ZHANG Wen,LI Yu,WANG Chuang,SHI Lei,DING Guang-Da*#br#
[1] 张俊伶. 植物营养学. 北京: 中国农业大学出版社, 2021. [2] Holford I C R. Soil phosphorus: its measurement, and its uptake by plants. Soil Res, 1997, 35: 227. [3] Paz-Ares J, Puga M I, Rojas-Triana M, Martinez-Hevia I, Diaz S, Poza-Carrión C, Miñambres M, Leyva A. Plant adaptation to low phosphorus availability: core signaling, crosstalks, and applied implications. Mol Plant, 2022, 15: 104–124. [4] Wang Y, Wang F, Lu H, Liu Y, Mao C Z. Phosphate uptake and transport in plants: an elaborate regulatory system. Plant Cell Physiol, 2021, 62: 564–572. [5] Victor Roch G, Maharajan T, Ceasar S A, Ignacimuthu S. The role of PHT1 family transporters in the acquisition and redistribution of phosphorus in plants. Crit Rev Plant Sci, 2019, 38: 171–198. [6] Muchhal U S, Pardo J M, Raghothama K G. Phosphate transporters from the higher plant Arabidopsis thaliana. Proc Natl Acad Sci USA, 1996, 93: 10519–10523. [7] Shin H, Shin H S, Dewbre G R, Harrison M J. Phosphate transport in Arabidopsis: Pht1;1 and Pht1;4 play a major role in phosphate acquisition from both low- and high-phosphate environments. Plant J, 2004, 39: 629–642. [8] Rausch C, Bucher M. Molecular mechanisms of phosphate transport in plants. Planta, 2002, 216: 23–37.
[9] 董旭, 王雪, 石磊, 蔡红梅, 徐芳森, 丁广大. 植物磷转运子PHT1家族研究进展. 植物营养与肥料学报, 2017, 23: 799–810. [10] Sun S B, Gu M, Cao Y, Huang X P, Zhang X, Ai P H, Zhao J N, Fan X R, Xu G H. A constitutive expressed phosphate transporter, OsPht1;1, modulates phosphate uptake and translocation in phosphate-replete rice. Plant Physiol, 2012, 159: 1571–1581. [11] Chalhoub B, Denoeud F, Liu S Y, Parkin I A P, Tang H B, Wang X Y, Chiquet J, Belcram H, Tong C B, Samans B, et al. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science, 2014, 345: 950–953. [12] Li Y, Wang X, Zhang H, Wang S L, Ye X S, Shi L, Xu F S, Ding G D. Molecular identification of the phosphate transporter family 1 (PHT1) genes and their expression profiles in response to phosphorus deprivation and other abiotic stresses in Brassica napus. PLoS One, 2019, 14: e0220374. [13] Li Y, Wang X, Zhang H, Ye X S, Shi L, Xu F S, Ding G D. Phosphate transporter BnaPT37 regulates phosphate homeostasis in Brassica napus by changing its translocation and distribution in vivo. Plants, 2023, 12: 3362.
[14] 刘成, 冯中朝, 肖唐华, 马晓敏, 周广生, 黄凤洪, 李加纳, 王汉中. 我国油菜产业发展现状、潜力及对策. 中国油料作物学报, 2019, 41: 485–489.
[15] 李银水, 鲁剑巍, 廖星, 邹娟, 李小坤, 余常兵, 马常宝, 高祥照. 磷肥用量对油菜产量及磷素利用效率的影响. 中国油料作物学报, 2011, 33: 52–56. [16] 付蓉, 袁久东, 胥婷婷, 徐倩, 张洋, 张荣, 田汇, 高亚军. 不同施磷量对春油菜产量和土壤磷素平衡的影响. 应用生态学报, 2021, 32: 906–912. Fu R, Yuan J D, Xu T T, Xu Q, Zhang Y, Zhang R, Tian H, Gao Y J. Effects of different phosphorus application rates on spring rapeseed yield and soil phosphorus balance. Chin J Appl Ecol, 2021, 32: 906–912 (in Chinese with English abstract). [17] Han B, Wang C, Wu T, Yan J J, Jiang A S, Liu Y, Luo Y, Cai H M, Ding G D, Dong X, et al. Identification of vacuolar phosphate influx transporters in Brassica napus. Plant Cell Environ, 2022, 45: 3338–3353. [18] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2 (−Delta Delta C(T)) method. Methods, 2001, 25: 402–408. [19] Han B, Yan J J, Wu T, Yang X Y, Wang Y J, Ding G D, John P H, Wang C, Xu F S, Wang S L, et al. Proteomics reveals the significance of vacuole Pi transporter in the adaptability of Brassica napus to Pi deprivation. Front Plant Sci, 2024, 15: 1340867.
[20] 邓素仁. 分泌型酸性磷酸酶OsPAP10a和OsPAP10c调控水稻缺磷适应性的机制研究. 华中农业大学博士学位论文, 湖北武汉, 2022. [21] 高俊凤. 植物生理学实验指导. 北京: 北京高等教育出版社, 2006. Gao J F. Laboratory Manual for Plant Physiology. Beijing: Beijing Higher Education Press, 2006 (in Chinese).
[22] 王雪. 甘蓝型油菜响应低磷胁迫的转录组差异及PHT1磷转运蛋白家族解析. 华中农业大学硕士学位论文, 湖北武汉, 2018. [23] Mudge S R, Rae A L, Diatloff E, Smith F W. Expression analysis suggests novel roles for members of the Pht1 family of phosphate transporters in Arabidopsis. Plant J, 2002, 31: 341–353. [24] Karandashov V, Bucher M. Symbiotic phosphate transport in arbuscular mycorrhizas. Trends Plant Sci, 2005, 10: 22–29. [25] Qin L, Guo Y X, Chen L Y, Liang R K, Gu M, Xu G H, Zhao J, Walk T, Liao H. Functional characterization of 14 Pht1 family genes in yeast and their expressions in response to nutrient starvation in soybean. PLoS One, 2012, 7: e47726. [26] Ayadi A, David P, Arrighi J F, Chiarenza S, Thibaud M C, Nussaume L, Marin E. Reducing the genetic redundancy of Arabidopsis PHOSPHATE TRANSPORTER1 transporters to study phosphate uptake and signaling. Plant Physiol, 2015, 167: 1511–1526. [27] Wang X F, Wang Y F, Piñeros M A, Wang Z Y, Wang W X, Li C Y, Wu Z C, Kochian L V, Wu P. Phosphate transporters OsPHT1;9 and OsPHT1;10 are involved in phosphate uptake in rice. Plant Cell Environ, 2014, 37: 1159–1170. [28] Chien P S, Chao Y T, Chou C H, Hsu Y Y, Chiang S F, Tung C W, Chiou T J. Phosphate transporter PHT1;1 is a key determinant of phosphorus acquisition in Arabidopsis natural accessions. Plant Physiol, 2022, 190: 682–697. [29] Dai C R, Dai X L, Qu H Y, Men Q, Liu J Y, Yu L, Gu M, Xu G H. The rice phosphate transporter OsPHT1;7 plays a dual role in phosphorus redistribution and anther development. Plant Physiol, 2022, 188: 2272–2288. |
[1] | GUO Teng-Da, CUI Meng-Jie, CHEN Lin-Jie, HAN Suo-Yi, GUO Jing-Kun, WU Chen-Di, FU Liu-Yang, HUANG Bing-Yan, DONG Wen-Zhao, ZHANG Xin-You. Cloning and expression analysis of the phosphatidylinositol transfer protein AhSFH gene in peanuts responsive to Aspergillus flavus infection [J]. Acta Agronomica Sinica, 2025, 51(6): 1489-1500. |
[2] | LI Yan, FANG Yu-Hui, WANG Yong-Xia, PENG Chao-Jun, HUA Xia, QI Xue-Li, HU Lin, XU Wei-Gang. Transcriptomics profile of transgenic OsPHR2 wheat under different phosphorus stress [J]. Acta Agronomica Sinica, 2024, 50(2): 340-353. |
[3] | WANG Li-Ping, WANG Xiao-Yu, FU Jing-Ye, WANG Qiang. Functional identification of maize transcription factor ZmMYB12 to enhance drought resistance and low phosphorus tolerance in plants [J]. Acta Agronomica Sinica, 2024, 50(1): 76-88. |
[4] | KE Hui-Feng, ZHANG Zhen, GU Qi-Shen, ZHAO Yan, LI Pei-Yu, ZHANG Dong-Mei, CUI Yan-Ru, WANG Xing-Fen, WU Li-Qiang, ZHANG Gui-Yin, MA Zhi-Ying, SUN Zheng-Wen. Genome-wide association study of root biomass related traits at seeding stage under low phosphorus stress in cotton (Gossypium hirsutum L.) [J]. Acta Agronomica Sinica, 2022, 48(9): 2168-2179. |
[5] | Rui-Juan YANG,Jian-Rong BAI,Lei YAN,Liang SU,Xiu-Hong WANG,Rui LI,Cong-Zhuo ZHANG. Cloning and Expression Analysis of Strong Inducible Promoter P1502-ZmPHR1 Responding to Low Phosphorus Stress in Maize [J]. Acta Agronomica Sinica, 2018, 44(7): 1000-1009. |
[6] | CHEN Xue-Ping**,JING Ling-Yun**,WANG Jia,JIAN Hong-Ju,MEI Jia-Qin,XU Xin-Fu,LI Jia-Na,LIU Lie-Zhao*. Correlation Analysis of Sclerotinia Resistance with Lignin Content and Monomer G/S and its QTL Mapping in Brassica napus L. [J]. Acta Agron Sin, 2017, 43(09): 1280-1289. |
[7] | HOU Lin-Tao,WANG Teng-Yue,JIAN Hong-Ju,WANG Jia,LI Jia-Na,LIU Lie-Zhao. QTL Mapping for Seedling Dry Weight and Fresh Weight under Salt Stress and Candidate Genes Analysis in Brassica napus L. [J]. Acta Agron Sin, 2017, 43(02): 179-189. |
[8] | LU Kun,Shen Ge-Zi,LIANG Ying,FU Ming-Lian,HE Bin,TIE Lin-Mei,ZHANG Ye, PENG Liu,LI Jia-Na. Analysis of Yield Components with High Harvest Index in Brassica napusunder Environments Fitting Different Yield Levels [J]. Acta Agron Sin, 2017, 43(01): 82-96. |
[9] | WANG Wen-Xiang,HU Qiong,MEI De-Sheng,LI Yun-Chang,ZHOU Ri-Jin,WANG Hui,CHENG Hong-Tao,FU Li,LIU Jia*. Genetic Effects of Branch Angle Using Mixture Model of Major Gene Plus Polygene in Brassica napus L. [J]. Acta Agron Sin, 2016, 42(08): 1103-1111. |
[10] | TAN Tai-Long,FENG Tao,LUO Hai-Yan,PENG Ye,LIU Rui-Yang,GUAN Chun-Yun. Cloning and Characterization of Phospholipids:Diacylglycerol Acyltransferase (BnPDAT1) cDNA from Brassica napus L. [J]. Acta Agron Sin, 2016, 42(05): 658-666. |
[11] | KUAI Jie,DU Xue-Zhu,HU Man,ZENG Jiang-Xue,ZUO Qing-Song,WU Jiang-Sheng,ZHOU Guang-Sheng. Effect of Symbiosis Periods and Plant Densities on Growth and Yield of Rapeseed Intercropping Cotton [J]. Acta Agron Sin, 2016, 42(04): 591-599. |
[12] | LU Kun,QU Cun-Min,LI Sha,ZHAO Hui-Yan,WANG Rui,XU Xin-Fu,LIANG Ying,LI Jia-Na. Expression Analysis and eQTL Mapping of BnTT3 Gene in Brassica napus L. [J]. Acta Agron Sin, 2015, 41(11): 1758-1766. |
[13] | JIAO Cong-Cong,HUANG Ji-Xiang,WANG Yi-Long,ZHANG Xiao-Yu,XIONG Hua-Xin,NI Xi-Yuan,ZHAO Jian-Yi. Genetic Analysis of Yield-Associated Traits by Unconditional and Conditional QTL in Brassica napus [J]. Acta Agron Sin, 2015, 41(10): 1481-1489. |
[14] | TANG Min-Qiang,CHENG Xiao-Hui,TONG Chao-Bo,LIU Yue-Ying,ZHAO Chuan-Ji,DONG Cai-Hua,YU Jing-Yin,MA Xiao-Gen,HUANG Jun-Yan,LIU Sheng-Yi. Genome-wide Association Analysis of Plant Height in Rapeseed (Brassica napus) [J]. Acta Agron Sin, 2015, 41(07): 1121-1126. |
[15] | WANG Jia,JING Ling-Yun,JIAN Hong-Ju,QU Cun-Min,CHEN Li,LI Jia-Na,LIU Lie-Zhao. Quantitative Trait Loci Mapping for Plant Height, the First Branch Height, and Branch Number and Possible Candidate Genes Screening in Brassica napus L. [J]. Acta Agron Sin, 2015, 41(07): 1027-1038. |
|