Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica

   

Evaluation of salt tolerance at the seedling stage and related gene mining in mung bean germplasm resources

Li Shi-Qing1,2,Wang Qian2,Wang Su-Hua1,Zhang Yao-Wen2,Wang Li-Xia1,*   

  1. 1 National Key Laboratory of Crop Gene Resources and Breeding / Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; 2 College of Agronomy, Shanxi Agricultural University, Taigu 030801, Shanxi, China
  • Received:2025-05-16 Revised:2025-10-30 Accepted:2025-10-30 Published:2025-11-12
  • Contact: 王丽侠, E-mail: wanglixia03@caas.cn E-mail:leesqaq@163.com
  • Supported by:
    This study was supported by the National Key Research & Development Program of China (2023YFD1200705, 2019YFD1001303), the National Natural Science Foundation of China (32241042), and the China Agriculture Research System of MOF and MARA (CARS-08).

Abstract: Soil salinization poses a serious threat to agricultural production. Exploring salt-tolerant germplasm in mung bean is crucial for the effective utilization of saline-alkali soils in China and for promoting the sustainable development of the mung bean industry. In this study, 200 mung bean germplasm accessions were evaluated for salt tolerance (150 mmol L?1 NaCl) at the seedling stage based on 13 phenotypic traits, including plant height, above-ground fresh weight, and root fresh weight. The results showed that the salt tolerance coefficient for root length per unit volume was the highest (0.806), while that for root branching was the lowest (0.591). Significant differences were observed among germplasms in their responses to salt stress, particularly in root dry weight, root length per unit volume, and root fresh weight. Based on salt damage symptoms, 16 highly salt-tolerant and 12 highly salt-sensitive germplasms were identified, with the highest proportion of salt-tolerant accessions found in the North China region. A genome-wide association study (GWAS) based on resequencing data identified 67 SNP loci significantly associated with salt tolerance, corresponding to 348 candidate genes, of which 99 had annotated functions. Among these, Vradi04g09980, Vradi01g06290, and Vradi08g02890 were validated through haplotype analysis as potentially associated with salt tolerance at the seedling stage. These findings provide a valuable foundation for the genetic improvement of salt tolerance in mung bean and for further elucidating the underlying regulatory mechanisms.

Key words: mung bean, seedling stage, salt tolerance, genome-wide association study (GWAS), germplasm resources, haplotype 

[1] 田静, 程须珍, 范保杰, . 我国绿豆品种现状及发展趋势. 作物杂志, 2021, (6): 1521.

Tian J, Cheng X Z, Fan B J, et al. Current situation and development trend of mung bean varieties in China. Crops, 2021, (6): 15–21 (in Chinese with English abstract).

[2] 石少龙. 绿豆产业待新篇: 杂粮系列谈之七. 中国粮食经济, 2024, (11): 7879.
Shi S L. A new chapter of mung bean industry: talking about the series of miscellaneous grains (7). China Grain Econ, 2024, (11): 78–79 (in Chinese with English abstract).

[3] 陆宝金, 田生昌, 左忠, . 盐渍化土地可持续利用研究综述及展望. 宁夏大学学报(自然科学版), 2023, 44(1): 79–88.
Lu B J, Tian S C, Zuo Z, et al. Review and prospect on sustainable utilization of salinized land. J Ningxia Univ (Nat Sci Edn), 2023, 44(1): 79–88 (in Chinese with English abstract).

[4] 胡亮亮, 王素华, 王丽侠, . 绿豆种质资源苗期耐盐性鉴定及耐盐种质筛选. 作物学报, 2022, 48: 367–379.
Hu L L, Wang S H, Wang L X, et al. Identification of salt tolerance and screening of salt tolerant germplasm of mung bean (Vigna radiate L.) at seedling stage. Acta Agron Sin, 2022, 48: 367–379 (in Chinese with English abstract).

[5] 邓立成, 李程, 赫磊, . 耐盐南粳品种苗期盐胁迫应答的生理特性及其耐盐相关基因分析. 中国农业科学, 2025, 58: 2275–2290.
Deng L C, Li C, He L, et al. Physiological characteristics in response to salt stress and allelic variation and expression of salt-responsive genes in seedling stage of Nangeng rice varieties with salt-tolerance ability. Sci Agric Sin, 2025, 58: 2275–2290 (in Chinese with English abstract).

[6] 袁宇婷, 张晓燕, 吴谷丰, . 基于主成分和隶属函数分析的大豆种质资源耐盐性综合评价. 大豆科学, 2025, 44(1): 22–32.
Yuan Y T, Zhang X Y, Wu G F, et al. Comprehensive evaluation of salt tolerance of soybean germplasm resources based on principal component and membership function analysis. Soybean Sci, 2025, 44(1): 22–32 (in Chinese with English abstract).

[7] Wicke B, Smeets E, Dornburg V, et al. Correction: The global technical and economic potential of bioenergy from salt-affected soils. Energy Environ Sci, 2020, 13: 2585.

[8] 于崧, 梁海芸, 郭潇潇, . 不同基因型绿豆苗期耐盐碱性分析及其鉴定指标的筛选. 干旱地区农业研究, 2018, 36(4): 223–232.
Yu S, Liang H Y, Guo X X, et al. Analysis of saline-alkaline tolerance and determination of saline-alkaline tolerance evaluation indicators in seedling stage of different mung bean genotypes. Agric Res Arid Areas, 2018, 36(4): 223–232 (in Chinese with English abstract).

[9] 孙振雷, 刘鹏, 叶柏军, . 绿豆种子萌发及苗期抗盐性的研究. 内蒙古民族大学学报(自然科学版), 2001, 16(1): 31–38.
Sun Z L, Liu P, Ye B J, et al. Study on germination of mung bean seeds and salt resistance in seedling stage. J Inner Mongolia Teach (Nat Nat Sci), 2001, 16(1): 31–38 (in Chinese with English abstract).

[10] 任建华, 高平平, 乔燕祥, . 绿豆幼苗期耐盐性研究. 山西农业科学, 1994, 22(2): 20–24.
Ren J H, Gao P P, Qiao Y X, et al. A study on salt tolerance of mung bean in seedling stage. J Shanxi Agric Sci, 1994, 22(2): 20–24 (in Chinese with English abstract).

[11] Mishra S, Alavilli H, Lee B H, et al. Cloning and functional characterization of a vacuolar Na+/H+ antiporter gene from mung bean (VrNHX1) and its ectopic expression enhanced salt tolerance in Arabidopsis thaliana. PLoS One, 2014, 9: e106678.

[12] Kumar S, Kalita A, Srivastava R, et al. Co-expression of Arabidopsis NHX1 and bar improves the tolerance to salinity, oxidative stress, and herbicide in transgenic mung bean. Front Plant Sci, 2017, 8: 1896.

[13] Xu W Y, Liu T, Zhang H Y, et al. Mung bean DIRIGENT gene subfamilies and their expression profiles under salt and drought stresses. Front Genet, 2021, 12: 658148.

[14] Liu J Y, Xue C C, Lin Y, et al. Genetic analysis and identification of VrFRO8, a salt tolerance-related gene in mung bean. Gene, 2022, 836: 146658.

[15] 孙璐, 周宇飞, 汪澈, . 高粱品种萌发期耐盐性筛选与鉴定. 中国农业科学, 2012, 45: 1714–1722.
Sun L, Zhou Y F, Wang C, et al. Screening and identification of sorghum cultivars for salinity tolerance during germination. Sci Agric Sin, 2012, 45: 1714–1722 (in Chinese with English abstract).

[16] 李诗晴, 王素华, 张耀文, . 769份绿豆种质资源萌发期耐盐性鉴定. 植物遗传资源学报, 2025, 26: 672–682.
Li S Q, Wang S H, Zhang Y W, et al. Salt tolerance identification of 769 mung bean germplasm at germination stage. J Plant Genet Resour, 2025, 26: 672–682 (in Chinese with English abstract).

[17] 程须珍, 王素华, 王丽侠. 绿豆种质资源描述规范和数据标准. 北京: 中国农业出版社, 2006.
Cheng X Z, Wang S H, Wang L X. Descriptors and Data Standard for Mung bean (Vigna radiata (L.) Wilczek). Beijing: China Agriculture Press, 2006 (in Chinese).

[18] Smith D S, Maxwell P W, De Boer S H. Comparison of several methods for the extraction of DNA from potatoes and potato-derived products. J Agric Food Chem, 2005, 53: 9848–9859.

[19] Chen S F, Zhou Y Q, Chen Y R, et al. Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics, 2018, 34: i884–i890.

[20] Pei S R, Liu T, Ren X, et al. Benchmarking variant callers in next-generation and third-generation sequencing analysis. Brief Bioinform, 2021, 22: bbaa148.

[21] Huang M, Liu X L, Zhou Y, et al. BLINK: a package for the next level of genome-wide association studies with both individuals and markers in the millions. Gigascience, 2019, 8: giy154.

[22] Yang N, Lu Y L, Yang X H, et al. Genome wide association studies using a new nonparametric model reveal the genetic architecture of 17 agronomic traits in an enlarged maize association panel. PLoS Genet, 2014, 10: e1004573.

[23] Li H, Peng Z Y, Yang X H, et al. Genome-wide association study dissects the genetic architecture of oil biosynthesis in maize kernels. Nat Genet, 2013, 45: 43–50.

[24] Zhang R L, Jia G Q, Diao X M. GeneHapR: an R package for gene haplotypic statistics and visualization. BMC Bioinfor, 2023, 24: 199.

[25] 焦广音, 任建华, 逯贵生, . 绿豆品种资源耐盐性鉴定与研究. 作物品种资源, 1997, (2): 38–40.
Jiao G Y, Ren J H, Lu G S, et al. Identification and study on salt tolerance of mung bean variety resources. China Seed Ind, 1997, (2): 38–40 (in Chinese).

[26] 时会影, 范保杰, 刘长友, . 绿豆耐盐性研究进展. 植物遗传资源学报, 2022, 23: 15941603.
Shi H Y, Fan B J, Liu C Y, et al. Research progress of salt tolerance in mung bean (Vigna radiata L.). J Plant Genet Resour, 2022, 23: 1594–1603 (in Chinese with English abstract).

[27] 戴海芳, 武辉, 阿曼古丽·买买提阿力, . 不同基因型棉花苗期耐盐性分析及其鉴定指标筛选. 中国农业科学, 2014, 47: 1290–1300.
Dai H F, Wu H, Maimaitiali A, et al. Analysis of salt-tolerance and determination of salt-tolerant evaluation indicators in cotton seedlings of different genotypes. Sci Agric Sin, 2014, 47: 1290–1300 (in Chinese with English abstract).

[28] 慈敦伟, 张智猛, 丁红, . 花生苗期耐盐性评价及耐盐指标筛选. 生态学报, 2015, 35: 805–814.
Ci D W, Zhang Z M, Ding H, et al. Evaluation and selection indices of salinity tolerance in peanut seedling. Acta Ecol Sin, 2015, 35: 805–814 (in Chinese with English abstract).

[29] 刘谢香, 常汝镇, 关荣霞, . 大豆出苗期耐盐性鉴定方法建立及耐盐种质筛选. 作物学报, 2020, 46: 1–8.
Liu X X, Chang R Z, Guan R X, et al. Establishment of screening method for salt tolerant soybean at emergence stage and screening of tolerant germplasm. Acta Agron Sin, 2020, 46: 1–8 (in Chinese with English abstract).

[30] Aski M S, Rai N, Reddy V R P, et al. Assessment of root phenotypes in mungbean mini-core collection (MMC) from the World Vegetable Center (AVRDC) Taiwan. PLoS One, 2021, 16: e0247810.

[31] 许政晗. 9个春玉米杂交种全生育期耐盐性评价. 内蒙古农业大学硕士学位论文, 内蒙古呼和浩特, 2024.
Xu Z H. Evaluation of Salt Tolerance of 9 Spring Maize Hybrids in the Whole Growth Period. MS Thesis of Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China, 2024 (in Chinese with English abstract).

[32] Huang Y Y, Zhou J H, Li Y X, et al. Salt stress promotes abscisic acid accumulation to affect cell proliferation and expansion of primary roots in rice. Int J Mol Sci, 2021, 22: 10892.

[33] Bischoff V, Selbig J, Scheible W R. Involvement of TBL/DUF231 proteins into cell wall biology. Plant Signal Behav, 2010, 5: 1057–1059.

[34] Yuan Y X, Teng Q, Zhong R Q, et al. Roles of Arabidopsis TBL34 and TBL35 in xylan acetylation and plant growth. Plant Sci, 2016, 243: 120–130.

[35] Endler A, Kesten C, Schneider R, et al. A mechanism for sustained cellulose synthesis during salt stress. Cell, 2015, 162: 1353–1364.

[36] Ma Q, Su C X, Dong C H. Genome-wide transcriptomic and proteomic exploration of molecular regulations in quinoa responses to ethylene and salt stress. Plants, 2021, 10: 2281.

[37] Bird D, Beisson F, Brigham A, et al. Characterization of Arabidopsis ABCG11/WBC11, an ATP binding cassette (ABC) transporter that is required for cuticular lipid secretion. Plant J, 2007, 52: 485–498.

[38] Panikashvili D, Shi J X, Bocobza S, et al. The Arabidopsis DSO/ABCG11 transporter affects cutin metabolism in reproductive organs and suberin in roots. Mol Plant, 2010, 3: 563–575.

[39] Kim D Y, Jin J Y, Alejandro S, et al. Overexpression of AtABCG36 improves drought and salt stress resistance in Arabidopsis. Physiol Plant, 2010, 139: 170–180.

[40] Zhang Z L, Tong T, Fang Y X, et al. Genome-wide identification of barley ABC genes and their expression in response to abiotic stress treatment. Plants, 2020, 9: 1281.

[41] Himelblau E, Mira H, Lin S J, et al. Identification of a functional homolog of the yeast copper homeostasis gene ATX1 from Arabidopsis. Plant Physiol, 1998, 117: 1227–1234.

[42] Wang Y Y, Cao Y B, Liang X Y, et al. A dirigent family protein confers variation of Casparian strip thickness and salt tolerance in maize. Nat Commun, 2022, 13: 2222.

[43] 刘晓, 刘晓红, 宋姝, . 盐碱胁迫下植物体内离子平衡调控的机制. 植物生理学报, 2023, 59: 715–726.
Liu X, Liu X H, Song S, et al. Regulation of ion homeostasis for salinity tolerance in plants. Plant Physiol J, 2023, 59: 715–726 (in Chinese with English abstract).

[44] Waszczak C, Carmody M, Kangasjärvi J. Reactive oxygen species in plant signaling. Annu Rev Plant Biol, 2018, 69: 209–236.

[45] Puig S, Andrés-colás N, García-molina A, et al. Copper and iron homeostasis in Arabidopsis: responses to metal deficiencies, interactions and biotechnological applications. Plant Cell Environ, 2007, 30: 271–290.

[46] Puig S, Mira H, Dorcey E, et al. Higher plants possess two different types of ATX1-like copper chaperones. Biochem Biophys Res Commun, 2007, 354: 385–390.

[1] HU Run-Hui, WANG Jun-Cheng, SI Er-Jing, ZHANG Hong, LI Xing-Mao, MA Xiao-Le, MENG Ya-Xiong, WANG Hua-Jun, LIU Qing, YAO Li-Rong, LI Bao-Chun. Screening of drought and salt tolerant germplasm during wheat seedling stage and comprehensive evaluation of drought and salt tolerance [J]. Acta Agronomica Sinica, 2025, 51(9): 2371-2386.
[2] MENG Ran, LI Zhao-Jia, FENG Wei, CHEN Yue, LIU Lu-Ping, YANG Chun-Yan, LU Xue-Lin, WANG Xiu-Ping. Comprehensive evaluation of salt tolerance at different growth stages of soybean and screening of salt-tolerant germplasm [J]. Acta Agronomica Sinica, 2025, 51(8): 1991-2008.
[3] LIANG Hong-Kai, ZHAO Su-Meng, LU Qiong, ZHOU Peng, ZHI Hui, DIAO Xian-Min, HE Qiang. A mini-core collection of foxtail millet [J]. Acta Agronomica Sinica, 2025, 51(6): 1435-1444.
[4] WANG Mu, ZHUO Ga, ZHA Sang, XIRUO Qu-Zong, DAWA Dondup, GUO Gang-Gang, ZHANG Jing, ZHUO Ga, LHUNDRUP Namgyal. Genetic diversity analysis and comprehensive evaluation of Qingke germplasm based on six phenotypic traits [J]. Acta Agronomica Sinica, 2025, 51(6): 1526-1537.
[5] JIANG You, MA Xue-Rong, ZHANG Bo, LI Chen-Jian. Evaluation of salt tolerance and screening of salt-tolerant germplasm of Sorghum sudanese during seed germination period [J]. Acta Agronomica Sinica, 2025, 51(3): 835-844.
[6] WANG Run-Feng, LI Wen-Jia, LIAO Yong-Jun, LU Qing, LIU Hao, LI Hai-Fen, LI Shao-Xiong, LIANG Xuan-Qiang, HONG Yan-Bin, CHEN Xiao-Ping. Evaluation of pod maturity and identification of early-maturing germplasm for core peanut germplasm resources [J]. Acta Agronomica Sinica, 2025, 51(2): 395-404.
[7] TANG Yong-Yan, YIN Jun-Jie, HOU Qing-Qing, FENG Jun-Yan, LI Jun, YANG Wu-Yun, CHEN Xue-Wei, HU Pei-Song, WAN Jian-Min. Current status and countermeasures for crop seed industry development in Sichuan province, China [J]. Acta Agronomica Sinica, 2025, 51(11): 2845-2859.
[8] GE Jia-Hao, LEI Xin-Yue, WANG Qing-Ming, HAN Hui-Bing, LI Shao-Fei, WANG Qi-Xuan, FENG Bai-Li, GAO Jin-Feng. Screening of low-phosphorus tolerant germplasm and comprehensive evaluation of low phosphorus tolerance in Tartary buckwheat at seedling stage [J]. Acta Agronomica Sinica, 2025, 51(11): 2911-2922.
[9] HU Zhi-Kang, SHU Yu, WANG Hui, YANG Ying-Ying, LIAO Jun-Yu, LIU Jia, CHENG Hong-Tao, GUO Chen, ZHANG Yuan-Yuan, LIU Sheng-Yi, HU Qiong, MEI De-Sheng, LI Chao. Comprehensive evaluation of alkaline tolerance in Brassica napus at the seedling stage [J]. Acta Agronomica Sinica, 2025, 51(10): 2681-2692.
[10] GUO Fei-Xiang, LI Chun-Xia, ZHOU Shuang, GUO Bin-Bin, ZHANG Jun, MA Chao. Identification of the R2R3-MYB transcription factor family and screening of genes regulating flavonoid synthesis in mung bean [J]. Acta Agronomica Sinica, 2025, 51(1): 117-133.
[11] MENG Fan-Hua, LIU Min, SHEN Ao, LIU Wei. Preliminary investigation of the SiLTP1: a lipid transfer protein gene involved in the salt tolerance of foxtail millet [J]. Acta Agronomica Sinica, 2025, 51(1): 58-67.
[12] SUN Xian-Jun, HU Zheng, JIANG Xue-Min, WANG Shi-Jia, CHEN Xiang-Qian, ZHANG Hui-Yuan, ZHANG Hui, JIANG Qi-Yan. Identification, evaluation and screening of salt-tolerant of soybean germplasm resources at seedling stage [J]. Acta Agronomica Sinica, 2024, 50(9): 2179-2186.
[13] LIU Xin-Yue, GUO Xiao-Yang, WANG Xin-Ru, XIN Da-Wei, GUAN Rong-Xia, QIU Li-Juan. Establishment of screening method for salt tolerance at germination stage and identification of salt-tolerant germplasms in soybean [J]. Acta Agronomica Sinica, 2024, 50(8): 2122-2130.
[14] LI Xiao-Fei, GAO Hua-Wei, GUANG Hui, SHI Yu-Xin, GU Yong-Zhe, QI Zhao-Ming, QIU Li-Juan. Identification and evaluation of atrazine tolerance of soybean germplasm resources at germination stage and screening of excellent germplasm [J]. Acta Agronomica Sinica, 2024, 50(7): 1699-1709.
[15] WANG Rui, SUN Bo, ZHANG Yun-Long, ZHANG Ming-Qi, FAN Ya-Ming, TIAN Hong-Li, ZHAO Yi-Kun, YI Hong-Mei, KUANG Meng, WANG Feng-Ge. Application analysis of chloroplast markers on rapid classification in maize germplasm [J]. Acta Agronomica Sinica, 2024, 50(7): 1867-1876.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!