Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2006, Vol. 32 ›› Issue (05): 661-665.

• ORIGINAL PAPERS • Previous Articles     Next Articles

SCMV-resistant Transgenic Maize Mediated by Antisense cp Gene

BAI Yun-Feng; ZHAO Jin-Feng; ZHENG Jun; ZHANG Jin-Peng; WANG Mao-Yan1; GOU Ming-Yue1; DONG Zhi-Gang; YANG Hong-Chun and WANG Guo-Ying   

  1. State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100094
  • Received:2005-01-24 Revised:1900-01-01 Online:2006-05-12 Published:2006-05-12
  • Contact: WANG Guo-Ying

Abstract:

Maize Dwarf Mosaic (MDM) disease is one of the most widely distributed and economically important virus diseases of maize in many countries. The disease is caused mainly by sugarcane mosaic virus (SCMV) in China. The resistance to the disease in maize containing virus-derived transgenes by the expression of functional coat protein gene(cp) from maize dwarf mosaic virus (MDMV) or SCMV has been reported and transgenic plants showed modest resistance to related viruses. But protein expression or mRNA transcription may pose problems with acceptance because of possible interactions with other viruses. And in these studies, selectable marker genes conferring antibiotic or herbicide resistance were used for the efficient transformation. The selectable marker genes have caused public concerns on the biosafety.
In an attempt to generate safe marker-free transgenic maize plants resistant to SCMV, we inserted SCMV cp gene in antisense orientation into 3’ end of a maize ubiquitin promoter and constructed a marker-free expression vector pACP that only harbors an antisense SCMV-cp gene. Maize immature embryos were co-transformed with the binary vector pACP and a vector harboring bar gene as the selective marker, using Agrobacterium inoculation procedure. Resistant calli were recovered by selection on medium containing Biolaphos. Among 35 regenerated plantlets from resistant calli, 14 plants were certified to contain antisense SCMV-cp gene by PCR amplification. T1 lines derived from the 14 transgenic plants were challenged with SCMV inocula in field and the percentages of resistant plants in two lines were higher than 70%. Two SCMV-resistant transgenic plants in one T1 line were found to be marker free by PCR assay. The results demonstrated that stable expression of antisense SCMV-cp gene in transgenic maize plants results in resistance to SCMV, which provides a new useful and effective alternative to combat SCMV because it does not require the expression of a functional viral gene product and avoid possible interactions with other viruses. In addition, generation of selectable marker-free transgenic plants avoids responds to public concerns on the biosafety of selectable markers and will support multiple transformation cycles for transgene pyramiding. The results further confirmed that co-transformation is a comparatively simple and available system for obtaining marker-free plants of a cross-pollinating propagated crop.

Key words: Maize, Resistance to SCMV, Anti-sense RNA, Expression vector without marker gene

CLC Number: 

  • S513
[1] WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450.
[2] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[3] CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515.
[4] SHAN Lu-Ying, LI Jun, LI Liang, ZHANG Li, WANG Hao-Qian, GAO Jia-Qi, WU Gang, WU Yu-Hua, ZHANG Xiu-Jie. Development of genetically modified maize (Zea mays L.) NK603 matrix reference materials [J]. Acta Agronomica Sinica, 2022, 48(5): 1059-1070.
[5] XU Jing, GAO Jing-Yang, LI Cheng-Cheng, SONG Yun-Xia, DONG Chao-Pei, WANG Zhao, LI Yun-Meng, LUAN Yi-Fan, CHEN Jia-Fa, ZHOU Zi-Jian, WU Jian-Yu. Overexpression of ZmCIPKHT enhances heat tolerance in plant [J]. Acta Agronomica Sinica, 2022, 48(4): 851-859.
[6] LIU Lei, ZHAN Wei-Min, DING Wu-Si, LIU Tong, CUI Lian-Hua, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping. Genetic analysis and molecular characterization of dwarf mutant gad39 in maize [J]. Acta Agronomica Sinica, 2022, 48(4): 886-895.
[7] YAN Yu-Ting, SONG Qiu-Lai, YAN Chao, LIU Shuang, ZHANG Yu-Hui, TIAN Jing-Fen, DENG Yu-Xuan, MA Chun-Mei. Nitrogen accumulation and nitrogen substitution effect of maize under straw returning with continuous cropping [J]. Acta Agronomica Sinica, 2022, 48(4): 962-974.
[8] XU Ning-Kun, LI Bing, CHEN Xiao-Yan, WEI Ya-Kang, LIU Zi-Long, XUE Yong-Kang, CHEN Hong-Yu, WANG Gui-Feng. Genetic analysis and molecular characterization of a novel maize Bt2 gene mutant [J]. Acta Agronomica Sinica, 2022, 48(3): 572-579.
[9] SONG Shi-Qin, YANG Qing-Long, WANG Dan, LYU Yan-Jie, XU Wen-Hua, WEI Wen-Wen, LIU Xiao-Dan, YAO Fan-Yun, CAO Yu-Jun, WANG Yong-Jun, WANG Li-Chun. Relationship between seed morphology, storage substance and chilling tolerance during germination of dominant maize hybrids in Northeast China [J]. Acta Agronomica Sinica, 2022, 48(3): 726-738.
[10] QU Jian-Zhou, FENG Wen-Hao, ZHANG Xing-Hua, XU Shu-Tu, XUE Ji-Quan. Dissecting the genetic architecture of maize kernel size based on genome-wide association study [J]. Acta Agronomica Sinica, 2022, 48(2): 304-319.
[11] YAN Yan, ZHANG Yu-Shi, LIU Chu-Rong, REN Dan-Yang, LIU Hong-Run, LIU Xue-Qing, ZHANG Ming-Cai, LI Zhao-Hu. Variety matching and resource use efficiency of the winter wheat-summer maize “double late” cropping system [J]. Acta Agronomica Sinica, 2022, 48(2): 423-436.
[12] ZHANG Qian, HAN Ben-Gao, ZHANG Bo, SHENG Kai, LI Lan-Tao, WANG Yi-Lun. Reduced application and different combined applications of loss-control urea on summer maize yield and fertilizer efficiency improvement [J]. Acta Agronomica Sinica, 2022, 48(1): 180-192.
[13] YU Rui-Su, TIAN Xiao-Kang, LIU Bin-Bin, DUAN Ying-Xin, LI Ting, ZHANG Xiu-Ying, ZHANG Xing-Hua, HAO Yin-Chuan, LI Qin, XUE Ji-Quan, XU Shu-Tu. Dissecting the genetic architecture of lodging related traits by genome-wide association study and linkage analysis in maize [J]. Acta Agronomica Sinica, 2022, 48(1): 138-150.
[14] ZHAO Xue, ZHOU Shun-Li. Research progress on traits and assessment methods of stalk lodging resistance in maize [J]. Acta Agronomica Sinica, 2022, 48(1): 15-26.
[15] NIU Li, BAI Wen-Bo, LI Xia, DUAN Feng-Ying, HOU Peng, ZHAO Ru-Lang, WANG Yong-Hong, ZHAO Ming, LI Shao-Kun, SONG Ji-Qing, ZHOU Wen-Bin. Effects of plastic film mulching on leaf metabolic profiles of maize in the Loess Plateau with two planting densities [J]. Acta Agronomica Sinica, 2021, 47(8): 1551-1562.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!