|
[1] 田静, 程须珍, 范保杰, 等. 我国绿豆品种现状及发展趋势. 作物杂志, 2021, (6): 15–21.
Tian J, Cheng X Z, Fan B J, et al. Current situation and development trend of mung bean varieties in China. Crops, 2021, (6): 15–21 (in Chinese with English abstract).
[2] 石少龙. 绿豆产业待新篇: 杂粮系列谈之七. 中国粮食经济, 2024, (11): 78–79.
Shi S L. A new chapter of mung bean industry: talking about the series of miscellaneous grains (7). China Grain Econ, 2024, (11): 78–79 (in Chinese with English abstract).
[3] 陆宝金, 田生昌, 左忠, 等. 盐渍化土地可持续利用研究综述及展望. 宁夏大学学报(自然科学版), 2023, 44(1): 79–88.
Lu B J, Tian S C, Zuo Z, et al. Review and prospect on sustainable utilization of salinized land. J Ningxia Univ (Nat Sci Edn), 2023, 44(1): 79–88 (in Chinese with English abstract).
[4] 胡亮亮, 王素华, 王丽侠, 等. 绿豆种质资源苗期耐盐性鉴定及耐盐种质筛选. 作物学报, 2022, 48: 367–379.
Hu L L, Wang S H, Wang L X, et al. Identification of salt tolerance and screening of salt tolerant germplasm of mung bean (Vigna radiate L.) at seedling stage. Acta Agron Sin, 2022, 48: 367–379 (in Chinese with English abstract).
[5] 邓立成, 李程, 赫磊, 等. 耐盐南粳品种苗期盐胁迫应答的生理特性及其耐盐相关基因分析. 中国农业科学, 2025, 58: 2275–2290.
Deng L C, Li C, He L, et al. Physiological characteristics in response to salt stress and allelic variation and expression of salt-responsive genes in seedling stage of Nangeng rice varieties with salt-tolerance ability. Sci Agric Sin, 2025, 58: 2275–2290 (in Chinese with English abstract).
[6] 袁宇婷, 张晓燕, 吴谷丰, 等. 基于主成分和隶属函数分析的大豆种质资源耐盐性综合评价. 大豆科学, 2025, 44(1): 22–32.
Yuan Y T, Zhang X Y, Wu G F, et al. Comprehensive evaluation of salt tolerance of soybean germplasm resources based on principal component and membership function analysis. Soybean Sci, 2025, 44(1): 22–32 (in Chinese with English abstract).
[7] Wicke B, Smeets E, Dornburg V, et al. Correction: The global technical and economic potential of bioenergy from salt-affected soils. Energy Environ Sci, 2020, 13: 2585.
[8] 于崧, 梁海芸, 郭潇潇, 等. 不同基因型绿豆苗期耐盐碱性分析及其鉴定指标的筛选. 干旱地区农业研究, 2018, 36(4): 223–232.
Yu S, Liang H Y, Guo X X, et al. Analysis of saline-alkaline tolerance and determination of saline-alkaline tolerance evaluation indicators in seedling stage of different mung bean genotypes. Agric Res Arid Areas, 2018, 36(4): 223–232 (in Chinese with English abstract).
[9] 孙振雷, 刘鹏, 叶柏军, 等. 绿豆种子萌发及苗期抗盐性的研究. 内蒙古民族大学学报(自然科学版), 2001, 16(1): 31–38.
Sun Z L, Liu P, Ye B J, et al. Study on germination of mung bean seeds and salt resistance in seedling stage. J Inner Mongolia Teach (Nat Nat Sci), 2001, 16(1): 31–38 (in Chinese with English abstract).
[10] 任建华, 高平平, 乔燕祥, 等. 绿豆幼苗期耐盐性研究. 山西农业科学, 1994, 22(2): 20–24.
Ren J H, Gao P P, Qiao Y X, et al. A study on salt tolerance of mung bean in seedling stage. J Shanxi Agric Sci, 1994, 22(2): 20–24 (in Chinese with English abstract).
[11] Mishra S, Alavilli H, Lee B H, et al. Cloning and functional characterization of a vacuolar Na+/H+ antiporter gene from mung bean (VrNHX1) and its ectopic expression enhanced salt tolerance in Arabidopsis thaliana. PLoS One, 2014, 9: e106678.
[12] Kumar S, Kalita A, Srivastava R, et al. Co-expression of Arabidopsis NHX1 and bar improves the tolerance to salinity, oxidative stress, and herbicide in transgenic mung bean. Front Plant Sci, 2017, 8: 1896.
[13] Xu W Y, Liu T, Zhang H Y, et al. Mung bean DIRIGENT gene subfamilies and their expression profiles under salt and drought stresses. Front Genet, 2021, 12: 658148.
[14] Liu J Y, Xue C C, Lin Y, et al. Genetic analysis and identification of VrFRO8, a salt tolerance-related gene in mung bean. Gene, 2022, 836: 146658.
[15] 孙璐, 周宇飞, 汪澈, 等. 高粱品种萌发期耐盐性筛选与鉴定. 中国农业科学, 2012, 45: 1714–1722.
Sun L, Zhou Y F, Wang C, et al. Screening and identification of sorghum cultivars for salinity tolerance during germination. Sci Agric Sin, 2012, 45: 1714–1722 (in Chinese with English abstract).
[16] 李诗晴, 王素华, 张耀文, 等. 769份绿豆种质资源萌发期耐盐性鉴定. 植物遗传资源学报, 2025, 26: 672–682.
Li S Q, Wang S H, Zhang Y W, et al. Salt tolerance identification of 769 mung bean germplasm at germination stage. J Plant Genet Resour, 2025, 26: 672–682 (in Chinese with English abstract).
[17] 程须珍, 王素华, 王丽侠. 绿豆种质资源描述规范和数据标准. 北京: 中国农业出版社, 2006.
Cheng X Z, Wang S H, Wang L X. Descriptors and Data Standard for Mung bean (Vigna radiata (L.) Wilczek). Beijing: China Agriculture Press, 2006 (in Chinese).
[18] Smith D S, Maxwell P W, De Boer S H. Comparison of several methods for the extraction of DNA from potatoes and potato-derived products. J Agric Food Chem, 2005, 53: 9848–9859.
[19] Chen S F, Zhou Y Q, Chen Y R, et al. Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics, 2018, 34: i884–i890.
[20] Pei S R, Liu T, Ren X, et al. Benchmarking variant callers in next-generation and third-generation sequencing analysis. Brief Bioinform, 2021, 22: bbaa148.
[21] Huang M, Liu X L, Zhou Y, et al. BLINK: a package for the next level of genome-wide association studies with both individuals and markers in the millions. Gigascience, 2019, 8: giy154.
[22] Yang N, Lu Y L, Yang X H, et al. Genome wide association studies using a new nonparametric model reveal the genetic architecture of 17 agronomic traits in an enlarged maize association panel. PLoS Genet, 2014, 10: e1004573.
[23] Li H, Peng Z Y, Yang X H, et al. Genome-wide association study dissects the genetic architecture of oil biosynthesis in maize kernels. Nat Genet, 2013, 45: 43–50.
[24] Zhang R L, Jia G Q, Diao X M. GeneHapR: an R package for gene haplotypic statistics and visualization. BMC Bioinfor, 2023, 24: 199.
[25] 焦广音, 任建华, 逯贵生, 等. 绿豆品种资源耐盐性鉴定与研究. 作物品种资源, 1997, (2): 38–40.
Jiao G Y, Ren J H, Lu G S, et al. Identification and study on salt tolerance of mung bean variety resources. China Seed Ind, 1997, (2): 38–40 (in Chinese).
[26] 时会影, 范保杰, 刘长友, 等. 绿豆耐盐性研究进展. 植物遗传资源学报, 2022, 23: 1594–1603.
Shi H Y, Fan B J, Liu C Y, et al. Research progress of salt tolerance in mung bean (Vigna radiata L.). J Plant Genet Resour, 2022, 23: 1594–1603 (in Chinese with English abstract).
[27] 戴海芳, 武辉, 阿曼古丽·买买提阿力, 等. 不同基因型棉花苗期耐盐性分析及其鉴定指标筛选. 中国农业科学, 2014, 47: 1290–1300.
Dai H F, Wu H, Maimaitiali A, et al. Analysis of salt-tolerance and determination of salt-tolerant evaluation indicators in cotton seedlings of different genotypes. Sci Agric Sin, 2014, 47: 1290–1300 (in Chinese with English abstract).
[28] 慈敦伟, 张智猛, 丁红, 等. 花生苗期耐盐性评价及耐盐指标筛选. 生态学报, 2015, 35: 805–814.
Ci D W, Zhang Z M, Ding H, et al. Evaluation and selection indices of salinity tolerance in peanut seedling. Acta Ecol Sin, 2015, 35: 805–814 (in Chinese with English abstract).
[29] 刘谢香, 常汝镇, 关荣霞, 等. 大豆出苗期耐盐性鉴定方法建立及耐盐种质筛选. 作物学报, 2020, 46: 1–8.
Liu X X, Chang R Z, Guan R X, et al. Establishment of screening method for salt tolerant soybean at emergence stage and screening of tolerant germplasm. Acta Agron Sin, 2020, 46: 1–8 (in Chinese with English abstract).
[30] Aski M S, Rai N, Reddy V R P, et al. Assessment of root phenotypes in mungbean mini-core collection (MMC) from the World Vegetable Center (AVRDC) Taiwan. PLoS One, 2021, 16: e0247810.
[31] 许政晗. 9个春玉米杂交种全生育期耐盐性评价. 内蒙古农业大学硕士学位论文, 内蒙古呼和浩特, 2024.
Xu Z H. Evaluation of Salt Tolerance of 9 Spring Maize Hybrids in the Whole Growth Period. MS Thesis of Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China, 2024 (in Chinese with English abstract).
[32] Huang Y Y, Zhou J H, Li Y X, et al. Salt stress promotes abscisic acid accumulation to affect cell proliferation and expansion of primary roots in rice. Int J Mol Sci, 2021, 22: 10892.
[33] Bischoff V, Selbig J, Scheible W R. Involvement of TBL/DUF231 proteins into cell wall biology. Plant Signal Behav, 2010, 5: 1057–1059.
[34] Yuan Y X, Teng Q, Zhong R Q, et al. Roles of Arabidopsis TBL34 and TBL35 in xylan acetylation and plant growth. Plant Sci, 2016, 243: 120–130.
[35] Endler A, Kesten C, Schneider R, et al. A mechanism for sustained cellulose synthesis during salt stress. Cell, 2015, 162: 1353–1364.
[36] Ma Q, Su C X, Dong C H. Genome-wide transcriptomic and proteomic exploration of molecular regulations in quinoa responses to ethylene and salt stress. Plants, 2021, 10: 2281.
[37] Bird D, Beisson F, Brigham A, et al. Characterization of Arabidopsis ABCG11/WBC11, an ATP binding cassette (ABC) transporter that is required for cuticular lipid secretion. Plant J, 2007, 52: 485–498.
[38] Panikashvili D, Shi J X, Bocobza S, et al. The Arabidopsis DSO/ABCG11 transporter affects cutin metabolism in reproductive organs and suberin in roots. Mol Plant, 2010, 3: 563–575.
[39] Kim D Y, Jin J Y, Alejandro S, et al. Overexpression of AtABCG36 improves drought and salt stress resistance in Arabidopsis. Physiol Plant, 2010, 139: 170–180.
[40] Zhang Z L, Tong T, Fang Y X, et al. Genome-wide identification of barley ABC genes and their expression in response to abiotic stress treatment. Plants, 2020, 9: 1281.
[41] Himelblau E, Mira H, Lin S J, et al. Identification of a functional homolog of the yeast copper homeostasis gene ATX1 from Arabidopsis. Plant Physiol, 1998, 117: 1227–1234.
[42] Wang Y Y, Cao Y B, Liang X Y, et al. A dirigent family protein confers variation of Casparian strip thickness and salt tolerance in maize. Nat Commun, 2022, 13: 2222.
[43] 刘晓, 刘晓红, 宋姝, 等. 盐碱胁迫下植物体内离子平衡调控的机制. 植物生理学报, 2023, 59: 715–726.
Liu X, Liu X H, Song S, et al. Regulation of ion homeostasis for salinity tolerance in plants. Plant Physiol J, 2023, 59: 715–726 (in Chinese with English abstract).
[44] Waszczak C, Carmody M, Kangasjärvi J. Reactive oxygen species in plant signaling. Annu Rev Plant Biol, 2018, 69: 209–236.
[45] Puig S, Andrés-colás N, García-molina A, et al. Copper and iron homeostasis in Arabidopsis: responses to metal deficiencies, interactions and biotechnological applications. Plant Cell Environ, 2007, 30: 271–290.
[46] Puig S, Mira H, Dorcey E, et al. Higher plants possess two different types of ATX1-like copper chaperones. Biochem Biophys Res Commun, 2007, 354: 385–390.
|