Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2007, Vol. 33 ›› Issue (07): 1073-1078.

• ORIGINAL PAPERS • Previous Articles     Next Articles

Transformation of Cotton (Gossypium hirsutum L.) with AhCMO Gene and the Expression of Salinity Tolerance

ZHANG Hui-Jun1,DONG He-Zhong2*,SHI Yao-Jin1,CHEN Shou-Yi3,ZHU Yong-Hong1   

  1. 1 Cotton Research Institute, Shanxi Academy of Agricultural Sciences, Yuncheng 044000,Shanxi; 2 Cotton Research Center, Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong; 3 Institute of Genetics and Developmental biology, Chinese Academy of Sciences, Beijing 100101, China
  • Received:2006-10-26 Revised:1900-01-01 Online:2007-07-12 Published:2007-07-12
  • Contact: DONG He-Zhong

Abstract:

Soil salinity is becoming a serious threat to global agriculture including cotton. Although cotton has been classified as a salt-tolerant crop, it is also seriously attacked by salinity especially during emergence and seedling growth. Levels of glycine betaine, an osmoprotectant accumulated in plants during abotic stresses, vary among cotton genotypes, and positively correlated with the degree of salt tolerance. Therefore, enhancing glycine betaine synthesis is one of the most promising ways to improve salt tolerance in cotton. Choline monooxygenase (CMO) catalyzes the committed step in the synthesis of glycine betaine. AhCMO, a gene cloned from Atriplex hortensis, was introduced into the cotton (Gossypium hirsutium L.) hypocotyl explants of SM3 via Agrobacterium mediation, and the transformed plants were regenerated through somatic embryogenesis in tissue culture. After selection with 0.5% kanamycin, the kanamycin-resistant regenerated plants were confirmed to be electropositive by polymerase chain reaction (PCR). Southern and Northern blotting analyses further indicated the introduction and the expression of AhCMO gene in transgenic cotton plants, respectively. At the two true-leaf stage, transgenic cotton seedlings were treated with 0.5% NaCl for 15 days under greenhouse conditions, plant height, fresh weight per plant and net photosynthetic rate were determined. The results showed that NaCl stress decreased plant height, fresh weight per plant and net photosynthetic rate by 37.3%, 54.6%, and 47.9% for transgenic plants, and by 57.6%, 65.6%, and 69.9% for non-transgenic SM3, compared with their corresponding NaCl-free controls, respectively. The fact that less injury of NaCl to transgenic plants than to non-transgenic plants, suggested that induction and expression of AhCMO considerably enhanced salinity tolerance of transgenic cotton plants. Transgenic cotton with improved tolerance against salt stress is of great agronomic value. However, it should be noted that the improvement in salt tolerance of the transgenic lines is still limited. An integration of the transgenic technology and the traditional breeding technique may further improve both salt-tolerance and other agronomic properties of cotton.

Key words: Cotton, Choline monooxygenase, Genetic transformation, Salinity tolerance

[1] ZHOU Jing-Yuan, KONG Xiang-Qiang, ZHANG Yan-Jun, LI Xue-Yuan, ZHANG Dong-Mei, DONG He-Zhong. Mechanism and technology of stand establishment improvements through regulating the apical hook formation and hypocotyl growth during seed germination and emergence in cotton [J]. Acta Agronomica Sinica, 2022, 48(5): 1051-1058.
[2] SUN Si-Min, HAN Bei, CHEN Lin, SUN Wei-Nan, ZHANG Xian-Long, YANG Xi-Yan. Root system architecture analysis and genome-wide association study of root system architecture related traits in cotton [J]. Acta Agronomica Sinica, 2022, 48(5): 1081-1090.
[3] YAN Xiao-Yu, GUO Wen-Jun, QIN Du-Lin, WANG Shuang-Lei, NIE Jun-Jun, ZHAO Na, QI Jie, SONG Xian-Liang, MAO Li-Li, SUN Xue-Zhen. Effects of cotton stubble return and subsoiling on dry matter accumulation, nutrient uptake, and yield of cotton in coastal saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(5): 1235-1247.
[4] FENG Ya, ZHU Xi, LUO Hong-Yu, LI Shi-Gui, ZHANG Ning, SI Huai-Jun. Functional analysis of StMAPK4 in response to low temperature stress in potato [J]. Acta Agronomica Sinica, 2022, 48(4): 896-907.
[5] ZHENG Shu-Feng, LIU Xiao-Ling, WANG Wei, XU Dao-Qing, KAN Hua-Chun, CHEN Min, LI Shu-Ying. On the green and light-simplified and mechanized cultivation of cotton in a cotton-based double cropping system [J]. Acta Agronomica Sinica, 2022, 48(3): 541-552.
[6] ZHANG Yan-Bo, WANG Yuan, FENG Gan-Yu, DUAN Hui-Rong, LIU Hai-Ying. QTLs analysis of oil and three main fatty acid contents in cottonseeds [J]. Acta Agronomica Sinica, 2022, 48(2): 380-395.
[7] ZHANG Te, WANG Mi-Feng, ZHAO Qiang. Effects of DPC and nitrogen fertilizer through drip irrigation on growth and yield in cotton [J]. Acta Agronomica Sinica, 2022, 48(2): 396-409.
[8] ER Chen, LIN Tao, XIA Wen, ZHANG Hao, XU Gao-Yu, TANG Qiu-Xiang. Coupling effects of irrigation and nitrogen levels on yield, water distribution and nitrate nitrogen residue of machine-harvested cotton [J]. Acta Agronomica Sinica, 2022, 48(2): 497-510.
[9] ZHAO Wen-Qing, XU Wen-Zheng, YANG Liu-Yan, LIU Yu, ZHOU Zhi-Guo, WANG You-Hua. Different response of cotton leaves to heat stress is closely related to the night starch degradation [J]. Acta Agronomica Sinica, 2021, 47(9): 1680-1689.
[10] YUE Dan-Dan, HAN Bei, Abid Ullah, ZHANG Xian-Long, YANG Xi-Yan. Fungi diversity analysis of rhizosphere under drought conditions in cotton [J]. Acta Agronomica Sinica, 2021, 47(9): 1806-1815.
[11] ZENG Zi-Jun, ZENG Yu, YAN Lei, CHENG Jin, JIANG Cun-Cang. Effects of boron deficiency/toxicity on the growth and proline metabolism of cotton seedlings [J]. Acta Agronomica Sinica, 2021, 47(8): 1616-1623.
[12] GAO Lu, XU Wen-Liang. GhP4H2 encoding a prolyl-4-hydroxylase is involved in regulating cotton fiber development [J]. Acta Agronomica Sinica, 2021, 47(7): 1239-1247.
[13] MA Huan-Huan, FANG Qi-Di, DING Yuan-Hao, CHI Hua-Bin, ZHANG Xian-Long, MIN Ling. GhMADS7 positively regulates petal development in cotton [J]. Acta Agronomica Sinica, 2021, 47(5): 814-826.
[14] TANG Rui-Min, JIA Xiao-Yun, ZHU Wen-Jiao, YIN Jing-Ming, YANG Qing. Cloning of potato heat shock transcription factor StHsfA3 gene and its functional analysis in heat tolerance [J]. Acta Agronomica Sinica, 2021, 47(4): 672-683.
[15] XU Nai-Yin, ZHAO Su-Qin, ZHANG Fang, FU Xiao-Qiong, YANG Xiao-Ni, QIAO Yin-Tao, SUN Shi-Xian. Retrospective evaluation of cotton varieties nationally registered for the Northwest Inland cotton growing regions based on GYT biplot analysis [J]. Acta Agronomica Sinica, 2021, 47(4): 660-671.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!