020, 28: 1210–1218 (in Chinese with English abstract).

[22] 李盼, 樊志龙, 胡发龙, 范虹, 何蔚, 殷文, 陈桂平. 西北灌区秸秆地膜带状覆盖对玉米产量性能的影响. 玉米科学, 2024, 32(1): 119–129.

Li P, Fan Z L, Hu F L, Fan H, He W, Yin W, Chen G P. Effect of strip mulching with straw and plastic film on yield capability for maize in northwest irrigation areas. J Maize Sci, 2024, 32(1): 119–129 (in Chinese with English abstract).

[23] 李玉英, 宋玉伟, 程序, 孙建好, 刘吉利, 李隆. 施氮对灌漠土春玉米干物质积累和氮素吸收利用动态的影响. 中国农业大学学报, 2009, 14(1): 61–65.

Li Y Y, Song Y W, Cheng X, Sun J H, Liu J L, Li L. Impact of nitrogen application on the dynamics of dry matter accumulation and nitrogen absorption and utilization of spring maize. J China Agric Univ, 2009, 14(1): 61–65 (in Chinese with English abstract).

[24] 高仁才, 陈松鹤, 马宏亮, 莫飘, 肖云, 张雪, 樊高琼. 秋闲期秸秆覆盖与氮肥减施对旱地冬小麦干物质积累、结实特性和产量的影响. 植物营养与肥料学报, 2022, 28: 426–439.

Gao R C, Chen S H, Ma H L, Mo P, Xiao Y, Zhang X, Fan G Q. Effects of straw mulching in autumn and reducing nitrogen application on dry matter accumulation, seed-setting characteristics and yield of dryland winter wheat. J Plant Nutr Fert, 2022, 28: 426–439 (in Chinese with English abstract).

[25] 张建军, 党翼, 赵刚, 王磊. 西北旱塬免耕的产量效应受降水特征和施肥显著影响. 植物营养与肥料学报, 2024, 30: 1694–1704.

Zhang J J, Dang Y, Zhao G, Wang L. Crop yield efficiency of no-tillage is significantly influenced by precipitation and fertilization in the dryland of Northwest China. J Plant Nutr Fert, 2024, 30: 1694–1704 (in Chinese with English abstract).

[26] 田肖肖, 吕慎强, 张亮, 李娜, 孙晓, 景建元, 王林权, 李厚华. 免耕覆盖有效提高夏玉米产量及水氮利用效率. 植物营养与肥料学报, 2017, 23: 606–614.

Tian X X, Lü S Q, Zhang L, Li N, Sun X, Jing J Y, Wang L Q, Li H H. No-tillage with straw mulching could increase grain yield, water and nitrogen use efficiencies of summer maize. J Plant Nutr Fert, 2017, 23: 606–614 (in Chinese with English abstract).

[27] Li Y, Chen J, Dong Q G, Feng H, Siddique K H M. Plastic mulching significantly improves soil enzyme and microbial activities without mitigating gaseous N emissions in winter wheat-summer maize rotations. Field Crops Res, 2022, 286: 108630.

[28] 周永杰, 谢军红, 李玲玲, 王林林, 罗珠珠, 王进斌. 长期少免耕与氮肥减量对全膜双垄沟播玉米产量及碳排放的调控作用. 中国农业科学, 2021, 54: 5054–5067.

Zhou Y J, Xie J H, Li L L, Wang L L, Luo Z Z, Wang J B. Effects of long-term reduce/zero tillage and nitrogen fertilizer reducing on maize yield and soil carbon emission under fully plastic mulched ridge-furrow planting system. Sci Agric Sin, 2021, 54: 5054–5067 (in Chinese with English abstract).

[29] 曹永刚, 徐龙龙, 柴强, 胡发龙, 殷文, 樊志龙, 王琦明, 赵财. 水氮减量条件下地膜玉米免耕轮作小麦的水分利用特征. 中国农业科学, 2023, 56: 2660–2672.

Cao Y G, Xu L L, Chai Q, Hu F L, Yin W, Fan Z L, Wang Q M, Zhao C. Water use characteristics of wheat rotated after no tillage plastic film mulching maize with reduced water and nitrogen. Sci Agric Sin, 2023, 56: 2660–2672 (in Chinese with English abstract).

[30] 吕晴晴, 何宁, 张永江, 迟宝杰, 张艳军, 张冬梅, 董合忠. 间作和轮作通过根冠互作调控作物产量形成的生理生态机制. 植物生理学报, 2023, 59: 1277–1290.

Lü Q Q, He N, Zhang Y J, Chi B J, Zhang Y J, Zhang D M, Dong H Z. Eco-physiological mechanism of crop yield formation regulated by intercropping and rotation through root-shoot interaction. Plant Physiol J, 2023, 59: 1277–1290 (in Chinese with English abstract).

[31] 银敏华, 李援农, 陈朋朋, 徐路全, 申胜龙, 王星垚. 基于Meta-analysis的中国北方地区免耕玉米产量效应研究. 中国农业科学, 2018, 51: 843–857.

Yin M H, Li Y N, Chen P P, Xu L Q, Shen S L, Wang X Y. Effect of No-tillage on maize yield in northern region of China–a meta-analysis. Sci Agric Sin, 2018, 51: 843–857(in Chinese with English abstract).

[32] Guo R Y, Miao W, Fan C Y, Li X G, Shi X Y, Li F M, Qin W. Exploring optimal nitrogen management for high yielding maize in arid areas via 15N-labeled technique. Geoderma, 2021, 382: 114711.

[33] Hu F L, Chai Q, Tan Y, Zhao C, Yu A Z, Fan Z L, Yin W, Fan H, He W. No-till with plastic film mulching combined with N fertilizer reduction improves water productivity of spring wheat. Farming System, 2023, 1: 100021

[34] Du C H, Liu Y ,Guo J R, Zhang W Q, Xu R L, Zhou B J, Xiao X C, Zhang Z, Gao Z Q, Zhang Y H, et al. Novel annual nitrogen management strategy improves crop yield and reduces greenhouse gas emissions in wheat-maize rotation systems under limited irrigation. J environ manag, 2024, 353: 120236.

[35] 丁锦峰, 黄正金, 袁毅, 朱新开, 李春燕, 彭永欣, 郭文善. -麦轮作下9000 kg hm–2产量水平扬麦20的群体质量及花后光合特征. 作物学报, 2015, 41: 1086–1097.

Ding J F, Huang Z J, Yuan Y, Zhu X K, Li C Y, Peng Y X, Guo W S. Population quality and photosynthetic characteristics after anthesis in Yangmai 20 with yield potential of 9000 kg hm–2 in rice–wheat rotation system. Acta Agron Sin, 2015, 41: 1086–1097 (in Chinese with English abstract).

[36] Zhang S X, Chen X W, Jia S X, Liang A Z, Zhang X P, Yang X M, Wei S C, Sun B J, Huang D D, Zhou G Y. The potential mechanism of long-term conservation tillage effects on maize yield in the black soil of Northeast China. Soil Tillage Res, 2015, 154: 84–90.

[37] 王维, 韩清芳, 吕丽霞, 侯贤清, 张鹏, 贾志宽, 丁瑞霞, 聂俊峰. 不同耕作模式对旱地小麦旗叶光合特性及产量的影响. 干旱地区农业研究, 2013, 31(1): 20–26.

Wang W, Han Q F, Lü L X, Hou X Q, Zhang P, Jia Z K, Ding R X, Nie J F. Effects of different tillage patterns on photosynthetic characteristics and yield of dryland wheat. Agric Res Arid Areas, 2013, 31(1): 20–26 (in Chinese with English abstract).

[38] 李玲玲, 黄高宝, 秦舒浩, 于爱忠. 保护性耕作对绿洲灌区冬小麦产量形成的影响. 作物学报, 2011, 37: 514–520.

Li L L, Huang G B, Qin S H, Yu A Z. Effect of conservation tillage on dry matter accumulating and yield of winter wheat in oasis area. Acta Agron Sin, 2011, 37: 514–520 (in Chinese with English abstract).

[39] 吕梦, 黄明, 侯园泉, 歹英豪, 焦念元, 尹飞, 赵振欣, 付国占. 减氮配施有机肥对豫西旱区玉米产量及氮肥利用率的影响. 玉米科学, 2023, 31(4): 158–164.

Lü M, Huang M, Hou Y Q, Dai Y H, Jiao N Y, Yin F, Zhao Z X, Fu G Z. Effects of nitrogen reduction combined with organic fertilizer application on maize yield and nitrogen use efficiency in western Henan arid region. J Maize Sci, 2023, 31(4): 158–164 (in Chinese with English abstract).

[40] 葛丽丽, 赵财, 程宝钰, 殷民兴. 不同轮作模式和施氮水平对春小麦产量和品质的影响. 中国农学通报, 2023, 39(20): 6–13.

Ge L L, Zhao C, Cheng B Y, Yin M X. Effects of different crop rotation patterns and nitrogen application levels on yield and quality of spring wheat. Chin Agric Sci Bull, 2023, 39(20): 6–13 (in Chinese with English abstract).

[41] 李杰, 张洪程, 常勇, 龚金龙, 郭振华, 戴其根, 霍中洋, 许轲, 魏海燕, 高辉. 不同种植方式水稻高产栽培条件下的光合物质生产特征研究. 作物学报, 2011, 37: 1235–1248.

Li J, Zhang H C, Chang Y, Gong J L, Guo Z H, Dai Q G, Huo Z Y, Xu K, Wei H Y, Gao H. Characteristics of photosynthesis and matter production of rice with different planting methods under high-yielding cultivation condition. Acta Agron Sin, 2011, 37: 1235–1248 (in Chinese with English abstract).

[42] 马群, 杨雄, 李敏, 李国业, 张洪程, 戴其根, 霍中洋, 许轲, 魏海燕, 高辉. 不同氮肥群体最高生产力水稻品种的物质生产积累. 中国农业科学, 2011, 44: 4159–4169.

Ma Q, Yang X, Li M, Li G Y, Zhang H C, Dai Q G, Huo Z Y, Xu K, Wei H Y, Gao H. Studies on the characteristics of dry matter production and accumulation of rice varieties with different productivity levels. Sci Agric Sin, 2011, 44: 4159–4169 (in Chinese with English abstract).

[43] 赵财, 王巧梅, 郭瑶, 殷文, 樊志龙, 胡发龙, 于爱忠, 柴强. 水氮耦合对地膜玉米免耕轮作小麦干物质积累及产量的影响. 作物学报, 2018, 44: 1694–1703.

Zhao C, Wang Q M, Guo Y, Yin W, Fan Z L, Hu F L, Yu A Z, Chai Q. Effects of water-nitrogen coupling patterns on dry matter accumulation and yield of wheat under No-tillage with previous plastic mulched maize. Acta Agron Sin, 2018, 44: 1694–1703 (in Chinese with English abstract).

[44] 王琦, 许艳丽, 闫鹏, 董好胜, 张薇, 卢霖, 董志强. 聚天门冬氨酸和壳聚糖复配剂对东北春谷光合生产特征及产量的调控效应. 作物学报, 2022, 48: 2840–2852.

Wang Q, Xu Y L, Yan P, Dong H S, Zhang W, Lu L, Dong Z Q. Effects of polyaspartic acid-chitosan on photosynthesis characteristics and yield in spring foxtail millet. Acta Agron Sin, 2022, 48: 2840–2852 (in Chinese with English abstract).

[45] 赵涛, 高小丽, 高扬, 张东旗, 高金锋, 王鹏科, 杨璞. 轮作及连作条件下荞麦功能叶片衰老特性的比较. 西北农业学报, 2015, 24: 87–94.

Zhao T, Gao X L, Gao Y, Zhang D Q, Gao J F, Wang P K, Yang P. Characteristics of buckwheats leaf senescence under rotation and continuous cropping. Acta Agric Boreali-Occident Sin, 2015, 24: 87–94 (in Chinese with English abstract).

[46] 曹议丹, 钱麟君, 霍俊豪, 邹晓霞. 优化管理对小麦-玉米轮作系统植株干物质积累、转运与产量的影响. 山东农业科学, 2024, 56(5): 59–68.

Cao Y D, Qian L J, Huo J H, Zou X X. Effects of optimized managements on accumulation and translocation of dry matter and crop yield in wheat-maize rotation system. Shandong Agric Sci, 2024, 56(5): 59–68 (in Chinese with English abstract).

[47] 张文霞, 李盼, 殷文, 陈桂平, 樊志龙, 胡发龙, 范虹, 何蔚. 麦后复种绿肥及配施不同水平氮肥对小麦产量、品质及氮素利用的影响. 中国农业科学, 2023, 56: 3317–3330.

Zhang W X, Li P, Yin W, Chen G P, Fan Z L, Hu F L, Fan H, He W. Effects of multiple green manure after wheat combined with different levels of nitrogen fertilization on wheat yield, grain quality, and nitrogen utilization. Sci Agric Sin, 2023, 56: 3317–3330 (in Chinese with English abstract).

[48] 韩柏岳, 任爱霞, Hafeez Noor, 古丽刚, 孙敏. 施氮量对旱地小麦花后糖代谢及籽粒产量的影响. 山东农业科学, 2024, 56(4): 81–86.

Han B Y, Ren A X, Noor H, Gu L G, Sun M. Effects of nitrogen application rate on sugar metabolism after anthesis and grain yield of dryland wheat. Shandong Agric Sci, 2024, 56(4): 81–86 (in Chinese with English abstract).

[49] 董明, 张谦, 王燕, 王树林, 冯国艺, 梁青龙, 祁虹, 赵贵元. --油菜宽带轮作提升作物产量和光能利用率. 中国生态农业学报(中英文), 2024, 32: 1159–1169.

Dong M, Zhang Q, Wang Y, Wang S L, Feng G Y, Liang Q L, Qi H, Zhao G Y. Broadband crop rotation of cotton-grain-rape improved crop yield and light utilization efficiency. Chin J Eco-Agric, 2024, 32: 1159–1169 (in Chinese with English abstract).

[1] WU Liu-Ge, CHEN Jian, ZHANG Xin, DENG Ai-Xing, SONG Zhen-Wei, ZHENG Cheng-Yan, ZHANG Wei-Jian. Changes in yield and quality traits of nationally approved winter wheat varieties in China over last twenty years [J]. Acta Agronomica Sinica, 2025, 51(7): 1814-1826.
[2] . Effects of ionic zinc and nano-zinc on physiological characteristics, yield, and quality of potato [J]. Acta Agronomica Sinica, 2025, 51(7): 1838-1849.
[3] ZHAO Jia-Wen, LI Zi-Hong, OU Xing-Yu, WANG Yi-Lang, DING Xiao-Fei, LIANG Yue-Yao, DING Wen-Jin, ZHANG Hai-Peng, MA Shang-Yu, FAN Yong-Hui, HUANG Zheng-Lai, ZHANG Wen-Jing. Effects of nitrogen and potassium fertilizer management on grain yield and quality of weak-gluten wheat [J]. Acta Agronomica Sinica, 2025, 51(7): 1914-1933.
[4] WAN Shu-Bo, ZHANG Jia-Lei, GAO Hua-Xin, WANG Cai-Bin. Advances and prospects of high-yield peanut cultivation in China [J]. Acta Agronomica Sinica, 2025, 51(7): 1703-1711.
[5] LI Bing-Lin, YE Xiao-Lei, XIAO Hong, XIAO Guo-Bin, LYU Wei-Sheng, LIU Jun-Quan, REN Tao, LU Zhi-Feng, LU Jian-Wei. Effects of magnesium fertilization rates on rapeseed yield, magnesium uptake, and yield loss caused by frost damage [J]. Acta Agronomica Sinica, 2025, 51(7): 1850-1860.
[6] HUO Jian-Zhe, YU Ai-Zhong, WANG Yu-Long, WANG Peng-Fei, YIN Bo, LIU Ya-Long, ZHANG Dong-Ling, JIANG Ke-Qiang, PANG Xiao-Neng, WANG Feng. Effect of organic manure substitution for chemical fertilizer on yield, quality, and nitrogen utilization of sweet maize in oasis irrigation areas [J]. Acta Agronomica Sinica, 2025, 51(7): 1887-1900.
[7] DONG Wei-Jin, ZHANG Ya-Feng, LI Qi-Yun, LU Yang, ZHANG Zheng-Kun, SUI Li. Effects of Beauveria bassiana colonization on maize growth and yield under elevated CO2 concentration [J]. Acta Agronomica Sinica, 2025, 51(7): 1874-1886.
[8] CHEN Ru-Xue, SUN Li-Fang, ZHANG Xin-Yuan, MU Hai-Meng, ZHANG Yong-Xin, YUAN Li-Xue, PENG Shi-Le, WANG Zhuang-Zhuang, WANG Yong-Hua. Effects of combined straw returning and microbial inoculant application on carbon­nitrogen metabolism in flag leaves and yield formation in winter wheat [J]. Acta Agronomica Sinica, 2025, 51(7): 1901-1913.
[9] LI Zi-Xiang, HUANG Rong, WANG Zhi-Chao, LI Hong-Yan, TAN Jun-Xing, CHENG Yu, DU Xue-Zhu, SHENG Feng. Effects of poly-γ-glutamate acid on lodging resistance of direct seeding rice [J]. Acta Agronomica Sinica, 2025, 51(6): 1654-1664.
[10] CUI Xin, GU He-He, SONG Yi, ZHANG Zhe, LIU Shi-Shi, LU Zhi-Feng, REN Tao, LU Jian-Wei. Effects of potassium fertilizer application rates on rapeseed yield and potassium absorption and yield reduction caused by frost damage [J]. Acta Agronomica Sinica, 2025, 51(6): 1629-1642.
[11] YAN Shang-Long, WANG Qi-Ming, CHAI Qiang, YIN Wen, FAN Zhi-Long, HU Fa-Long, LIU Zhi-Peng, WEI Jin-Gui. Grain yield and quality of maize in response to dense density and intercropped peas in oasis irrigated areas [J]. Acta Agronomica Sinica, 2025, 51(6): 1665-1675.
[12] ZHANG Shi-Bo, LI Hong-Yan, LI Pei-Fu, REN Rui-Hua, LU Hai-Dong. Effects of a 3-4℃ increase in air temperature under natural conditions on root-shoot senescence and yield in plastic-film mulched maize [J]. Acta Agronomica Sinica, 2025, 51(6): 1599-1617.
[13] ZHAO Gang, ZHANG Jian-Jun, DANG Yi, FAN Ting-Lu, WANG Lei, ZHOU Gang, WANG Shu-Ying, LI Xing-Mao, NI Sheng-Li, MI Wen-Bo, ZHOU Xu-Jiao, CHENG Wan-Li, LI Shang-Zhong. Effects of straw mulching on soil water temperature effect and winter wheat yield in different rainfall years in Dryland Loess Plateau [J]. Acta Agronomica Sinica, 2025, 51(6): 1643-1653.
[14] ZHENG Hao-Fei, YANG Nan, DU Jian, JIA Gai-Xiu, ZOU Yue, MA Wen-Hao, WANG Yan-Ting, SUO Dong-Rang, ZHAO Jian-Hua, SUN Ning-Ke, ZHANG Jian-Wen. Long-term combined application of organic and inorganic fertilizers achieving high yield and high quality of maize in northwest irrigated oasis [J]. Acta Agronomica Sinica, 2025, 51(6): 1618-1628.
[15] MENG Xiang-Yu, DIAO Deng-Chao, LIU Ya-Rui, LI Yun-Li, SUN Yu-Chen, WU Wei, ZHAO Wen, WANG Yu, WU Jian-Hui, LI Chun-Lian, ZENG Qing-Dong, HAN De-Jun, ZHENG Wei-Jun. Genetic analysis of high yield and yield stability characteristics of new wheat variety Xinong 877 [J]. Acta Agronomica Sinica, 2025, 51(5): 1261-1276.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .