Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (7): 1969-1978.doi: 10.3724/SP.J.1006.2025.44210

• RESEARCH NOTES • Previous Articles    

Promoter characterization and expression pattern analysis of the m6A methyltransferase gene SiMTA1 in foxtail millet

SHEN Ao1,2(), LIU Min2, NI Di-An1,*(), LIU Wei2,*()   

  1. 1School of Ecological Technology & Engineering, Shanghai Institute of Technology, Shanghai 201418, China
    2Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong, China
  • Received:2024-12-17 Accepted:2025-04-30 Online:2025-07-12 Published:2025-05-12
  • Contact: *E-mail: wheiliu@163.com; E-mail: dani@sit.edu.cn
  • Supported by:
    Shandong Provincial Key Research and Development Program(2021LZGC025);National Natural Science Foundation of China(32171955);National Natural Science Foundation of China(32201736);Agricultural Science and Technology Innovation Project of the Shandong Academy of Agricultural Sciences(CXGC2023F13)

Abstract:

MTA, a key RNA methyltransferase responsible for m6A methylation, also influences embryonic development and plays crucial roles in plant growth by interacting with other enzymes. In this study, the SiMTA1 gene (accession no. PQ801843) from foxtail millet was identified through homology alignment with Arabidopsis methyltransferase sequences. The gene is 4,239 bp in length, with a 2121 bp coding sequence (CDS) encoding a protein of 706 amino acids. Bioinformatic analyses were conducted on both the nucleotide and protein sequences, and cis-acting elements in the promoter region were characterized. The spatiotemporal expression patterns of SiMTA1 under various abiotic stresses and hormone treatments were examined using qRT-PCR. The results showed that SiMTA1 contains the MT-A70 domain, a subunit of N6-adenosine methyltransferase (MTase) that binds S-adenosylmethionine (SAM), and its secondary structure is mainly composed of random coils and α-helices. The SiMTA1 promoter harbors multiple stress- and hormone-responsive cis-elements. SiMTA1 is highly expressed in stem internodes during the heading stage of foxtail millet, and its expression is upregulated by salt, drought, auxin, cytokinin, and other treatments. These findings suggest that SiMTA1 may participate in developmental processes and responses to environmental and hormonal signals in foxtail millet. This study provides a theoretical foundation and a potential candidate gene for the genetic improvement of stress-resistant foxtail millet varieties.

Key words: foxtail millet, methyltransferase SiMTA1, promoter characteristics, stress and plant hormone response, spatiotemporal expression pattern

Fig. S1

SiMTA1-P promoter sequence"

Table 1

Primers used in this study"

引物名称Primer name 引物序列Primer sequence (5'-3')
Q-SiMTA1-F1 TGGCTGACGATGAAATGAGG
Q-SiMTA1-R1 GCCAGTTCGGATGATACGTT

Fig. 1

Multiple sequence alignment of MTA proteins from different plant species The accession numbers in NCBI are: AtMTA of Arabidopsis thaliana: NP_192814; OsMTA of rice: NP_001403747; TaMTA of wheat: XP_044403789; ZmMTA of maize: NP_001147883. The red box highlights the highly conserved region."

Fig. 2

Prediction of the SiMTA1 protein domain Numbers represent the amino acid positions of the corresponding sequences. The purple region represents a low-complexity sequence, while the gray box denotes the MT-A70 domain."

Fig. 3

Prediction of the secondary structure of the SiMTA1 Numbers represent the amino acid positions of the corresponding sequences. Blue: random coil; light purple: α-helix; dark purple: extended chain."

Fig. 4

Prediction of the tertiary structure of the SiMTA1 protein Different colors represent confidence levels (score range: 0-1).Dark blue: score > 0.9; blue: 0.9 > score > 0.7; yellow: 0.7 > score > 0.5; orange: score < 0.5."

Fig. 5

Schematic diagram of the distribution of cis-acting elements in the sense-strand of promoter SiMTA1-P Numbers represent the length of sequences corresponding to the positions of promoters, with different shapes representing different cis-acting elements."

Table 2

Partial cis-acting elements in the promoter SiMTA1-P"

顺式作用元件
Cis-acting element
位置
Position
序列
Sequence (5′-3′)
生物学功能
Biological function
ABRE 17+
17-, 24-
843+
1156+
1585-
1898-
CACGTG
ACGTG
AACCCGG
ACGTG
TACGGTC
GCCGCGTGGC
含有ABRE基序的基因通常在ABA的调控下表达, 从而参与植物的逆境适应过程。
Genes containing the ABRE motif are typically expressed under the regulation of ABA, thereby participating in the plant’s stress adaptation process.
AS-1 1701- TGACG 与植物对生长素的响应有关, 参与调节生长素应答基因的表达, 影响植物的发育过程。
Associated with the plant’s response to auxin, it is involved in the regulation of auxin-responsive gene expression, thereby influencing the developmental processes of plants.
AuxRR-core 409+ GGTCCAT 生长素相关核心。
Auxin-related core.
CCGTCC-box 32+ CCGTCC 与植物的光信号传导和逆境胁迫响应有关。
Associated with plant light signaling and stress response.
CGTCA-motif 1701+ CGTCA 与植物对逆境(如干旱、盐胁迫等)的响应相关。
Related to the plant’s response to abiotic stresses, such as drought and salinity.
DRE 1737+ GCCGAC 与植物的干旱、低温和高盐胁迫响应有关。
Related to the plant’s response to drought, low-temperature, and high-salinity stresses.
G-box 24+, 1155- CACGTT 通常与逆境胁迫响应和植物激素信号传导有关。
Typically associated with stress responses and plant hormone signaling.
LTR 643-, 1116+ CCGAAA 与基因的低温响应有关。
Associated with the low-temperature response of genes.
MYB 817-, 876-
882-
1200-
1601+
CAACCA
CAACAG
TAACTG
CAACCA
参与多种生物学过程, 包括植物激素信号传导、生长发育、次生代谢以及逆境响应等。
Involved in a variety of biological processes, including plant hormone signaling, growth and development, secondary metabolism, and stress responses.
MYC 471+ CATTTG 参与多种生物学过程, 包括植物激素信号传导、生物钟调控以及逆境响应等。
Involved in a variety of biological processes, including plant hormone signaling, circadian clock regulation, and stress responses.
STRE 155-, 425-, 1238-, 1841+ AGGGG 参与植物对环境应激如冷、热、盐胁迫等的响应。
Involved in the plant’s response to environmental stresses such as cold, heat, and salt stress.

Fig. 6

Spatiotemporal expression patterns of SiMTA1 A: relative expression levels of SiMTA1 at different development stages; B: relative expression levels of SiMTA1 in different tissues during the booting stage. Different lowercase letters indicate significant differences at P < 0.05."

Fig. 7

Relative expression levels of SiMTA1 under different abiotic stress treatments A: relative expression levels of SiMTA1 under salt stress; B: relative expression levels of SiMTA1 under drought stress; C: relative expression levels of SiMTA1 under 4℃ stress. Different lowercase letters indicate significant differences at P < 0.05."

Fig. 8

Relative expression levels of SiMTA1 under different hormone treatments A: relative expression levels of SiMTA1 under IAA treatment; B: relative expression levels of SiMTA1 under 6-BA treatment; C: relative expression levels of SiMTA1 under GA3 treatment; D: relative expression levels of SiMTA1 under ACC treatment; E: relative expression levels of SiMTA1 under NAA treatment. Different lowercase letters indicate significant differences at P < 0.05."

[1] Chmielowska-Bak J, Arasimowicz-Jelonek M, Deckert J. In search of the mRNA modification landscape in plants. BMC Plant Biol, 2019, 19: 421.
doi: 10.1186/s12870-019-2033-2 pmid: 31610789
[2] 张盼, 余永旭, 曹领改, 朱广兵, 吴伟, 郭玉双, 尹国英, 贾蒙骜. m6A甲基化修饰响应植物生物胁迫和非生物胁迫的研究进展. 园艺学报, 2023, 50: 1841-1853.
doi: 10.16420/j.issn.0513-353x.2022-0862
Zhang P, Yu Y X, Cao L G, Zhu G B, Wu W, Guo Y S, Yin G Y, Jia M A. Research progress of m6A methylation modification response to plant biotic and abiotic stresses. Acta Hortic Sin, 2023, 50: 1841-1853 (in Chinese with English abstract).
[3] Kennedy T D, Lane B G. Wheat embryo ribonucleates. XIII. Methyl-substituted nucleoside constituents and 5′-terminal dinucleotide sequences in bulk poly (AR)-rich RNA from imbibing wheat embryos. Can J Biochem, 1979, 57: 927-931.
pmid: 476526
[4] Haugland R A, Cline M G. Post-transcriptional modifications of oat coleoptile ribonucleic acids. 5'-Terminal capping and methylation of internal nucleosides in poly(A)-rich RNA. Eur J Biochem, 1980, 104: 271-277.
pmid: 6154573
[5] Luo G Z, MacQueen A, Zheng G Q, Duan H C, Dore L C, Lu Z K, Liu J, Chen K, Jia G F, Bergelson J, et al. Unique features of the m6A methylome in Arabidopsis thaliana. Nat Commun, 2014, 5: 5630.
[6] Dominissini D, Moshitch-Moshkovitz S, Schwartz S, Salmon- Divon M, Ungar L, Osenberg S, Cesarkas K, Jacob-Hirsch J, Amariglio N, Kupiec M, et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature, 2012, 485: 201-206.
[7] Meyer K D, Saletore Y, Zumbo P, Elemento O, Mason C E, Jaffrey S R. Comprehensive analysis of mRNA methylation reveals enrichment in 3' UTRs and near stop codons. Cell, 2012, 149: 1635-1646.
doi: 10.1016/j.cell.2012.05.003 pmid: 22608085
[8] Yue H, Nie X J, Yan Z G, Song W N. N6-methyladenosine regulatory machinery in plants: composition, function and evolution. Plant Biotechnol J, 2019, 17: 1194-1208.
doi: 10.1111/pbi.13149 pmid: 31070865
[9] Zhong S L, Li H Y, Bodi Z, Button J, Vespa L, Herzog M, Fray R G. MTA is an Arabidopsis messenger RNA adenosine methylase and interacts with a homolog of a sex-specific splicing factor. Plant Cell, 2008, 20: 1278-1288.
[10] Bodi Z, Zhong S L, Mehra S, Song J, Graham N, Li H Y, May S, Fray R G. Adenosine methylation in Arabidopsis mRNA is associated with the 3' end and reduced levels cause developmental defects. Front Plant Sci, 2012, 3: 48.
[11] Hu J Z, Manduzio S, Kang H. Epitranscriptomic RNA methylation in plant development and abiotic stress responses. Front Plant Sci, 2019, 10: 500.
doi: 10.3389/fpls.2019.00500 pmid: 31110512
[12] Lu L, Zhang Y, He Q, Qi Z X, Zhang G, Xu W C, Yi T, Wu G N, Li R L. MTA, an RNA m6A methyltransferase, enhances drought tolerance by regulating the development of trichomes and roots in poplar. Int J Mol Sci, 2020, 21: 2462.
[13] Hu J Z, Cai J, Park S J, Lee K, Li Y X, Chen Y, Yun J Y, Xu T, Kang H. N6-Methyladenosine mRNA methylation is important for salt stress tolerance in Arabidopsis. Plant J,, 2021, 106: 1759-1775.
[14] Huong T T, Ngoc L N T, Kang H. Functional characterization of a putative RNA demethylase ALKBH6 in Arabidopsis growth and abiotic stress responses. Int J Mol Sci, 2020, 21: 6707.
[15] 王庆国, 王莹莹, 李臻, 潘教文, 王一帆, 李颖秀, 刘炜. 水稻蛋白激酶基因启动子OsSRLp的分离及特性分析. 中国水稻科学, 2018, 32: 335-341.
doi: 10.16819/j.1001-7216.2018.7127
Wang Q G, Wang Y Y, Li Z, Pan J W, Wang Y F, Li Y X, Liu W. Isolation and characteristic analysis of protein kinase promoter OsSRLp from rice. Chin J Rice Sci, 2018, 32: 335-341 (in Chinese with English abstract).
[16] 胡廷章, 罗凯, 甘丽萍, 石汝杰. 植物基因启动子的类型及其应用. 湖北农业科学, 2007, 46(1): 149-151.
Hu T Z, Luo K, Gan L P, Shi R J. Classification and application of the plant gene promoters. Hubei Agric Sci, 2007, 46(1): 149-151 (in Chinese with English abstract).
[17] 王一帆, 潘教文, 李臻, 王庆国, 李颖秀, 管延安, 刘炜. 谷子胁迫诱导型启动子SiRLK35P的分离及生物信息学分析. 山东农业科学, 2017, 49(7): 7-11.
Wang Y F, Pan J W, Li Z, Wang Q G, Li Y X, Guan Y A, Liu W. Isolation and bioinformatics analysis of stress induced promoter SiRLK35P from foxtail millet. Shandong Agric Sci, 2017, 49(7): 7-11 (in Chinese with English abstract).
[18] Qin L, Chen E Y, Li F F, Yu X, Liu Z Y, Yang Y B, Wang R F, Zhang H W, Wang H L, Liu B, et al. Genome-wide gene expression profiles analysis reveal novel insights into drought stress in foxtail millet (Setaria italica L.). Int J Mol Sci, 2020, 21: 8520.
[19] Zhao Z Y, Tang S, Zhang Y M, Yue J J, Xu J Q, Tang W Q, Sun Y X, Wang R J, Diao X M, Zhang B W. Evolutionary analysis and functional characterization of SiBRI1 as a Brassinosteroid receptor gene in foxtail millet. BMC Plant Biol, 2021, 21: 291.
[20] 王庆国, 李臻, 刘炜, 潘教文. 应用定量蛋白质组学对谷子干旱响应蛋白的研究. 山东农业科学, 2018, 50(4): 1-8.
Wang Q G, Li Z, Liu W, Pan J W. Studies on drought-responsive proteins of foxtail millet by applying quantitative proteomic. Shandong Agric Sci, 2018, 50(4): 1-8 (in Chinese with English abstract).
[21] Xie L N, Chen M, Min D H, Feng L, Xu Z S, Zhou Y B, Xu D B, Li L C, Ma Y Z, Zhang X H. The NAC-like transcription factor SiNAC110 in foxtail millet (Setaria italica L.) confers tolerance to drought and high salt stress through an ABA independent signaling pathway. J Integr Agric, 2017, 16: 559-571.
doi: 10.1016/S2095-3119(16)61429-6
[22] Brutnell T P, Wang L, Swartwood K, Goldschmidt A, Jackson D, Zhu X G, Kellogg E, Van Eck J. Setaria viridis: a model for C4 photosynthesis. Plant Cell, 2010, 22: 2537-2544.
[23] Pan J W, Li Z, Wang Q G, Garrell A K, Liu M, Guan Y N, Zhou W Q, Liu W. Comparative proteomic investigation of drought responses in foxtail millet. BMC Plant Biol, 2018, 18: 315.
doi: 10.1186/s12870-018-1533-9 pmid: 30497407
[24] 孟凡花, 李臻, 王庆国, 刘炜. 谷子脂质转移蛋白基因SiLTP1的克隆及表达分析. 山东农业科学, 2021, 53(10): 1-7.
Meng F H, Li Z, Wang Q G, Liu W. Cloning and expression analysis of lipid transfer protein gene SiLTP1of foxtail millet. Shandong Agric Sci, 2021, 53(10): 1-7 (in Chinese with English abstract).
[25] Ye R Q, Wang W, Iki T, Liu C, Wu Y, Ishikawa M, Zhou X P, Qi Y J. Cytoplasmic assembly and selective nuclear import of Arabidopsis Argonaute4/siRNA complexes. Mol Cell, 2012, 46: 859-870.
[26] Bujnicki J M, Feder M, Radlinska M, Blumenthal R M. Structure prediction and phylogenetic analysis of a functionally diverse family of proteins homologous to the MT-A70 subunit of the human mRNA: m6A methyltransferase. J Mol Evol, 2002, 55: 431-444.
doi: 10.1007/s00239-002-2339-8 pmid: 12355263
[27] Luo Q, Mo J Z, Chen H, Hu Z T, Wang B H, Wu J B, Liang Z Y, Xie W H, Du K X, Peng M L, et al. Structural insights into molecular mechanism for N6-adenosine methylation by MT-A70 family methyltransferase METTL4. Nat Commun, 2022, 13: 5636.
[28] 房孝良, 刘炜, 安静, 王庆国. 水稻种胚特异性启动子OsESP1的克隆及其表达特性. 作物学报, 2011, 37: 1904-1909.
doi: 10.3724/SP.J.1006.2011.01904
Fang X L, Liu W, An J, Wang Q G. Isolation and characterization of an embryo-specific promoter OsESP1from rice. Acta Agron Sin, 2011, 37: 1904-1909 (in Chinese with English abstract).
[29] 杨春霞, 陈英, 黄敏仁, 李火根. 拟南芥逆境诱导型启动子rd29A的克隆及活性检测. 南京林业大学学报(自然科学版), 2008, 32(1): 6-10.
Yang C X, Chen Y, Huang M R, Li H G. Cloning of stress- inducible promoter rd29A from Arabidopsis thaliana and its activity detection in transgenic tobacco. J Nanjing For Univ (Nat Sci Edn), 2008, 32(1): 6-10 (in Chinese with English abstract).
[30] 姜骁, 吴拥军, 杨亚, 赵杰宏. 烟草钾外流通道基因NTORK1的启动子克隆及激素诱导分析. 江苏农业学报, 2016, 32(2): 274-277.
Jiang X, Wu Y J, Yang Y, Zhao J H. Cloning and phytohormone induction of the promotor of potassium outward channel gene NTORK1 from tobacco. Jiangsu J Agric Sci, 2016, 32(2): 274-277 (in Chinese with English abstract).
[31] Bokar J A, Shambaugh M E, Polayes D, Matera A G, Rottman F M. Purification and cDNA cloning of the AdoMet-binding subunit of the human mRNA (N6-adenosine)-methyltransferase. RNA, 1997, 3: 1233-1247.
pmid: 9409616
[32] Scutenaire J, Deragon J M, Jean V, Benhamed M, Raynaud C, Favory J J, Merret R, Bousquet-Antonelli C. The YTH domain protein ECT 2 is an m6A reader required for normal trichome branching in Arabidopsis. Plant Cell, 2018, 30: 986-1005.
[33] Luo J H, Guo T, Wang M, Liu J H, Zheng L M, He Y. RNA m6A modification facilitates DNA methylation during maize kernel development. Plant Physiol, 2024, 194: 2165-2182.
[1] WANG Ruo-Nan, ZHANG Ying-Xing, YU Xiao-Han, LIU Shao-Xiong, WANG Yue, XUE Ya-Peng, XIN Xu-Xia, ZHANG Li, LIU Min-Xuan. Near-infrared spectroscopic evaluation of starch diversity and model construction in foxtail millet [J]. Acta Agronomica Sinica, 2025, 51(7): 1757-1768.
[2] LIANG Hong-Kai, ZHAO Su-Meng, LU Qiong, ZHOU Peng, ZHI Hui, DIAO Xian-Min, HE Qiang. A mini-core collection of foxtail millet [J]. Acta Agronomica Sinica, 2025, 51(6): 1435-1444.
[3] GUO Bing, QIN Jia-Fan, LI Na, SONG Meng-Yao, WANG Li-Ming, LI Jun-Xia, MA Xiao-Qian. Genome-wide identification and expression analysis of SHMT gene family in foxtail millet (Setaria italica L.) [J]. Acta Agronomica Sinica, 2025, 51(3): 586-5897.
[4] WANG Yuan, XU Jia-Yin, DONG Er-Wei, WANG Jin-Song, LIU Qiu-Xia, HUANG Xiao-Lei, JIAO Xiao-Yan. Effects of manure replacement of chemical fertilizer nitrogen on yield, nitrogen accumulation, and quality of foxtail millet [J]. Acta Agronomica Sinica, 2025, 51(1): 149-160.
[5] MENG Fan-Hua, LIU Min, SHEN Ao, LIU Wei. Preliminary investigation of the SiLTP1: a lipid transfer protein gene involved in the salt tolerance of foxtail millet [J]. Acta Agronomica Sinica, 2025, 51(1): 58-67.
[6] YAN Feng, DONG Yang, LI Qing-Quan, ZHAO Fu-Yang, HOU Xiao-Min, LIU Yang, LI Qing-Chao, ZHAO Lei, FAN Guo-Quan, LIU Kai. Comprehensively evaluation on cold tolerance of foxtail millet varieties at germination stage [J]. Acta Agronomica Sinica, 2024, 50(9): 2207-2218.
[7] QIN Na, YE Zhen-Yan, ZHU Can-Can, FU Sen-Jie, DAI Shu-Tao, SONG Ying-Hui, JING Ya, WANG Chun-Yi, LI Jun-Xia. QTL mapping for flavonoid content and seed color in foxtail millet [J]. Acta Agronomica Sinica, 2024, 50(7): 1719-1727.
[8] LI Bo-Yang, YE Yin, CHU Rui-Wen, JING Miao, ZHANG Sui-Qi, YAN Jia-Kun. Effects of biochar application on dry matter accumulation, transport, and distribution of foxtail millet and soil physicochemical properties [J]. Acta Agronomica Sinica, 2024, 50(3): 695-708.
[9] DIAO Xian-Min, WANG Li-Wei, ZHI Hui, ZHANG Jun, LI Shun-Guo, CHENG Ru-Hong. Development, genetic deciphering, and breeding utilization of dwarf lines in foxtail millet [J]. Acta Agronomica Sinica, 2024, 50(2): 265-279.
[10] YANG Shi-Jie, WANG Hua-Zhi, PAN Yi-Min, HUANG Rui, HOU Sen, QIN Hui-Bin, MU Zhi-Xin, WANG Hai-Gang. Genome-wide association analysis for plant height in foxtail millet (Setaria italica L.) germplasm resources in Shanxi, China [J]. Acta Agronomica Sinica, 2024, 50(12): 2984-2997.
[11] XUE Ya-Peng, XIN Xu-Xia, WANG Ruo-Nan, YU Xiao-Han, LIU Shao-Xiong, WANG Rui-Yun, LIU Min-Xuan. Analysis of agronomic, quality traits and genetic diversity of domestic and foreign foxtail millet resources [J]. Acta Agronomica Sinica, 2024, 50(10): 2468-2482.
[12] DAI Shu-Tao, ZHU Can-Can, MA Xiao-Qian, QIN Na, SONG Ying-Hui, WEI Xin, WANG Chun-Yi, LI Jun-Xia. Genome-wide identification of the HAK/KUP/KT potassium transporter family in foxtail millet and its response to K+ deficiency and high salt stress [J]. Acta Agronomica Sinica, 2023, 49(8): 2105-2121.
[13] WAN Yi-Man, XIAO Sheng-Hui, BAI Yi-Chao, FAN Jia-Yin, WANG Yan, WU Chang-Ai. Establishment and optimization of a high-efficient hairy-root system in foxtail millet (Setaria italica L.) [J]. Acta Agronomica Sinica, 2023, 49(7): 1758-1768.
[14] LIU Jia, ZOU Xiao-Yue, MA Ji-Fang, WANG Yong-Fang, DONG Zhi-Ping, LI Zhi-Yong, BAI Hui. Genome-wide identification and characterization of MAPK genes and their response to biotic stresses in foxtail millet [J]. Acta Agronomica Sinica, 2023, 49(6): 1480-1495.
[15] WANG Rong, CHEN Xiao-Hong, WANG Qian, LIU Shao-Xiong, LU Ping, DIAO Xian-Min, LIU Min-Xuan, WANG Rui-Yun. Genetic diversity and genetic relationship of Chinese traditional foxtail millet accessions [J]. Acta Agronomica Sinica, 2022, 48(8): 1914-1925.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] XING Guang-Nan, ZHOU Bin, ZHAO Tuan-Jie, YU De-Yue, XING Han, HEN Shou-Yi, GAI Jun-Yi. Mapping QTLs of Resistance to Megacota cribraria (Fabricius) in Soybean[J]. Acta Agronomica Sinica, 2008, 34(03): 361 -368 .