Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (7): 1949-1958.doi: 10.3724/SP.J.1006.2025.41075

• RESEARCH NOTES • Previous Articles     Next Articles

Screening of low nitrogen tolerant germplasm in seedling highland barley based on tolerance index and comprehensive evaluation of different nitrogen efficiency types

WEN Xuan1,2(), ZHONG Xiu-Li1,2, WANG Shang-Wen1,2, JIN Tao3,4, PENG Jun3, LIU En-Ke1,2,3,*()   

  1. 1Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    2State Key Laboratory of Efficient Utilization of Agricultural Water Resources, Beijing 100081, China
    3Xizang Autonomous Region Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850002, Xizang, China
    4State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa 850002, Xizang, China
  • Received:2024-11-07 Accepted:2025-03-26 Online:2025-07-12 Published:2025-04-01
  • Contact: *E-mail: liuenke@caas.cn
  • Supported by:
    Project of the State Key Laboratory of Genetic Improvement and Germplasm Resources of Barley and Yak Co-built by the Ministry and the Province(XZNKY-CZ-2022-016-04);National Key Research and Development Program Project(2022YFD2301302-2);Xizang Autonomous Region Science and Technology Program’s Project Selection through Public Challenge(XZ202101ZY0008N-KT02-Z05)

Abstract:

Nitrogen (N) is an essential nutrient for crop growth and development; however, its deficiency in dryland soils often limits the growth and yield of highland barley. Identifying germplasm with low-N tolerance and high N-use efficiency is critical for improving nitrogen utilization. In this study, a hydroponic experiment was conducted using 143 highland barley germplasms under two nitrogen treatments: normal N supply (5.0 mmol L-1) and low N stress (0.1 mmol L-1). Ten agronomic and nitrogen utilization traits were measured under both conditions, and a comprehensive assessment of low-N tolerance was performed using principal component analysis (PCA), nitrogen efficiency indices, and cluster analysis. The results showed that under low-N stress, stalk and leaf fresh weight, root fresh weight, stalk and leaf dry weight, root dry weight, total plant dry weight, N content, and N accumulation significantly decreased, whereas the root-to-shoot ratio, N uptake efficiency, and N utilization efficiency significantly increased. The coefficient of variation (CV) for highland barley traits ranged from 14.01% to 49.80%, with all traits exceeding 10.00% variability. PCA of 12 agronomic traits revealed that the cumulative contribution of the first three principal components reached 91.91% under normal N conditions and 93.13% under low-N conditions. A comprehensive nitrogen efficiency index was developed by integrating trait variability, correlation analysis, and PCA. Based on nitrogen efficiency values and tolerance indices, seven germplasm accessions with strong low-N tolerance were identified: ZDM04507 (Heiqingke), ZDM0468 (Gongjue 1), ZDM04284 (Daxing), ZDM04643 (Nimama), ZDM04480 (Baiqingke), ZDM05597 (Zharen), and ZDM04469 (Huisileng).

Key words: highland barley, low-N tolerance, germplasms screening, comprehensive nitrogen efficiency value, cluster analysis

Table S1

Highland barley germplasm resources and their codes"

序号
No.
编号
Code
种质
Germplasm
原产地
Origin
1 ZDM04231 家巴家姆Jiabajiamu 曲水Qushui
2 ZDM04235 嘎木青稞Gamuqingke 曲水Qushui
3 ZDM04236 阿扎玛Azhama 曲水Qushui
4 ZDM04238 查久青稞Chajiuqingke 达孜Dazi
5 ZDM04239 拉木白青稞Lamubaiqingke 达孜Dazi
6 ZDM04243 花青稞Huaqingke 达孜Dazi
7 ZDM04244 拉木蓝青稞Lamulanqingke 达孜Dazi
8 ZDM04284 达兴Daxing 林芝Nyingchi
9 ZDM04285 纳沙Nasha 林芝Nyingchi
10 ZDM04288 马木田古Mamutiangu 林芝Nyingchi
11 ZDM04296 拉孜青稞Laziqingke 日喀则Shigatse
12 ZDM04297 汤麦Tangmai 日喀则Shigatse
13 ZDM04300 年楚Nianchu 日喀则Shigatse
14 ZDM04301 般那岗Bannagang 日喀则Shigatse
15 ZDM04302 六十天Liushitian 日喀则Shigatse
16 ZDM04303 耐久马Naijiuma 日喀则Shigatse
17 ZDM04346 西红兰Xihonglan 日喀则Shigatse
18 ZDM04347 旱地白Handibai 日喀则Shigatse
19 ZDM04348 早熟Zaoshu 南木林Namling
20 ZDM04351 米如红Miruhong 南木林Namling
21 ZDM04352 扎西平措兰Zhaxipingcuolan 南木林Namling
22 ZDM04354 南木加Nanmujia 萨迦Sa’gya
23 ZDM04357 索柱嘎没Suizhugamei 萨迦Sa’gya
24 ZDM04359 蓝青稞Lanqingke 萨迦Sa’gya
25 ZDM04364 地方Difang 定日Tingri
26 ZDM04366 木希Muxi 聂拉木Nyalam
27 ZDM04373 宗嘎Zongga 吉隆Gyirong
28 ZDM04374 吉隆青稞Gyirongqingke 吉隆Gyirong
29 ZDM04375 一季青稞Yijiqingke 吉隆Gyirong
30 ZDM04376 二季青稞Erjiqingke 吉隆Gyirong
31 ZDM04380 通门西卡白Tongmenxikabai 谢通门Xaitongmoin
32 ZDM04389 酣久马Hanjiuma 江孜Gyantse
33 ZDM04391 蓝青稞Lanqingke 江孜Gyantse
34 ZDM04422 嘎拉Laga 康马Kangmar
35 ZDM04426 紫青稞Ziqingke 康马Kangmar
36 ZDM04428 短芒白Duanmangbai 康马Kangmar
37 ZDM04430 嘎夏Gaxia 仁布Renbu
38 ZDM04435 地方大麦Difangdamai 仁布Renbu
39 ZDM04436 紫青稞Ziqingke 亚东Yadong
40 ZDM04437 白青稞Baiqingke 亚东Yadong
41 ZDM04438 帕里青稞Paliqingke 亚东Yadong
42 ZDM04440 班那岗兰Bannaganglan 白朗Bainang
43 ZDM04441 白朗兰Bainanglan 白朗Bainang
44 ZDM04442 库西紫Kuxizi 白朗Bainang
45 ZDM04467 短芒密穗Duanmangmisui 乃东Nedong
46 ZDM04469 灰四棱Huisileng 乃东Nedong
47 ZDM04470 亚加白Yajiabai 乃东Nedong
48 ZDM04474 白短芒Baiduanmang 乃东Nedong
49 ZDM04476 阳笋Yangsun 贡嘎Gonggar
50 ZDM04477 绿青稞Lyuqingke 贡嘎Gonggar
51 ZDM04480 白青稞Baiqingke 贡嘎Gonggar
52 ZDM04483 灰青稞Huiqingke 贡嘎Gonggar
53 ZDM04484 岗堆Gangdui 贡嘎Gonggar
54 ZDM04501 花青稞Huaqingke 扎囊Chanang
55 ZDM04505 查久Chajiu 扎囊Chanang
56 ZDM04507 黑青稞Heiqingke 桑日Sangri
57 ZDM04510 长芒冬Changmangdong 桑日Sangri
58 ZDM04511 吾宗Wuzong 桑日Sangri
59 ZDM04524 黑青稞Heiqingke 加查Gyaca
60 ZDM04530 早熟青稞Zaoshuqingke 穷结Qonggyai
61 ZDM04558 叉久Chajiu 曲松Chosum
62 ZDM04576 扎西群体Zhaxiqunti 错那Cona
63 ZDM04577 白青稞Baiqingke 错那Cona
64 ZDM04622 花青稞Huaqingke 隆子Lhuntse
65 ZDM04626 早熟青稞Zaoshuqingke 隆子Lhuntse
66 ZDM04628 苏如嘎布Surugabu 隆子Lhuntse
67 ZDM04632 搜1号Sou 1 山南Lhoka
68 ZDM04643 尼玛麻Nimama 昌都Chamdo
69 ZDM04653 白玉裸大麦Baiyuluodamai 昌都Chamdo
70 ZDM04676 绿青稞Lyuqingke 昌都Chamdo
71 ZDM04682 贡觉1号Gonjue1 贡觉Gongjo
72 ZDM04684 爬黑Pahei 贡觉Gongjo
73 ZDM04717 本地黑青稞Bendiheiqingke 边坝Pelbar
74 ZDM04744 米尼群体Miniqunti 八宿Basu
75 ZDM04769 冬青稞Dongqingke 波密Bomi
76 ZDM04786 白青稞Baiqingke 类乌齐Riwoqe
77 ZDM04814 紫青稞Ziqingke 普兰Purang
78 ZDM04818 高原早1号Gaoyuanzao 1 定日Tingri
79 ZDM04824 色布车日Sebucheri 日喀则Shigatse
80 ZDM04840 小白青稞Xiaobaiqingke 日喀则Shigatse
81 ZDM04845 拉屯红Latunhong 萨迦Sa’gya
82 ZDM04849 卡至兰Kazhilan 萨迦Sa’gya
83 ZDM04876 吉丁紫Jidingzi 萨迦Sa’gya
84 ZDM04877 黑尼兰Heinilan 萨迦Sa’gya
85 ZDM04880 却兴Quexing 白郎Bainang
86 ZDM04881 车多Cheduo 康马Kangmar
87 ZDM04882 嘎拉紫Galazi 康马Kangmar
88 ZDM04913 则当紫Zedangzi 隆子Lhuntse
89 ZDM04915 浪卡子青稞Nakartseqingke 浪卡子Nakartse
90 ZDM04917 乃东紫Nedongzi 乃东Nedong
91 ZDM04923 藏青21 Zangqing 21 西藏自治区农牧科学院
Xizang Autonomous Region Academy of Agricultural and Animal Husbandry Sciences
92 ZDM04925 藏青336 Zangqing 336 墨竹工卡Maizhokunggar
93 ZDM04961 舍突查久Shetuchajiu 堆龙德庆Tolun Dechen
94 ZDM04966 嘎夏折仁Gaxiazheren 堆龙德庆Tolun Dechen
95 ZDM04970 欧泽Ouze 墨竹工卡Maizhokunggar
96 ZDM04973 耐那折仁Nainazheren 墨竹工卡Maizhokunggar
97 ZDM04977 古那当耐Gunadangnai 林周Lhundrup
98 ZDM05003 地方大麦Difangdamai 朗县Nangxian
99 ZDM05005 温姆得巴Wenmudeba 错那Cona
100 ZDM05056 阿巴久乌Abajiuwu 墨竹工卡Maizhokunggar
101 ZDM05060 黑勾芒Heigoumang 林芝Nyingchi
102 ZDM05089 黑灰芒Heihuimang 乃东Nedong
103 ZDM05091 短芒白Duanmangbai 乃东Nedong
104 ZDM05092 痕珠Henzhu 贡嘎Gonggar
105 ZDM05104 蓝青稞Lanqingke 芒康Markam
106 ZDM05110 六棱青稞Liulengqingke 日土Rutog
107 ZDM05155 索珠巴拉Suzhubala 隆子Lhuntse
108 ZDM05164 阳西白Yangxibai 谢通门Xietongmen
109 ZDM05166 希德白Xidebai 普兰Purang
110 ZDM05167 帕卓Pazhuo 吉隆Gyirong
111 ZDM05172 萨马达紫Samadazi 康马Kangmar
112 ZDM05181 扎西岗青稞Zhaxigangqingke 日喀则Shigatse
113 ZDM05182 穷让黄Qiongranghuang 日喀则Shigatse
114 ZDM05187 杨孙Yangsun 穷结Qonggyai
115 ZDM05191 苏六棱Suliuleng 隆子Lhuntse
116 ZDM05194 苏如Suru 措美Comai
117 ZDM05197 山南白青稞Shangnaibaiqingke 山南农业科学研究所
Lhoka Agricultural Science Research Institute
118 ZDM05199 穷结紫青稞Qonggyaiziqingke 穷结Qonggyai
119 ZDM05535 乃那Naina 林芝Linzhi
120 ZDM05537 乃那Naina 墨竹工卡Maizhokunggar
121 ZDM05539 乃那Naina 林周Lhundrup
122 ZDM05541 乃那Naina 尼木Nyemo
123 ZDM05542 乃那Naina 工布江达Gongbo gyamda
124 ZDM05544 乃那Naina 乃东Nedong
125 ZDM05546 乃那Naina 浪卡子Nakartse
126 ZDM05547 乃那Naina 洛扎Lhozhag
127 ZDM05575 大白青稞Dabaiqingke 错那Cona
128 ZDM05577 大麦Damai 贡觉Gonjo
129 ZDM05580 门勒Menle 察雅Zhayag
130 ZDM05588 门嘎如乃那Mengarunaina 乃东Nedong
131 ZDM05591 马甫察诀Mafuchajue 白朗Bainang
132 ZDM05593 马若Maluo 堆龙德庆Tolun Dechen
133 ZDM05597 扎仁Zharen 边坝Pelbar
134 ZDM05929 白青稞Baiqingke 南木林Namling
135 ZDM05945 白青稞Baiqingke 定日Tingri
136 ZDM05946 白青稞Baiqingke 定日Tingri
137 ZDM05947 白青稞Baiqingke 定日Tingri
138 ZDM05948 白青稞Baiqingke 聂拉木Nielamu
139 ZDM05950 白青稞Baiqingke 谢通门Xaitongmoin
140 ZDM05955 白青稞Baiqingke 白朗Bainang
141 ZDM05961 白青稞Baiqingke 穷结Qonggyai
142 ZDM05966 白青稞Baiqingke 隆子Lhuntse
143 ZDM05969 白青稞Baiqingke 扎囊Chanang

Table 1

Changes in indicators of highland barley germplasms under different nitrogen levels"

性状
Trait
正常氮处理Normal N 低氮处理Low N
平均值
Mean
标准差
SD
变异系数
CV (%)
平均值
Mean
标准差
SD
变异系数
CV (%)
茎叶鲜重Stalk and leaf fresh weight (g) 0.91 A 0.39 41.02 0.29 B 0.10 33.07
根系鲜重Root fresh weight (g) 0.44 A 0.22 49.06 0.43 B 0.17 40.81
茎叶干重Stalk and leaf dry weight (g) 0.10 A 0.05 49.80 0.05 B 0.02 37.22
根系干重Root dry weight (g) 0.03 A 0.01 47.17 0.04 B 0.02 38.30
植株干重Plant dry weight (g) 0.13 A 0.06 44.16 0.09 B 0.03 30.07
根冠比Root-to-shoot ratio 0.28 B 0.08 29.33 0.91 A 0.28 31.05
氮含量N content (g kg-1) 39.78 A 5.67 14.25 12.00 B 1.41 11.77
氮累积量N accumulation (mg) 5.33 A 2.46 46.11 1.08 B 0.30 28.03
氮吸收效率N uptake efficiency (%) 0.03 B 0.01 49.14 0.29 A 0.10 34.06
氮利用效率N utilization efficiency (%) 25.68 B 3.89 15.17 84.56 A 10.77 12.74

Fig. 1

Correlation analysis of highland barley traits under different nitrogen levels *, **, and *** mean significant correlation at the 0.05, 0.01 and 0.001 probability levels, respectively. × means no significance. SFW: stalk and leaf fresh weight; RFW: root fresh weigh; SDW: stalk and leaf dry weight; RDW: root dry weight; TDW: plant dry weight; RSR: root-to-shoot ratio; NC: N content; NA: N accumulation; NAE: N uptake efficiency; NUE: N utilization efficiency."

Table 2

Component matrix and cumulative contribution"

指标
Trait
正常氮 Normal N 低氮 Low N
主成分1
PC1
主成分2
PC2
主成分3
PC3
主成分1
PC1
主成分2
PC2
主成分3
PC3
茎叶鲜重Stalk and leaf fresh weight 0.862 0.128 0.011 0.913 -0.150 -0.187
根系鲜重Root fresh weight 0.792 0.359 0.275 0.869 0.321 0.203
茎叶干重Stalk and leaf dry weight 0.899 0.096 -0.359 0.872 -0.249 -0.323
根系干重Root dry weight 0.845 0.400 0.234 0.904 0.305 0.189
植株干重Plant dry weight 0.947 0.058 -0.233 0.971 -0.009 -0.065
根冠比Root-to-shoot ratio 0.105 0.532 0.796 0.123 0.665 0.709
氮含量N content 0.198 -0.917 0.330 -0.542 0.709 -0.420
氮累积量N accumulation 0.950 -0.222 -0.110 0.916 0.283 -0.203
氮吸收效率N uptake efficiency 0.873 -0.394 0.008 0.844 0.280 -0.192
氮利用效率N utilization efficiency -0.212 0.910 -0.316 0.513 -0.750 0.393
特征值Eigenvalue 5.548 2.475 1.168 6.235 1.946 1.132
方差贡献率Variance contribution rate (%) 55.481 24.750 11.682 62.350 19.456 11.323
累积贡献率Cumulative percentage (%) 55.481 80.231 91.913 62.350 81.805 93.129

Table 3

Nitrogen efficiency comprehensive value of highland barley genotypes under different nitrogen levels"

序号
Number
氮效率综合值
N efficiency comprehensive value
序号
Number
氮效率综合值
N efficiency comprehensive value
正常氮NN 低氮LN 正常氮NN 低氮LN
1 0.37 0.27 73 0.24 0.21
2 0.22 0.16 74 0.09 0.16
3 0.31 0.19 75 0.40 0.26
4 0.30 0.34 76 0.27 0.35
5 0.48 0.33 77 0.16 0.16
6 0.33 0.30 78 0.41 0.28
7 0.55 0.19 79 0.27 0.20
8 0.49 0.38 80 0.43 0.34
9 0.38 0.28 81 0.37 0.22
10 0.11 0.16 82 0.39 0.27
11 0.22 0.18 83 0.36 0.28
12 0.26 0.16 84 0.55 0.35
13 0.53 0.21 85 0.54 0.28
14 0.40 0.30 86 0.39 0.24
15 0.19 0.31 87 0.21 0.27
16 0.43 0.30 88 0.25 0.28
17 0.12 0.10 89 0.19 0.19
18 0.28 0.32 90 0.42 0.23
19 0.35 0.26 91 0.31 0.30
20 0.28 0.27 92 0.38 0.26
21 0.29 0.24 93 0.38 0.35
22 0.35 0.44 94 0.34 0.34
23 0.31 0.24 95 0.33 0.21
24 0.09 0.15 96 0.34 0.27
25 0.21 0.16 97 0.35 0.27
26 0.25 0.20 98 0.30 0.25
27 0.38 0.23 99 0.22 0.20
28 0.34 0.19 100 0.06 0.14
29 0.19 0.16 101 0.26 0.24
30 0.18 0.23 102 0.31 0.26
31 0.46 0.22 103 0.29 0.28
32 0.20 0.21 104 0.28 0.28
33 0.39 0.24 105 0.47 0.32
34 0.11 0.12 106 0.40 0.23
35 0.15 0.15 107 0.22 0.23
36 0.34 0.17 108 0.34 0.29
37 0.33 0.35 109 0.24 0.21
38 0.38 0.25 110 0.23 0.29
39 0.33 0.30 111 0.23 0.24
40 0.49 0.52 112 0.36 0.35
41 0.35 0.32 113 0.16 0.30
42 0.47 0.38 114 0.46 0.33
43 0.32 0.45 115 0.74 0.32
44 0.41 0.32 116 0.34 0.27
45 0.51 0.30 117 0.25 0.23
46 0.53 0.52 118 0.19 0.22
47 0.46 0.31 119 0.25 0.24
48 0.47 0.43 120 0.28 0.20
49 0.42 0.27 121 0.21 0.20
50 0.19 0.29 122 0.48 0.34
51 0.49 0.63 123 0.39 0.38
52 0.12 0.08 124 0.37 0.28
53 0.36 0.26 125 0.33 0.25
54 0.14 0.33 126 0.18 0.15
55 0.35 0.27 127 0.16 0.29
56 0.62 0.49 128 0.34 0.32
57 0.23 0.19 129 0.26 0.23
58 0.40 0.21 130 0.18 0.28
59 0.42 0.34 131 0.41 0.31
60 0.28 0.27 132 0.35 0.33
61 0.38 0.34 133 0.52 0.37
62 0.42 0.27 134 0.44 0.42
63 0.43 0.48 135 0.16 0.14
64 0.16 0.30 136 0.44 0.34
65 0.30 0.26 137 0.26 0.26
66 0.46 0.42 138 0.34 0.23
67 0.41 0.27 139 0.19 0.25
68 0.52 0.38 140 0.17 0.25
69 0.11 0.11 141 0.28 0.25
70 0.54 0.27 142 0.24 0.20
71 0.65 0.37 143 0.39 0.26
72 0.42 0.30 平均值Average 0.33 0.27

Fig. 2

Scatter plot of nitrogen efficiency comprehensive value of highland barley under different nitrogen levels I: low-N and low-efficiency, normal-N and high-efficiency type (Type I); II: low-N and high-efficiency, normal-N and high-efficiency type (Type II); III: low-N and low-efficiency, normal-N and low-efficiency type (Type III); IV: low-N and high-efficiency, normal-N and low-efficiency type (Type IV)."

Fig. 3

Clustering dendrogram of tolerance index of highland barley The numbers in the figure correspond to Table S1."

[1] Urban A, Rogowski P, Wasilewska-Dębowska W, Romanowska E. Understanding maize response to nitrogen limitation in different light conditions for the improvement of photosynthesis. Plants, 2021, 10: 1932.
[2] 张楚, 张永清, 路之娟, 刘丽琴. 苗期耐低氮基因型苦荞的筛选及其评价指标. 作物学报, 2017, 43: 1205-1215.
doi: 10.3724/SP.J.1006.2017.01205
Zhang C, Zhang Y Q, Lu Z J, Liu L Q. Screening Fagopyrum tararicum genotypes tolerant to low nitrogen stress at seedling stage and its evaluating indices. Acta Agron Sin, 2017, 43: 1205-1215 (in Chinese with English abstract).
[3] 熊艺, 郑璐, 沈仁芳, 兰平. 缺氮胁迫对小麦根际土壤微生物群落结构特征的影响. 土壤学报, 2022, 59: 218-230.
Xiong Y, Zheng L, Shen R F, Lan P. Effects of nitrogen deficiency on microbial community structure in rhizosphere soil of wheat. Acta Pedol Sin, 2022, 59: 218-230 (in Chinese with English abstract).
[4] Li Y L, Tremblay J, Bainard L D, Cade-Menun B, Hamel C. Long-term effects of nitrogen and phosphorus fertilization on soil microbial community structure and function under continuous wheat production. Environ Microbiol, 2020, 22: 1066-1088.
doi: 10.1111/1462-2920.14824 pmid: 31600863
[5] 赵化田, 王瑞芳, 许云峰, 安调过. 小麦苗期耐低氮基因型的筛选与评价. 中国生态农业学报, 2011, 19: 1199-1204.
Zhao H T, Wang R F, Xu Y F, An D G. Screening and evaluating low nitrogen tolerant wheat genotype at seedling stage. Chin J Eco-Agric, 2011, 19: 1199-1204 (in Chinese with English abstract).
[6] 陈凌, 王君杰, 王海岗, 曹晓宁, 刘思辰, 田翔, 秦慧彬, 乔治军. 耐低氮糜子品种的筛选及农艺性状的综合评价. 中国农业科学, 2020, 53: 3214-3225.
doi: 10.3864/j.issn.0578-1752.2020.16.002
Chen L, Wang J J, Wang H G, Cao X N, Liu S C, Tian X, Qin H B, Qiao Z J. Screening of broomcorn millet varieties tolerant to low nitrogen stress and the comprehensive evaluation of their agronomic traits. Sci Agric Sin, 2020, 53: 3214-3225 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2020.16.002
[7] 张福锁, 王激清, 张卫峰, 崔振岭, 马文奇, 陈新平, 江荣风. 中国主要粮食作物肥料利用率现状与提高途径. 土壤学报, 2008, 45: 915-924.
Zhang F S, Wang J Q, Zhang W F, Cui Z L, Ma W Q, Chen X P, Jiang R F. Nutrient use efficiencies of major cereal crops in China and measures for improvement. Acta Pedol Sin, 2008, 45: 915-924 (in Chinese with English abstract).
[8] 巨晓棠, 张福锁. 关于氮肥利用率的思考. 生态环境, 2003, 12: 192-197.
Ju X T, Zhang F S. Thinking about nitrogen recovery rate. Ecol Environ Sci, 2003, 12: 192-197 (in Chinese with English abstract).
[9] Liu C J, Gong X W, Wang H L, Dang K, Deng X P, Feng B L. Low-nitrogen tolerance comprehensive evaluation and physiological response to nitrogen stress in broomcorn millet (Panicum miliaceum L.) seedling. Plant Physiol Biochem, 2020, 151: 233-242.
[10] 李强, 罗延宏, 谭杰, 孔凡磊, 杨世民, 袁继超. 玉米杂交种苗期耐低氮指标的筛选与综合评价. 中国生态农业学报, 2014, 22: 1190-1199.
Li Q, Luo Y H, Tan J, Kong F L, Yang S M, Yuan J C. Indexes screening and comprehensive evaluation of low nitrogen tolerance of hybrid maize cultivars at seeding stage. Chin J Eco-Agric, 2014, 22: 1190-1199 (in Chinese with English abstract).
[11] 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价. 作物学报, 2022, 48: 1488-1501.
doi: 10.3724/SP.J.1006.2022.14087
Qin L, Han P P, Chang H B, Gu C M, Huang W, Li Y S, Liao X S, Xie L H, Liao X. Screening of rapeseed germplasms with low nitrogen tolerance and the evaluation of its potential application as green manure. Acta Agron Sin, 2022, 48: 1488-1501 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2022.14087
[12] 李俊杰, 杜蒲芳, 石婷瑞, 侯沛佳, 柴新宇, 赵瑞, 汪妤, 李红霞. 不同基因型小麦苗期耐低氮性评价及筛选. 中国农业科技导报, 2021, 23(7) : 21-32.
Li J J, Du P F, Shi T R, Hou P J, Chai X Y, Zhao R, Wang Y, Li H X. Screening and evaluation of low nitrogen tolerance from different genotypes wheat at seedling stage. J Agric Sci Technol, 2021, 23(7): 21-32 (in Chinese with English abstract).
[13] 陈二影, 杨延兵, 秦岭, 张华文, 刘宾, 王海莲, 陈桂玲, 于淑婷, 管延安. 谷子苗期氮高效品种筛选及相关特性分析. 中国农业科学, 2016, 49: 3287-3297.
doi: 10.3864/j.issn.0578-1752.2016.17.004
Chen E Y, Yang Y B, Qin L, Zhang H W, Liu B, Wang H L, Chen G L, Yu S T, Guan Y A. Evaluation of nitrogen efficient cultivars of foxtail millet and analysis of the related characters at seedling stage. Sci Agric Sin, 2016, 49: 3287-3297 (in Chinese with English abstract).
[14] 贵会平, 董强, 张恒恒, 王香茹, 庞念厂, 王准, 刘记, 郑苍松, 付小琼, 张西岭, 等. 棉花苗期耐低氮基因型初步筛选. 棉花学报, 2018, 30: 326-337.
doi: 10.11963/1002-7807.ghpsmz.20180720
Gui H P, Dong Q, Zhang H H, Wang X R, Pang N C, Wang Z, Liu J, Zheng C S, Fu X Q, Zhang X L, et al. Preliminary screening of low nitrogen-tolerant cotton genotypes at seedling stage. Cotton Sci, 2018, 30: 326-337 (in Chinese with English abstract).
doi: 10.11963/1002-7807.ghpsmz.20180720
[15] 黄永兰, 黎毛毛, 芦明, 万建林, 龙起樟, 王会民, 唐秀英, 范志洁. 氮高效水稻种质资源筛选及相关特性分析. 植物遗传资源学报, 2015, 16: 87-93.
Huang Y L, Li M M, Lu M, Wan J L, Long Q Z, Wang H M, Tang X Y, Fan Z J. Selection of rice germplasm with high nitrogen utilization efficiency and its analysis of the related characters. J Plant Genet Resour, 2015, 16: 87-93 (in Chinese with English abstract).
doi: 10.13430/j.cnki.jpgr.2015.01.013
[16] 曹敏建, 衣莹, 佟占昌, 宫国安. 耐低氮胁迫玉米的筛选与评价. 玉米科学, 2000, 8(4): 64-69.
Cao M J, Yi Y, Tong Z C, Gong G A. Bolting and evaluate of low nitrogen stress endurence maize. J Maize Sci, 2000, 8(4): 64-69 (in Chinese with English abstract).
[17] 祝令晓, 宋世佳, 李浩然, 孙红春, 张永江, 白志英, 张科, 李安昌, 刘连涛, 李存东. 基于耐低氮综合指数的棉花苗期耐低氮品种筛选. 作物学报, 2022, 48: 1800-1812.
doi: 10.3724/SP.J.1006.2022.14085
Zhu L X, Song S J, Li H R, Sun H C, Zhang Y J, Bai Z Y, Zhang K, Li A C, Liu L T, Li C D. Screening of low nitrogen tolerant cultivars based on low nitrogen tolerance comprehensive index at seeding stage in cotton. Acta Agron Sin, 2022, 48: 1800-1812 (in Chinese with English abstract).
[18] Wang C Y, Song Y L, Linderholm H W, Li Y, Zhang B T, Du J, Li F X, Wang M T, Wang R Y, Zhu Y, et al. The influence of increasing temperatures on highland barley yields and on the maximum cultivation altitude on the Tibetan Plateau. Adv Clim Change Res, 2023, 14: 573-579.
[19] 严谈松, 扎西罗布, 唐亚伟, 吕超, 郭宝健, 朱娟, 王菲菲, 许如根. 密度和肥料运筹对青稞秸秆产量及品质的影响. 麦类作物学报, 2023, 43: 933-939.
Yan T S, Zha X L B, Tang Y W, Lyu C, Guo B J, Zhu J, Wang F F, Xu R G. Effect of density and fertilizer management on yield and quality of highland barley straw. J Triticeae Crops, 2023, 43: 933-939 (in Chinese with English abstract).
[20] 李龙兴.西藏主要农作物秸秆与牧草混合青贮的研究. 南京农业大学硕士学位论文, 江苏南京, 2013.
Li L X. Research on Mixed Silage of Major Crop Residues and Pasture in Tibet. MS Thesis of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2019 (in Chinese with English abstract).
[21] 鲍士旦. 土壤农化分析. 第3版. 北京: 中国农业出版社, 2000.
Bao S D. Soil Agrochemical Analysis, 3nd edn. Beijing: China Agriculture Press, 2000 (in Chinese).
[22] 刘秋员, 周磊, 田晋钰, 程爽, 陶钰, 邢志鹏, 刘国栋, 魏海燕, 张洪程. 长江中下游地区常规中熟粳稻氮效率综合评价及高产氮高效品种筛选. 中国农业科学, 2021, 54: 1397-1409.
doi: 10.3864/j.issn.0578-1752.2021.07.007
Liu Q Y, Zhou L, Tian J Y, Cheng S, Tao Y, Xing Z P, Liu G D, Wei H Y, Zhang H C. Comprehensive evaluation of nitrogen efficiency and screening of varieties with high grain yield and high nitrogen efficiency of inbred middle-ripe Japonica rice in the middle and lower reaches of Yangtze River. Sci Agric Sin, 2021, 54: 1397-1409 (in Chinese with English abstract).
[23] 赵祥, 王学春, 吴凡, 杨国涛, 张杰, 陈永军, 彭友林, 邹挺, 李天春, 胡运高. 四川常用杂交稻品种对低氮胁迫的响应差异及其筛选方法. 应用与环境生物学报, 2019, 25: 909-917.
Zhao X, Wang X C, Wu F, Yang G T, Zhang J, Chen Y J, Peng Y L, Zou T, Li T C, Hu Y G. Differences in response of hybrid rice to low nitrogen stress and screening methods in Sichuan province. Chin J Appl Environ Biol, 2019, 25: 909-917 (in Chinese with English abstract).
[24] 苗蓓.陆地棉种质资源苗期氮效率评价及耐低氮种质筛选. 河北农业大学硕士学位论文, 河北保定, 2019.
Miao B. Screening of Upland Cotton Germplasm Resources Tolerant to Low Nitrogen and Evaluation of Their Nitrogen Efficiency at Seedling Stage. MS Thesis of Hebei Agricultural University, Baoding, Hebei, China, 2019 (in Chinese with English abstract).
[25] 范文静, 刘明, 赵鹏, 张强强, 吴德祥, 郭鹏宇, 朱晓亚, 靳容, 张爱君, 唐忠厚. 甘薯苗期耐低氮基因型筛选及不同氮效率类型综合评价. 中国农业科学, 2022, 55: 1891-1902.
doi: 10.3864/j.issn.0578-1752.2022.10.002
Fan W J, Liu M, Zhao P, Zhang Q Q, Wu D X, Guo P Y, Zhu X Y, Jin R, Zhang A J, Tang Z H. Screening of sweetpotato varieties tolerant to low nitrogen at seedling stage and evaluation of different nitrogen efficiencies. Sci Agric Sin, 2022, 55: 1891-1902 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2022.10.002
[26] 谢孟林, 李强, 查丽, 朱敏, 程秋博, 袁继超, 孔凡磊. 低氮胁迫对不同耐低氮性玉米品种幼苗根系形态和生理特征的影响. 中国生态农业学报, 2015, 23: 946-953.
Xie M L, Li Q, Zha L, Zhu M, Cheng Q B, Yuan J C, Kong F L. Effects of low nitrogen stress on the physiological and morphological traits of roots of different low nitrogen tolerance maize varieties at seedling stage. Chin J Eco-Agric, 2015, 23: 946-953 (in Chinese with English abstract).
[27] 钟思荣, 陈仁霄, 陶瑶, 龚丝雨, 何宽信, 张启明, 张世川, 刘齐元. 耐低氮烟草基因型的筛选及其氮效率类型. 作物学报, 2017, 43: 993-1002.
doi: 10.3724/SP.J.1006.2017.00993
Zhong S R, Chen R X, Tao Y, Gong S Y, He K X, Zhang Q M, Zhang S C, Liu Q Y. Screening of tobacco genotypes tolerant to low-nitrogen and their nitrogen efficiency types. Acta Agron Sin, 2017, 43: 993-1002 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2017.00993
[28] 王准, 张恒恒, 董强, 贵会平, 王香茹, 庞念厂, 李永年, 牛静, 靳丁沙, 汪苏洁, 等. 棉花耐低氮和氮敏感种质筛选及验证. 棉花学报, 2020, 32: 538-551.
doi: 10.11963/1002-7807.wzsmz.20201023
Wang Z, Zhang H H, Dong Q, Gui H P, Wang X R, Pang N C, Li Y N, Niu J, Jin D S, Wang S J, et al. Screening and verification of low nitrogen tolerant and nitrogen sensitive cotton germplasm. Cotton Sci, 2020, 32: 538-551 (in Chinese with English abstract).
doi: 10.11963/1002-7807.wzsmz.20201023
[29] 远月丽.大豆苗期氮高效利用种质筛选及遗传分析. 中国农业科学院硕士学位论文, 北京, 2021.
Yuan Y L. Seedling Screening and Genetic Analysis of Soybean Germplasm with High Nitrogen Use Efficiency. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2021 (in Chinese with English abstract).
[30] 李小红, 谢运河, 阳小凤, 王业建, 马淑梅. 大豆苗期干物质积累对氮素的响应及耐低氮种质筛选方法研究. 湖南农业科学, 2013, (16): 17-19.
Li X H, Xie Y H, Yang X F, Wang Y J, Ma S M. Response of dry matter accumulation to nitrogen in soybean seedling stage and screening method of low nitrogen tolerant germplasm. Hunan Agric Sci, 2013, (16): 17-19 (in Chinese with English abstract).
[31] Stahl A, Pfeifer M, Frisch M, Wittkop B, Snowdon R J. Recent genetic gains in nitrogen use efficiency in oilseed rape. Front Plant Sci, 2017, 8: 963.
doi: 10.3389/fpls.2017.00963 pmid: 28638399
[32] Moll R H, Kamprath E J, Jackson W A. Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization. Agron J, 1982, 74: 562-564.
[1] JIANG You, MA Xue-Rong, ZHANG Bo, LI Chen-Jian. Evaluation of salt tolerance and screening of salt-tolerant germplasm of Sorghum sudanese during seed germination period [J]. Acta Agronomica Sinica, 2025, 51(3): 835-844.
[2] LU Mao-Ang, PENG Xiao-Ai, ZHANG Ling, WANG Jian-Lai, HE Xian-Fang, ZHU Yu-Lei. Genetic diversity of wheat breeding parents revealed by 55K SNP-based microarray [J]. Acta Agronomica Sinica, 2023, 49(6): 1708-1714.
[3] QIN Lu, HAN Pei-Pei, CHANG Hai-Bin, GU Chi-Ming, HUANG Wei, LI Yin-Shui, LIAO Xiang-Sheng, XIE Li-Hua, LIAO Xing. Screening of rapeseed germplasms with low nitrogen tolerance and the evaluation of its potential application as green manure [J]. Acta Agronomica Sinica, 2022, 48(6): 1488-1501.
[4] ZHANG Yi-Zhong, ZENG Wen-Yi, DENG Lin-Qiong, ZHANG He-Cui, LIU Qian-Ying, ZUO Tong-Hong, XIE Qin-Qin, HU Deng-Ke, YUAN Chong-Mo, LIAN Xiao-Ping, ZHU Li-Quan. Codon usage bias analysis of S-locus genes SRK, SLG, and SP11/SCR in Brassica oleracea [J]. Acta Agronomica Sinica, 2022, 48(5): 1152-1168.
[5] WANG Rui-Yun,JI Xu,LU Ping,LIU Min-Xuan,XU Yue,WANG Lun,WANG Hai-Gang,QIAO Zhi-Jun. Analysis of Genetic Diversity in Common Millet (Panicum miliaceum) Using Fluorescent SSR in China [J]. Acta Agron Sin, 2017, 43(04): 530-548.
[6] HU Yi-Bo, YANG Xiu-Shi, LU Ping*,REN Gui-Xing*. Diversity and Correlation of Quality Traits in Quinoa Germplasms from North China [J]. Acta Agron Sin, 2017, 43(03): 464-470.
[7] XU Ning,CHEN Bing-Xu,WANG Ming-Hai,BAO Shu-Ying,WANG Gui-Fang,GUO Zhong-Xiao. Identification of Alkali Tolerance of Mungbean Germplasm Resources during Germination [J]. Acta Agron Sin, 2017, 43(01): 112-121.
[8] WU Qi,ZHOU Yu-Fei,GAO Yue,ZHANG Jiao,CHEN Bing-Ru,XU Wen-Juan,HUANG Rui-Dong. Screening and Identification for Drought Resistance during Germination in Sorghum Cultivars [J]. Acta Agron Sin, 2016, 42(08): 1233-1246.
[9] LIU Ying,ZHANG Qiao-Feng,FU Bi-Sheng,CAI Shi-Bin,JIANG Yan-Jie,ZHANG Zhi-Liang,DENG Yuan-Yu,WU Ji-Zhong,DAI Ting-Bo. Genetic Diversity of Wheat Germplasm Resistant to Sharp Eyespot and Genotyping of Resistance Loci Using SSR Markers [J]. Acta Agron Sin, 2015, 41(11): 1671-1681.
[10] LI Long,WANG Lan-Fen,WU Jing,JING Rui-Lian,WANG Shu-Min*. Identification of Drought Resistence at Seedlings Stage in Common Bean (Phaseolus vulgaris L.) Varieties [J]. Acta Agron Sin, 2015, 41(06): 963-971.
[11] WANG Yi-Tao,ZHOU Yu-Fei,LI Feng-Xian,YI Bing,BAI Wei,YAN Tong,XU Wen-Juan,GAO Ming-Chao,HUANG Rui-Dong. Identification and Classification of Sorghum Cultivars for Drought Resistance during Germination Stage Based on Principal Components Analysis and Self Organizing Map Cluster Analysis [J]. Acta Agron Sin, 2014, 40(01): 110-121.
[12] TANG Mei,CHEN Yu-Ning,REN Xiao-Ping,HUANG Li,ZHOU Xiao-Jing,YAN Hai-Yan,JIANG Hui-Hang. Genetic Diversity of Arachis Accessions Detected by EST-SSR from Cultivated Peanut (Arachis hypogaea L.) [J]. Acta Agron Sin, 2012, 38(07): 1221-1231.
[13] HE Tao,JIA Jing-Fen. Cloning and Function Analysis of hbltl4.2 Gene in Highland Barley(Hordeum vulgare L. var. nudum Hook. f.) [J]. Acta Agron Sin, 2009, 35(2): 295-300.
[14] CHENG Ming;LI Zhi-Qiang;JIANG Chuang-Dao;SHI Lei;TANG Yu-Dan;ZHANG Jin-Zheng. Photosynthetic Characteristics and Photoprotective Mechanisms in Highland Barley [J]. Acta Agron Sin, 2008, 34(10): 1805-1811.
[15] GUO Chun-Fang;SUN Yun;CHEN Chang-Song;CHEN Rong-Bing;ZHANG Mu-Qing. Comparison and Cluster Analysis of Photosynthetic Characters and Water Use Efficiency in Tea (Camellia sinensis) Cultivars [J]. Acta Agron Sin, 2008, 34(10): 1797-1804.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .