Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2009, Vol. 35 ›› Issue (10): 1822-1830.doi: 10.3724/SP.J.1006.2009.01822

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Cloning and Expression Profiling of Gibberellin Insensitive Dwarf GID1 Homologous Genes from Cotton

DONG Jing,YIN Meng-Hui,YANG Fan,ZHAO Juan,QIN Shan,HOU Lei,LUO Ming,PEI Yan,XIAO Yue-Hua*   

  1. Key Laboratory of Biotechnology and Crop Quality Improvement,Ministry of Agriculture,Biotechnology Research Center,Southwest University,Chongqing 400716,China
  • Received:2009-03-03 Revised:2009-06-25 Online:2009-10-12 Published:2009-08-07
  • Contact: E-mail: xiaoyuehua@swu.edu.cn

Abstract:

Gibberellins (GA) play an important role in regulating cotton fiber development. As the GA receptor, GID1 is an essential component of GA signaling pathway. To advance our understanding of GA’s functions in cotton development (especially fiber development), we cloned six cotton GID1 homologous genes (GhGID1-1–6, accession No. are FJ790125FJ790130) by searching EST sequences, extending the flanking sequences by Y-shaped adaptor dependent extension (YADE) method and amplifying the full-length cDNA by 3'-RACE. Multiple sequence alignment indicated that the deduced GhGID1-16proteins shared high sequence identity with GID1s from other species and contained multiple binding sites with GA and DELLA protein as well as HGG and GXSXG domains conserved in hormone-sensitive lipase (HSL) family. Three amino acid residuals (G169, G196, and R251) with the rice GID1 function were also conserved in cotton GID1s. In the phylogenetic tree of GhGID1-16 and other GID1 proteins with known function, GhGID1-16 were clustered with 3 Arabidopsis GID1 proteins, and distantly related to GID1s from rice and S. moellendorffii. Quantitative RT-PCR was employed to detect the expression levels of GhGID1-1–6 in various organs and tissues. The transcripts of GhGID1-1–6 could be detected in all the organs and tissues investigated (including roots, hypocotyls, leaves, petals, anthers, ovules and fibers), although with various levels. GhGID1-1 and GhGID1-2 expressed mainly in floral organs, while GhGID1-4 expressed preferentially in fiber and root. Exogenous GA added in medium led to alteration of gene expression level in the in vitro cultivated ovules, and the expressions of GhGID1-1 and GhGID1-2 were obviously inhibited by GA. These results suggested that GhGID1-1–6 might encode biologically functional GID1 homologues involved in GA signaling in cotton. To further clarify GID1 genes related to fiber development, we compared GhGID1s’ expression in developing ovule (from 6 to 18 days post anthesis, DPA) and the attached fibers by quantitative RT-PCR. GhGID1-1 was predominantly expressed in ovules, and its expression level reached the climax at 10 DPA, and kept the high level at 14 DPA and 18 DPA, while in fibers, GhGID1-4 was the main GID1 homologue expressed, and its highest-level expression occurred at 6 DPA, and declined to a very low level at 14 DPA and 18 DPA.This result strongly suggested that these are relatively independent GA signaling systems in ovules and attached fibers.

Key words: GID1, Cotton, Fiber development, Expression Specificity

[1] ZHOU Jing-Yuan, KONG Xiang-Qiang, ZHANG Yan-Jun, LI Xue-Yuan, ZHANG Dong-Mei, DONG He-Zhong. Mechanism and technology of stand establishment improvements through regulating the apical hook formation and hypocotyl growth during seed germination and emergence in cotton [J]. Acta Agronomica Sinica, 2022, 48(5): 1051-1058.
[2] SUN Si-Min, HAN Bei, CHEN Lin, SUN Wei-Nan, ZHANG Xian-Long, YANG Xi-Yan. Root system architecture analysis and genome-wide association study of root system architecture related traits in cotton [J]. Acta Agronomica Sinica, 2022, 48(5): 1081-1090.
[3] YAN Xiao-Yu, GUO Wen-Jun, QIN Du-Lin, WANG Shuang-Lei, NIE Jun-Jun, ZHAO Na, QI Jie, SONG Xian-Liang, MAO Li-Li, SUN Xue-Zhen. Effects of cotton stubble return and subsoiling on dry matter accumulation, nutrient uptake, and yield of cotton in coastal saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(5): 1235-1247.
[4] ZHENG Shu-Feng, LIU Xiao-Ling, WANG Wei, XU Dao-Qing, KAN Hua-Chun, CHEN Min, LI Shu-Ying. On the green and light-simplified and mechanized cultivation of cotton in a cotton-based double cropping system [J]. Acta Agronomica Sinica, 2022, 48(3): 541-552.
[5] ZHANG Yan-Bo, WANG Yuan, FENG Gan-Yu, DUAN Hui-Rong, LIU Hai-Ying. QTLs analysis of oil and three main fatty acid contents in cottonseeds [J]. Acta Agronomica Sinica, 2022, 48(2): 380-395.
[6] ZHANG Te, WANG Mi-Feng, ZHAO Qiang. Effects of DPC and nitrogen fertilizer through drip irrigation on growth and yield in cotton [J]. Acta Agronomica Sinica, 2022, 48(2): 396-409.
[7] ER Chen, LIN Tao, XIA Wen, ZHANG Hao, XU Gao-Yu, TANG Qiu-Xiang. Coupling effects of irrigation and nitrogen levels on yield, water distribution and nitrate nitrogen residue of machine-harvested cotton [J]. Acta Agronomica Sinica, 2022, 48(2): 497-510.
[8] ZHAO Wen-Qing, XU Wen-Zheng, YANG Liu-Yan, LIU Yu, ZHOU Zhi-Guo, WANG You-Hua. Different response of cotton leaves to heat stress is closely related to the night starch degradation [J]. Acta Agronomica Sinica, 2021, 47(9): 1680-1689.
[9] YUE Dan-Dan, HAN Bei, Abid Ullah, ZHANG Xian-Long, YANG Xi-Yan. Fungi diversity analysis of rhizosphere under drought conditions in cotton [J]. Acta Agronomica Sinica, 2021, 47(9): 1806-1815.
[10] ZENG Zi-Jun, ZENG Yu, YAN Lei, CHENG Jin, JIANG Cun-Cang. Effects of boron deficiency/toxicity on the growth and proline metabolism of cotton seedlings [J]. Acta Agronomica Sinica, 2021, 47(8): 1616-1623.
[11] GAO Lu, XU Wen-Liang. GhP4H2 encoding a prolyl-4-hydroxylase is involved in regulating cotton fiber development [J]. Acta Agronomica Sinica, 2021, 47(7): 1239-1247.
[12] LI Fu, WANG Yan-Zhou, YAN Li, ZHU Si-Yuan, LIU Tou-Ming. Characterization of the expression profiling of circRNAs in the barks of stems in ramie [J]. Acta Agronomica Sinica, 2021, 47(6): 1020-1030.
[13] MA Huan-Huan, FANG Qi-Di, DING Yuan-Hao, CHI Hua-Bin, ZHANG Xian-Long, MIN Ling. GhMADS7 positively regulates petal development in cotton [J]. Acta Agronomica Sinica, 2021, 47(5): 814-826.
[14] XU Nai-Yin, ZHAO Su-Qin, ZHANG Fang, FU Xiao-Qiong, YANG Xiao-Ni, QIAO Yin-Tao, SUN Shi-Xian. Retrospective evaluation of cotton varieties nationally registered for the Northwest Inland cotton growing regions based on GYT biplot analysis [J]. Acta Agronomica Sinica, 2021, 47(4): 660-671.
[15] ZHOU Guan-Tong, LEI Jian-Feng, DAI Pei-Hong, LIU Chao, LI Yue, LIU Xiao-Dong. Efficient screening system of effective sgRNA for cotton CRISPR/Cas9 gene editing [J]. Acta Agronomica Sinica, 2021, 47(3): 427-437.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!