Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2009, Vol. 35 ›› Issue (8): 1386-1394.doi: 10.3724/SP.J.1006.2009.01386

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Genetic Background Effect on QTL Expression of Heading Date and Plant Height and Their Interaction with Environment in Reciprocal Introgression Lines of Rice 

WANG Yun1,2, CHENG Li-Rui2, SUN Yong2, ZHOU Zheng2, ZHU Ling-Hua2, XU Zheng-Jin1, XU Jian-Long2,*,LI Zhi-Kang2,3   

  1. 1 Shenyang Agricultural University / Key Laboratory of Crop Physiology, Ecology, Genetics and Breeding, Ministry of Agriculture, Shenyang 110161, China;
    2 Institute of Crop Sciences / National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing 100081, China; 3 International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
  • Received:2009-01-21 Revised:2009-03-13 Online:2009-08-12 Published:2009-06-10
  • Contact: XU Jian-Long, E-mail: xujl@caas.net.cn

Abstract:

Expression of quantitative trait is affected by genetic background and environment. Genetic background effect on QTL mapping and QTL by environment interaction for heading date (HD) and plant height (PH) in Beijing and Hainan environments were dissected using a large set of reciprocal introgression lines (ILs) derived from a japonica variety “Lemont” and indica variety “Teqing”. The two sets of ILs showed transgressive segregation for the two traits. Total 16 and 17 main-effect QTLs were identified for HD and PH in the two environments, respectively. Among them, only five main-effect QTLs (QHd2, QHd8a, QPh3, QPh5,and QPh12) were detected under the two backgrounds, indicating expression of most main-effect QTLs are specific to genetic background. Three main-effect QTLs (QHd8a, QHd9, and QHd10b) by environment interactions for HD were significantly detected under the two backgrounds, of which that of QHd8a had earlier heading for 2–3 days in Hainan, but delayed heading for 2–3 days in Beijing. Therefore, QHd8a could be considered as an important main-effect QTL for HD. By comparison with the QTL mapping results previously identified in the seven different mapping populations derived from the same parents in different environments, some stably expressed main-effect QTLs including QHd3, QHd8a, QPh3,and QPh4 were identified under different backgrounds and environments, suggesting these QTLs could be used in marker-assisted breeding for HD and PH. On the basis of the mapping information, marker-assisted improvement of HD for a rice variety under different environments was deeply discussed.

Key words: Quantitative trait loci, Genetic background, Gene X environment interaction, Reciprocal introgression lines, Heading date, Plant height

[1] Burr B, Burr F A. Recombinant inbreds for molecular mapping in maize: theoretical and practical considerations. Trends Genet, 1991, 7: 55-60

[2] Li Z K , Arif M, Zhong D B,Fu Y, Xu J L, Domingo-Rey J, Ali J, Vijayakumar C H M, Yu S B, Khush G S. Complex genetic networks underlying the defensive system of rice (Oryza sativa L.) to Xanthomonas oryzae pv. oryzae. Proc Natl Acad Sci USA, 2006, 103: 7994-7999

[3] Mu P(穆平), Li Z-C(李自超), Li C-P(李春平), Zhang H-L(张洪亮), Wu C-M(吴长明), Li C(李晨), Wang X-K(王象坤). QTL mapping of the root traits and their correlation analysis with drought resistance using DH lines from paddy and upland rice cross.Chin Sci Bull (科学通报), 2003, 48(24): 2718-2724 (in Chinese)

[4] Xu J-C(徐吉臣), Wang J-L(王久林), Ling Z-Z(凌忠专), Zhu L-H(朱立煌). Analysis of rice blast resistance genes by QTL mapping.Chin Sci Bull (科学通报), 2004, 49(4): 337-342 (in Chinese)

[5] Tang J-H(汤继华), Ma X-Q(马西青), Teng W-T(滕文涛), Yan J-B(严建兵), Wu W-R(吴为人), Dai J-R(戴景瑞), Li J-S(李建生). Detection of quantitative trait loci and heterotic loci for plant height using an immortalized F2 population in maize. Chin Sci Bull (中国科学通报), 2007, 52(4): 477-483 (in Chinese)

[6] Yang H(杨华), Yang J-P(杨俊品), Rong T-Z(荣廷昭), Tan J(谭君), Qiu Z-G(邱正高). QTL mapping of resistance to sheath blight in maize (Zea mays L.).Chin Sci Bull (中国科学通报), 2005, 50(8): 782-787 (in Chinese)

[7] Mei H W, Li Z K, Shu Q Y, Guo L B, Wang Y P,Yu X Q,Ying C S, Luo L J. Gene actions of QTLs affecting several agronomic traits resolved in a recombinant inbred rice population and two backcross populations. Theor Appl Genet, 2005, 110: 649-659

[8] Paterson A H, Damon S, Hewitt J D. Mendelian factors underlying quantitative traits in tomato: comparison across species, generations and environments. Genetics, 1991, 127: 181--197

[9] Yan J Q, Zhu J, He C X. Molecular marker-assisted dissection of genotype ´ environment interaction for plant type traits in rice. Crop Sci, 1999, 39: 538-544

[10]Li Z K, Yu S B, Lafitte H R, Huang N, Courtois B, Hittalmani S, Vijayakumar C H M, Liu G F, Wang G C, Shashidhar H E, Zhuang J Y, Zheng K L, Singh V P, Sidhu J S, Srivantaneeyakul S, Khush G S. QTL ´ environment interactions in rice. I. Heading date and plant height. Theor Appl Genet, 2003, 108: 141-153

[11]Zang J-P(藏金萍), Sun Y(孙勇), Wang Y(王韵), Yang J(杨静), Li F(李芳), Zhou Y-L(周永力), Zhu L-H(朱苓华), Xu J-L(徐建龙), Li Z-K(黎志康). Dissection of genetic overlap of salt tolerance QTLs at the seeding and tillering stages using backcross introgressive lines in rice. Sci China (Ser C-Life Sci)(中国科学·C辑), 2008, 51(7): 583-591(in Chinese)

[12]Chevin L M, Hospital F. Selective sweep at a quantitative trait locus in the presence of background genetic variation. Genetics, 2008, 180: 1645-1660

[13]Tanksley S D, Nelson J C. Advanced backcross QTL analysis: A method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theor Appl Genet, 1996, 92: 191-203

[14]Li D-J(李德军), Sun C-Q(孙传清), Fu Y-C(付永彩), Li C(李晨), Zhu Z-F(朱作峰), Chen L(陈亮), Cai H-W(才宏伟), Wang X-K(王象坤). Identification andmapping of genes for improving yield from Chinese common wild rice (O. rufipogon Griff.) using advanced backcross QTL analysis. Chin Sci Bull (中国科学通报), 2002, 47(18): 1533-1537 (in Chinese)

[15]Tian F, Li D J, Fu Q, Zhu Z F, Fu Y C, Wang X K, Sun C Q. Construction of introgression lines carrying wild rice (Oryza rufipogon Griff.) segments in cultivated rice (Oryza sativa L.) background and characterization of introgressed segments associated with yield-related traits. Theor Appl Genet, 2006, 112: 570-580

[16]Ren Z H, Gao J P, Li L G, Cai X L,Huang W, Chao D Y, Zhu M Z, Wang Z Y, Luan S, Lin H X. A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nat Genet, 2005, 37: 1141-1146

[17]Yang Q-H(杨权海), Lu W(陆巍), Hu M-L(胡茂龙), Wang C-M(王春明), Zhang R-X(张荣铣), Yano M, Wan J-M(万建民). QTL and epistatic interaction underlying leaf chlorophyll and H2O2 content variation in rice (Oryza sativa L.).Acta Genet Sin (遗传学报), 2003, 30(3): 245-250 (in Chinese with English abstract)

[18]Zhao X Q, Xu J L, Zhao M, Lafitte R, Zhu L H, Fu B Y, Gao M Y, Li Z K. QTLs affecting morph-physiological traits related to drought tolerance detected in overlapping introgression lines of rice (Oryza sativa L.). Plant Sci, 2008, 174: 618-625

[19]Xu J L, Lafitte H R, Gao Y M, Fu B Y, Torres R, Li Z K. QTLs for drought avoidance and tolerance identified in a set of random introgression lines of rice. Theor Appl Genet, 2005, 111: 1642-1650

[20]Zhang X, Zhou S, Fu Y, Su Z, Wang X, Sun C. Identification of a drought tolerant introgression line derived from Dongxiang common wild rice (O. rufipogon Griff.). Plant Mol Biol, 2006, 62: 247-259

[21]Steele K A, Price A H, Shashidhar H E, Witcombe J R. Marker-assisted selection to introgress rice QTLs controlling root traits into an Indian upland rice variety. Theor Appl Genet, 2006, 112: 208-221

[22]Tanksley S D, Grandillo S, Fulton T M, Zamir D, Eshed Y, Petiard V, Lopez J, Beck-Bunn T. Advanced backcross QTL analysis in a cross between an elite processing line of tomato and its wild relative L. pimpinellifolium. Theor Appl Genet, 1996, 92: 213-224

[23]Bernacchi D, Beck-Bunn T, Emmatty D, Eshed Y, Inai S, Lopez J, Petiard V, Sayama H, Uhlig J, Zamir D, Tanksley S. Advanced backcross QTL analysis in tomato. II. Evaluation of near-isogenic lines carrying single-donor introgressions for desirable wild QTL-alleles derived from Lycopersicon hirsutum and L. pimpinellifolium. Theor Appl Genet, 1998, 97: 170-180

[24]Emebiri L, Michael P, Moody D B, Ogbonnaya F C, Black C. Pyramiding QTLs to improve malting quality in barley: gains in phenotype and genetic diversity. Mol Breed, 2009, 23: 219-228

[25]Robbins M D, Casler M D, Staub J E. Pyramiding QTL for multiple lateral branching in cucumber using inbred backcross lines. Mol Breed, 2008, 22: 131-139

[26]Manly K F, Olson J M .Overview of QTL mapping software and introduction to Map Manager QT. Mammalian Genome, 1999, 10: 327-334

[27]SAS Institute. SAS/STAT User’s Guide. Cary NC, USA: SAS Institute, 1996. pp 25-36

[28]Xue X-W(谢学文), Xu M-R(许美容), Zang J-P(藏金萍), Sun Y(孙勇), Zhu L-H(朱苓华), Xu J-L(徐建龙), Zhou Y-L(周永力), Li Z-K(黎志康).Genetic background and environmental effects on expression of QTL for sheath blight resistance in reciprocal introgression lines of rice. Acta Agron Sin (作物学报), 2008, 34(11): 1885-1893 (in Chinese with English abstract)

[29]Li Z K , Pinson S R M, Stansel J W, Park W D. Identification of QTL for heading date and plant height in rice using RFLP markers. Theor Appl Genet, 1995, 91: 374-381

[30]Li Z K, Pinson S R M, Paterson A H, Park W D, Stansel J W. Genetics of hybrid sterility and hybrid breakdown in an inter-subspecific rice (Oryza sativa L.) population. Genetics, 1997, 145: 1139-1148

[31]Mei H W, Luo L J, Ying C S, Wang Y P, Yu X Q, Guo L B, Paterson A H, Li Z K. Gene actions of QTLs affecting several agronomic traits resolved in a recombinant inbred rice population and two testcross populations. Theor Appl Genet, 2003, 107: 89-101

[32]Fan C C, Yu X Q, Xing Y Z, Xu C G, Luo L J, Zhang Q F. The main effects, epistatic effects and environmental interactions of QTL on the cooking and eating quality of rice in a doubled-haploid line population .Theor Appl Genet, 2005, 110: 1445-1452

[33]Zhang K P, Tian J C, Zhao L, Wang S S. Mapping QTLs with epistatic effects and QTL ´ environment interactions for plant height using a doubled haploid population in cultivated wheat. J Genet Genomics, 2008, 35: 119-127

[34]Yuan A-P(袁爱平), Cao L-Y(曹立勇), Zhuang J-Y(庄杰云), Li R-Z(李润植), Zheng K-L(郑康乐), Zhu J(朱军), Cheng S-H(程式华). Analysis of additive and AE interaction effects of QTLs controlling plant height, heading date and panicle number in rice (Oryza sativa L.). Acta Genet Sin (遗传学报), 2003, 30(10): 899-906(in Chinese)

[35]Liu G, Yang J, Xu H, Zhu J. Influence of epistasis and QTL´environment interaction on heading date of rice (Oryza sativa L.). J Genet Genomics, 2007, 34: 608-615

[36]Li Z K, Pinson S R M, Paterson A H, Park W D, Stansel J W. Epistasis for three grain yield components in rice (Oryza sativa L.). Genetics, 1997, 145: 453-465

[37]Ware D P, Jaiswal J J, Pan N X, Chang K,Clerk K, Teytelman L, Schmidt S, Zhao W, Cartinhour S, McCouch S, Stein L. Gramene: A Resource for Comparative Grass Genomics. Nucl Acids Res, 2002,30: 103-105

[38]Temnykh S, Declerck G, Lukashova A, Lipovich L, Cartinhour S, McCouch S. Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential. Genome Res, 2001, 11:1441-1452

[39]Doi K, Izawa T, Fuse T, Yamanouchi U, Kubo T, Shimatani Z, Yano M, Yoshimura A. Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1. Genes & Dev, 2004, 18: 926-936

[40]Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, Baba T, Yamamoto K, Umehara Y, Nagamura Y, Sasaki T. Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell, 2000, 12: 2473-2484

[41]Kojima S, Takahashi Y, Kobayashi Y, Monna L, Sasaki T, Araki T, Yano M. Hd3a, a rice ortholog of the ArabidopsisFT gene, promotes transition to flowering downstream of Hd1 under short-day conditions. Plant Cell Physiol, 2002, 43: 1096-1105

[42]Takahashi Y, Shomura A, Sasaki T, Yano M. Hd6, a rice quantitative trait locus involved in photoperiod sensitivity, encodes the a subunit of protein kinase CK2. Proc Natl Acad Sci USA, 2001, 98: 7922-7927

[43]Xue W, Xing Y, Weng X, Zhao Y, Tang W, Wang L, Zhou H, Yu S, Xu C, Li X, Zhang Q. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet, 2008, 40: 761-767
Liu P Y, Zhu J, Lu Y. Impacts of QTL ´ environment interactions on genetic response to marker-assisted selection. Acta Genet Sin, 2006, 33: 63-71
[1] HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356.
[2] YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102.
[3] WANG Ze, ZHOU Qin-Yang, LIU Cong, MU Yue, GUO Wei, DING Yan-Feng, NINOMIYA Seishi. Estimation and evaluation of paddy rice canopy characteristics based on images from UAV and ground camera [J]. Acta Agronomica Sinica, 2022, 48(5): 1248-1261.
[4] FU Mei-Yu, XIONG Hong-Chun, ZHOU Chun-Yun, GUO Hui-Jun, XIE Yong-Dun, ZHAO Lin-Shu, GU Jia-Yu, ZHAO Shi-Rong, DING Yu-Ping, XU Yan-Hao, LIU Lu-Xiang. Genetic analysis of wheat dwarf mutant je0098 and molecular mapping of dwarfing gene [J]. Acta Agronomica Sinica, 2022, 48(3): 580-589.
[5] ZHANG Yan-Bo, WANG Yuan, FENG Gan-Yu, DUAN Hui-Rong, LIU Hai-Ying. QTLs analysis of oil and three main fatty acid contents in cottonseeds [J]. Acta Agronomica Sinica, 2022, 48(2): 380-395.
[6] WANG Ying, GAO Fang, LIU Zhao-Xin, ZHAO Ji-Hao, LAI Hua-Jiang, PAN Xiao-Yi, BI Chen, LI Xiang-Dong, YANG Dong-Qing. Identification of gene co-expression modules of peanut main stem growth by WGCNA [J]. Acta Agronomica Sinica, 2021, 47(9): 1639-1653.
[7] HAN Yu-Zhou, ZHANG Yong, YANG Yang, GU Zheng-Zhong, WU Ke, XIE Quan, KONG Zhong-Xin, JIA Hai-Yan, MA Zheng-Qiang. Effect evaluation of QTL Qph.nau-5B controlling plant height in wheat [J]. Acta Agronomica Sinica, 2021, 47(6): 1188-1196.
[8] SHEN Wen-Qiang, ZHAO Bing-Bing, YU Guo-Ling, LI Feng-Fei, ZHU Xiao-Yan, MA Fu-Ying, LI Yun-Feng, HE Guang-Hua, ZHAO Fang-Ming. Identification of an excellent rice chromosome segment substitution line Z746 and QTL mapping and verification of important agronomic traits [J]. Acta Agronomica Sinica, 2021, 47(3): 451-461.
[9] SUN Zhi-Guang, WANG Bao-Xiang, ZHOU Zhen-Ling, FANG Lei, CHI Ming, LI Jing-Fang, LIU Jin-Bo, Bello Babatunde Kazeem, XU Da-Yong. Screening of germplasm resources and QTL mapping for germinability under submerged condition in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2021, 47(1): 61-70.
[10] FU Hong-Yu, CUI Guo-Xian, LI Xu-Meng, SHE Wei, CUI Dan-Dan, ZHAO Liang, SU Xiao-Hui, WANG Ji-Long, CAO Xiao-Lan, LIU Jie-Yi, LIU Wan-Hui, WANG Xin-Hui. Estimation of ramie yield based on UAV (Unmanned Aerial Vehicle) remote sensing images [J]. Acta Agronomica Sinica, 2020, 46(9): 1448-1455.
[11] JIANG Peng,HE Yi,ZHANG Xu,WU Lei,ZHANG Ping-Ping,MA Hong-Xiang. Genetic analysis of plant height and its components for wheat (Triticum aestivum L.) cultivars Ningmai 9 and Yangmai 158 [J]. Acta Agronomica Sinica, 2020, 46(6): 858-868.
[12] Juan MA, Yan-Yong CAO, Li-Feng WANG, Jing-Jing LI, Hao WANG, Yan-Ping FAN, Hui-Yong LI. Identification of gene co-expression modules of maize plant height and ear height by WGCNA [J]. Acta Agronomica Sinica, 2020, 46(3): 385-394.
[13] HUO Qiang,YANG Hong,CHEN Zhi-You,JIAN Hong-Ju,QU Cun-Min,LU Kun,LI Jia-Na. Candidate genes screening for plant height and the first branch height based on QTL mapping and genome-wide association study in rapessed (Brassica napus L.) [J]. Acta Agronomica Sinica, 2020, 46(02): 214-227.
[14] CUI Yue,LU Jian-Nong,SHI Yu-Zhen,YIN Xue-Gui,ZHANG Qi-Hao. Genetic analysis of plant height related traits in Ricinus communis L. with major gene plus polygenes mixed model [J]. Acta Agronomica Sinica, 2019, 45(7): 1111-1118.
[15] HUANG Bing-Yan,QI Fei-Yan,SUN Zi-Qi,MIAO Li-Juan,FANG Yuan-Jin,ZHENG Zheng,SHI Lei,ZHANG Zhong-Xin,LIU Hua,DONG Wen-Zhao,TANG Feng-Shou,ZHANG Xin-You. Improvement of oleic acid content in peanut (Arachis hypogaea L.) by marker assisted successive backcross and agronomic evaluation of derived lines [J]. Acta Agronomica Sinica, 2019, 45(4): 546-555.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!