Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2015, Vol. 41 ›› Issue (11): 1671-1681.doi: 10.3724/SP.J.1006.2015.01671


Genetic Diversity of Wheat Germplasm Resistant to Sharp Eyespot and Genotyping of Resistance Loci Using SSR Markers

LIU Ying1,2,**,ZHANG Qiao-Feng2,**,FU Bi-Sheng2,CAI Shi-Bin2,JIANG Yan-Jie2,ZHANG Zhi-Liang2,DENG Yuan-Yu3,WU Ji-Zhong2*,DAI Ting-Bo1,*   

  1. 1 College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; 2 Institute of Food Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Provincial Platform for Conservation and? Utilization of Agricultural Germplasm, Nanjing 210014; 3 Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
  • Received:2015-02-04 Revised:2015-06-01 Online:2015-11-12 Published:2015-06-29
  • Contact: 戴廷波, E-mail: tingbod@njau.edu.cn, Tel: 025-84395033; 吴纪中, E-mail: wujz@jaas.ac.cn, Tel: 025-84391667 E-mail:summertime1212@163.com


A three-year filed identification with artificial inoculation was carried out to validate 88 wheat germplasm resources resistant to sharp eyespot identified in previous studies. Thirty-two accessions showed resistance or moderate resistance to sharp eyespot. Rich genetic diversity among these resistant resources was revealed by 59 SSR markers across the whole wheat genome. A total of 308 alleles were detected with 2–13 alleles per marker and an average of 5.2. The polymorphism information content (PIC) ranged from 0.12 to 0.89 with an average of 0.61. The clustering and principal component analysis (PCA) based on molecular marker data indicated that the 32 resistant accessions were grouped in improved variety (including alien varieties) and landraces, which was consistent with geographic distribution. The 32 resistant varieties were genotyped with 14 SSR markers closely linked to QTLs for sharp eyespot resistance. Xwmc154 on 2BS and Xbarc126 on 7DS were frequently detected in the resistant resources. As a consequence, they are recommended in marker-assisted selection. Only one known resistance QTL was detected in varieties Wunong 148, Shaan 983, Shaannong 78, Coker 983, H-Line, Mason and Compair, whereas none resistance QTL was found in Tyalt. These varieties might carry novel resistance genes/QTLs against wheat sharp eyespot and are promising in wheat breeding.

Key words: Wheat, Sharp eyespot, Genetic diversity, Cluster analysis, PCA analysis, QTL

[1]Lemańczyk G, Kwa?na H. Effects of sharp eyespot (Rhizoctonia cerealis) on yield and grain quality of winter wheat. Eur J Plant Pathol, 2013, 135: 187–200

[2]张会云, 陈荣振, 冯国华, 刘东涛, 王静, 王晓军, 楼辰军, 张凤. 中国小麦纹枯病的研究现状与展望. 麦类作物学报, 2007, 27: 1150–1153

Zhang H Y, Chen R Z, Feng G H, Liu D T, Wang J, Wang X J, Lou C J, Zhang F. Research advances and prospect on wheat sharp eyespot in China. J Triticeae Crops, 2007, 27: 1150–1153 (in Chinese with English abstract)

[3]Cromey M G, Butler R C, Munro C A, Shorter S C. Susceptibility of New Zealand wheat cultivars to sharp eyespot. New Zeal Plant Protect, 2005, 58: 268–272

[4]蒋彦婕, 吴纪中, 蔡士宾, 朱芳芳, 张巧凤. 小麦抗纹枯病种质资源的鉴定与评价. 麦类作物学报, 2013, 33: 589–594

Jiang Y J, Wu J Z, Cai S B, Zhu F F, Zhang Q F. Screening of resistance to sharp eyespot in wheat germplasm. J Triticeae Crops, 2013, 33: 589–594 (in Chinese with English abstract)

[5]Chen J, Li G H, Du Z Y, Quan W, Zhang H Y, Che M Z, Wang Z, Zhang Z J. Mapping of QTL conferring resistance to sharp eyespot (Rhizoctonia cerealis) in bread wheat at the adult plant growth stage. Theor Appl Genet, 2013, 126: 2865–2878

[6]蔡士宾, 任丽娟, 颜伟, 吴纪中, 陈怀谷, 吴小有, 张仙义. 小麦抗纹枯病种质创新及QTL定位的初步研究. 中国农业科学, 2006, 39: 928–934

Cai S B, Ren L J, Yan W, Wu J Z, Chen H G, Wu X Y, Zhang X Y. Germplasm development and mapping of resistance to sharp eyespot (Rhizoctonia cerealis) in wheat. Sci Agric Sin, 2006, 39: 928–934 (in Chinese with English abstract)

[7]霍纳新. 小麦纹枯病、白粉病抗性QTL分析. 中国农业科学院博士学位论文, 北京, 2002

Huo N X. QTL analysis of resistance to disease caused by Rhizoctonia cerealis and Blumeris graminis. PhD Dissertation of the Chinese Academy of Agricultural Sciences, Beijing, China, 2002 (in Chinese with English abstract)

[8]任丽娟, 蔡士宾, 汤颋, 吴纪中, 周淼平, 颜伟, 马鸿翔, 陆维忠. 小麦纹枯病抗性QTL的SSR标记. 扬州大学学报, 2004, 25(4): 16–19

Ren L J, Cai S B, Tang T, Wu J Z, Zhou M P, Yan W, Ma H Y, Lu W Z. SSR marker linked resistance QTLs to sharp eyespot (Rhizoctonia cerealis) in wheat. J Yangzhou Univ, 2004, 25(4): 16–19 (in Chinese with English abstract)

[9]任丽娟, 张旭, 周淼平, 陆维忠, 马鸿翔. .小麦抗纹枯病和赤霉病QTL定位研究. 麦类作物学报, 2007, 27: 416–420

Ren L J, Zhang X, Zhou M P, Lu W Z, Ma H X. QTL analysis of sharp eyespot (Rhizoctonia cerealis) and Fusarium head blight in wheat. J Triticeae Crops, 2007, 27: 416–420 (in Chinese with English abstract)

[10]汤颋, 任丽娟, 蔡士宾, 吴纪中, 陆维忠, 陈建民, 马鸿翔. 小麦ARz抗纹枯病的QTL定位研究. 麦类作物学报, 2004, 24(4): 11–16

Tang T, Ren L J, Cai S B, Wu J Z, Lu W Z, Chen J M, Ma H X. Study on QTL mapping of sharp eyespot resistance (Rhizoctonia cerealis) in wheat ARz. J Triticeae Crops, 2004, 24(4): 11–16 (in Chinese with English abstract)

[11]张小村, 李斯深, 赵新华, 范玉顶, 李瑞军. 小麦纹枯病抗性的QTL分析和抗病基因的分子标记. 植物遗传资源学报, 2005, 6: 276–279

Zhang X C, Li S S, Zhao X H, Fan Y D, Li R J. QTL and molecular markers for resisitance gene of wheat sharp eyespot. J Plant Genet Resour, 2005, 6: 276–279 (in Chinese with English abstract)

[12]张小村, 李斯深, 赵新华, 李瑞军. 15个小麦重组自交系群体抗纹枯病性的遗传分析. 麦类作物学报, 2004, 24(3): 13–16

Zhang X C, Li S S, Zhao X H, Li R J. Genetic analysis on resistance to sharp eyespot by using fifteen populations of recombinant inbred in wheat. J Triticeae Crops, 2004, 24(3): 13–16 (in Chinese with English abstract)

[13]朱芳芳. Niavt14/徐麦25重组自交系群体小麦纹枯病抗性QTL分析. 南京农业大学硕士学位论文, 江苏南京, 2011

Zhu F F. QTLs mapping for resistance to sharp eyespot by using a recombinant inbred lines population derived from the cross between Niavt 14 and Xuzhou 25 in wheat. MS Thesis of Nanjing Agricultural University, Jiangsu, China, 2011 (in Chinese with English abstract)

[14]Huang Y D, Millet B P, Beaubien K A, Dahl S K, Steffenson B J, Smith K P, Muehlbauer G J. Haplotype diversity and population structure in cultivated and wild barely evaluated for Fusarium head blight responses. Theor Appl Genet, 2013, 126: 619–636

[15]Ogbonnaya F C, Imtiaz M, DePauw R M. Haplotype diversity of preharvest sprouting QTLs in wheat. Genome, 2007, 50: 107–118

[16]Sardouie-Nasab S, Mohammadi-Nejad G, Zebarjadi A. Haplotype analysis of QTLs attributed to salinity tolerance in wheat (Triticum aestivum). Mol Biol Rep, 2013, 40: 4661–4671

[17]Yu G T, Wang T, Anderson K M, Harris M O, Cai X W, Xu S S. Evaluation and haplotype analysis of elite synthetic hexaploid wheat lines for resistance to Hessian fly. Crop Sci, 2012, 52: 752–763

[18]王裕中. 纹枯病及其抗性的研究. 见: 庄巧生. 杜振华主编. 中国小麦育种研究进展(1991–1995). 北京:中国农业出版社, 1996. pp 266–274

Wang Y Z. Study on wheat sharp eyespot and its resistance. In: Zhuang Q S, Du Z H, eds. Advance of wheat Breeding in Chia. Beijing: China Agriculture Press, 1996. pp 266–274 (in Chinese)

[19]李洪连, 袁红霞, 刁晓葛, 李锁平, 胡玉欣, 王守正. 河南小麦主要品种纹枯病抗性评价. 河南农业大学学报, 1998, 32(2): 107–111

Li H L, Yuan H X, Diao X G, Li S P, Hu Y X, Wang S Z. Evaluation on the resistance of major wheat varieties in Hernan province to sharp eyespot. Acta Agric Univ Hernanensis, 1998, 32(2): 107–111 (in Chinese with English abstract)

[20]Ma Z Q, Sorrells M E, Tanksley S D. RFLP markers linked to powdery mildew resistance genes Pm1, Pm2, Pm3, and Pm4 in wheat. Genome, 1994, 37: 871–875

[21]Sourdille P, Singh S, Cadalen T, Brown-Guedira G L, Gay G, Qi L L, Gill B S, Dufour P, Murigneux A, Bernard M. Microsatellite-based deletion bin system for the establishment of genetic-physical map relationships in wheat (Triticum aestivum L.). Funct Integr Genpmics, 2004, 4: 12–25

[22]Somers D J, Isaac P, Edwards K. A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet, 2004, 109: 1105–1114

[23]Khlestkna E K, Röder M S, Efremova T T, Börner A, Shumny V K. The genetic diversity of old and modern Siberian varieties of common spring wheat as determined by microsatellite markers. Plant Breed, 2004, 123: 122–127

[24]Peng J H, Bai Y, Haley S D, Lapitan N L V. Microsatellite-based molecular diversity of bread wheat germplasm and association mapping of wheat resistance to Russia wheat aphid. Genetica, 2009, 135: 95–122

[25]Liu J C, Liu L, Hou N, Zhang A M, Liu C G. Genetic diversity of wheat gene pool of recurrent selection assessed by microsatellite markers and morphological traits. Euphytica, 2007, 155: 249–258

[26]李斯深, 王洪刚, 刘爱新, 李宪彬, 李安飞, 刘树兵. 小麦种质抗纹枯病性的鉴定和遗传分析. 西北植物学报, 2001, 21: 1004–1008

Li S S, Wang H G, Liu A X, Li X B, Li A F, Liu S B. Indentification and genetic analysis of resistance to sharp eyespot (Rhizoctonia cerealis) in winter wheat germplasm. Acta Bot Boreal-Occident Sin, 2001, 21: 1004–1008 (in Chinese with English abstract)

[27]He X Y, Singh P K, Duveiller S, Schlang N, Dreisigacker S, Singh R P. Identification and characterization of international Fusarium head blight screening nurseries of wheat at CIMMYT, Mexico. Eur J Plant Pathol, 2013, 136: 123–134

[1] XIAO Ying-Ni, YU Yong-Tao, XIE Li-Hua, QI Xi-Tao, LI Chun-Yan, WEN Tian-Xiang, LI Gao-Ke, HU Jian-Guang. Genetic diversity analysis of Chinese fresh corn hybrids using SNP Chips [J]. Acta Agronomica Sinica, 2022, 48(6): 1301-1311.
[2] HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356.
[3] GUO Xing-Yu, LIU Peng-Zhao, WANG Rui, WANG Xiao-Li, LI Jun. Response of winter wheat yield, nitrogen use efficiency and soil nitrogen balance to rainfall types and nitrogen application rate in dryland [J]. Acta Agronomica Sinica, 2022, 48(5): 1262-1272.
[4] YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102.
[5] ZHANG Yi-Zhong, ZENG Wen-Yi, DENG Lin-Qiong, ZHANG He-Cui, LIU Qian-Ying, ZUO Tong-Hong, XIE Qin-Qin, HU Deng-Ke, YUAN Chong-Mo, LIAN Xiao-Ping, ZHU Li-Quan. Codon usage bias analysis of S-locus genes SRK, SLG, and SP11/SCR in Brassica oleracea [J]. Acta Agronomica Sinica, 2022, 48(5): 1152-1168.
[6] LEI Xin-Hui, WAN Chen-Xi, TAO Jin-Cai, LENG Jia-Jun, WU Yi-Xin, WANG Jia-Le, WANG Peng-Ke, YANG Qing-Hua, FENG Bai-Li, GAO Jin-Feng. Effects of soaking seeds with MT and EBR on germination and seedling growth in buckwheat under salt stress [J]. Acta Agronomica Sinica, 2022, 48(5): 1210-1221.
[7] FU Mei-Yu, XIONG Hong-Chun, ZHOU Chun-Yun, GUO Hui-Jun, XIE Yong-Dun, ZHAO Lin-Shu, GU Jia-Yu, ZHAO Shi-Rong, DING Yu-Ping, XU Yan-Hao, LIU Lu-Xiang. Genetic analysis of wheat dwarf mutant je0098 and molecular mapping of dwarfing gene [J]. Acta Agronomica Sinica, 2022, 48(3): 580-589.
[8] FENG Jian-Chao, XU Bei-Ming, JIANG Xue-Li, HU Hai-Zhou, MA Ying, WANG Chen-Yang, WANG Yong-Hua, MA Dong-Yun. Distribution of phenolic compounds and antioxidant activities in layered grinding wheat flour and the regulation effect of nitrogen fertilizer application [J]. Acta Agronomica Sinica, 2022, 48(3): 704-715.
[9] LIU Yun-Jing, ZHENG Fei-Na, ZHANG Xiu, CHU Jin-Peng, YU Hai-Tao, DAI Xing-Long, HE Ming-Rong. Effects of wide range sowing on grain yield, quality, and nitrogen use of strong gluten wheat [J]. Acta Agronomica Sinica, 2022, 48(3): 716-725.
[10] HUANG Li, CHEN Yu-Ning, LUO Huai-Yong, ZHOU Xiao-Jing, LIU Nian, CHEN Wei-Gang, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Advances of QTL mapping for seed size related traits in peanut [J]. Acta Agronomica Sinica, 2022, 48(2): 280-291.
[11] ZHANG Yan-Bo, WANG Yuan, FENG Gan-Yu, DUAN Hui-Rong, LIU Hai-Ying. QTLs analysis of oil and three main fatty acid contents in cottonseeds [J]. Acta Agronomica Sinica, 2022, 48(2): 380-395.
[12] YAN Yan, ZHANG Yu-Shi, LIU Chu-Rong, REN Dan-Yang, LIU Hong-Run, LIU Xue-Qing, ZHANG Ming-Cai, LI Zhao-Hu. Variety matching and resource use efficiency of the winter wheat-summer maize “double late” cropping system [J]. Acta Agronomica Sinica, 2022, 48(2): 423-436.
[13] WANG Yang-Yang, HE Li, REN De-Chao, DUAN Jian-Zhao, HU Xin, LIU Wan-Dai, GU Tian-Cai, WANG Yong-Hua, FENG Wei. Evaluations of winter wheat late frost damage under different water based on principal component-cluster analysis [J]. Acta Agronomica Sinica, 2022, 48(2): 448-462.
[14] CHEN Xin-Yi, SONG Yu-Hang, ZHANG Meng-Han, LI Xiao-Yan, LI Hua, WANG Yue-Xia, QI Xue-Li. Effects of water deficit on physiology and biochemistry of seedlings of different wheat varieties and the alleviation effect of exogenous application of 5-aminolevulinic acid [J]. Acta Agronomica Sinica, 2022, 48(2): 478-487.
[15] XU Long-Long, YIN Wen, HU Fa-Long, FAN Hong, FAN Zhi-Long, ZHAO Cai, YU Ai-Zhong, CHAI Qiang. Effect of water and nitrogen reduction on main photosynthetic physiological parameters of film-mulched maize no-tillage rotation wheat [J]. Acta Agronomica Sinica, 2022, 48(2): 437-447.
Full text



No Suggested Reading articles found!