Soybean,PI471938,Wilting resistance,Root traits,Genetic analysis,SSR markers,QTL,"/>
Acta Agron Sin ›› 2010, Vol. 36 ›› Issue (09): 1476-1483.doi: 10.3724/SP.J.1006.2010.01476
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
LV Cai-Xia1,Guo-Jian-Qiu12**,WANG Ying1,LENG Jian-Tian1,YANG Guang-Ming1,HOU Wen-Sheng1,WU Cun-Xiang1*,HAN Tian-Fu1*
[1] Liu X-Y(刘学义). Drought. In: Lam H-M(林汉明), Chang R-Z(常汝镇), Shao G-H(邵桂花), Liu Z-T(刘忠堂), eds. Soybean Stress Tolerance Research in China (中国大豆耐逆研究). Beijing: China Agriculture Press, 2009. pp 1-60 (in Chinese) [2] Zhang S-G(张士功), Liu G-D(刘国栋), Liu G-L(刘更另). Plant nutrition and drought resistance of crops. Chin Bull Bot (植物学通报), 2001, 18(1): 64-69 (in Chinese with English abstract) [3] Shan L(山仑), Chen G-L(陈国良). Theory and Practice of Dry Land Agriculture in the Loess Plateau (黄土高原旱地农业的理论与实践). Beijing: Science Press, 1993. pp 125-129 (in Chinese) [4] Hudak C M, Patterson R P. Vegetative growth analysis of a drought-resistant soybean plant introduction [J].Crop Sci.1995, 35:464-471 [5] Hudak C M, Patterson R P. Root distribution and soil moisture depletion pattern of a drought-resistant soybean plant introduction [J].Agron J.1996, 88:478-485 [6] Pantalone V R, Rebetzke G J, Burton J W, Carter T E Jr. Phenotypic evaluation of root traits in soybean and applicability to plant breeding [J].Crop Sci.1996, 36:456-459 [7] Carter T E Jr, De Souza P I, Purcell L C. Recent advances in breeding for drought and aluminum resistance in soybean. In: Kauffman H ed. Proceedings of World Soybean Research Conference VI, Chicago, IL, USA, 1999. pp 106-125 [8] Fletcher A L, Sinclair T R, Allen L H Jr. Transpiration responses to vapor pressure deficit in well watered “slow-wilting” and commercial soybean [J].Environ Exp Bot.2007, 61:145-151 [9] Hufstetler E V, Boerma H R, Carter T E Jr, Earl H J. Genotypic variation for three physiological traits affecting drought tolerance in soybean [J].Crop Sci.2007, 47:25-35 [10] King C A, Purcell L C, Brye K R. Differential wilting among soybean genotypes in response to water deficit [J].Crop Sci.2009, 49:290-291 [11] Sinclair T R, Zwieniecki M A, Holbrook N M. Low leaf hydraulic conductance associated with drought tolerance in soybean [J].Physiol Plant.2008, 132:446-451 [12] Carter T E Jr, Rufty T W. Soybean plant introductions exhibiting drought and aluminum tolerance. In: Kuo G ed. Adaptation of Vegetable and Other Food Crops to Temperature and Water Stress. Asian Vegetable Research and Development Center, Shanhua, Taiwan, China, 1993. pp 335-346 [13] Sloane R J, Patterson R P, Carter T E Jr. Field drought tolerance of a soybean plant introduction [J].Crop Sci.1990, 30:118-123 [14] Pantalone V R, Buton J W, Carter T E Jr. Soybean fibrous root heritability and genotypic correlations with agronomic and seed quality traits [J].Crop Sci.1996, 36:1120-1125 [15] Fehr W R, Caviness C E. Stages of Soybean Development. Agric and Home Economics Exp. 1977, Stn. Spec. Rep. 80, Iowa State Univ, Ames, IA, USA, pp 1-11 [16] Lü S-L(吕世霖), Cheng S-H(程舜华). The ecological distribution of seed characteristics of soybean and in relation to breeding. Soybean Sci (大豆科学), 1984, 3(3): 201-207 (in Chinese with English abstract) [17] Xue Q-W(薛青武), Chen P-Y(陈培元). Effect of different types of drought stress on water relations and photosynthesis in wheat. Acta Agric Boreali-Sin (华北农学报), 1990, 5(2): 26-32 (in Chinese with English abstract) [18] Wang J-K(王建康), Gai J-Y(盖钧镒). Identification of major gene and polygene mixed inheritance model of quantitative traits by using joint analysis of P1, F1, P2, F2 and F2:3 generations. Acta Agron Sin (作物学报), 1998, 24(6): 651-659 (in Chinese with English abstract) [19] Gai J-Y(盖钧镒), Zhang Y-M(章元明), Wang J-K(王建康). Genetic System of Quantitative Traits in Plants (植物数量性状遗传体系). Beijing: Science Press, 2003. pp 169-219 (in Chinese) [20] Lincoin S E, Daly M J, Lander E S. Constructing genetics linkage maps with MAPMAKER/EXP Version 3.0: A Tutorial and Reference Manual. Cambridge: Lander E S, 1993. pp 1-9 [21] Wang S C, Basten C J, Zeng Z B. Windows QTL Cartographer 2.5 User Manual. Department of Statistics, North Carolina State University, Raleigh, NC, USA, 2005. http://statgen.ncsu.edu/ qtlcart/WQTLCart.htm [22] Kabelka E A, Diers B W, Fehr W F, LeRoy A R, Baianu I C, You T, Neece D J, Nelson R L. Putative alleles for increased yield from soybean plant introductions [J].Crop Sci.2004, 44:784-791 [23] Pantalone V R, Buton J W, Carter T E Jr. Soybean fibrous root heritability and genotypic correlations with agronomic and seed quality traits [J].Crop Sci.1996, 36:1120-1125 [24] Wang H-L(王宏林), Yu D-Y(喻德跃), Wang Y-J(王永军), Chen S-Y(陈受宜), Gai J-Y(盖钧镒). Mapping QTLs of soybean root weight with RIL population NJRIKY. Hereditas (遗传), 2004, 26 (3): 333-336 (in Chinese with English abstract) [25] Liu Y(刘莹), Gai J-Y(盖钧镒), Lü H-N(吕慧能), Wang Y-J(王永军), Chen S-Y(陈受宜). Identification of drought tolerant germplasm and inheritance and QTL mapping of related root traits in soybean [Glycine max (L.) Merr.]. Act Genet Sin (遗传学报), 2005, 32(8): 855-863 (in Chinese with English abstract) [26] Yang S-P(杨守萍), Chen J-M(陈加敏), He X-H(何小红), Yu D-Y(喻德跃), Gai J-Y(盖钧镒). Inheritance of drought tolerance and root traits of seedling in soybean. Soybean Sci (大豆科学), 2005, 24(4): 275-280 (in Chinese with English abstract) [27] Du W, Yu D, Fu S. Detection of quantitative trait loci for yield and drought tolerance traits in soybean using a recombinant inbred line population [J].J Integr Plant Biol.2009, 51:868-878 [28] Manavalan L P, Guttikonda S K, Tran L S P, Nguyen H T. Physiological and molecular approaches to improve drought resistance in soybean [J].Plant Cell Physiol.2009, 50:1260-1276 [29] Guan J-F(关军锋), Li G-M(李广敏). The root function expression and regulation under drought stress. China Basic Sci (中国基础科学), 2001, (3): 25-28 (in Chinese with English abstract) |
[1] | HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356. |
[2] | YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102. |
[3] | WANG Hao-Rang, ZHANG Yong, YU Chun-Miao, DONG Quan-Zhong, LI Wei-Wei, HU Kai-Feng, ZHANG Ming-Ming, XUE Hong, YANG Meng-Ping, SONG Ji-Ling, WANG Lei, YANG Xing-Yong, QIU Li-Juan. Fine mapping of yellow-green leaf gene (ygl2) in soybean (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(4): 791-800. |
[4] | LIU Lei, ZHAN Wei-Min, DING Wu-Si, LIU Tong, CUI Lian-Hua, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping. Genetic analysis and molecular characterization of dwarf mutant gad39 in maize [J]. Acta Agronomica Sinica, 2022, 48(4): 886-895. |
[5] | ZHAO Mei-Cheng, DIAO Xian-Min. Phylogeny of wild Setaria species and their utilization in foxtail millet breeding [J]. Acta Agronomica Sinica, 2022, 48(2): 267-279. |
[6] | HUANG Li, CHEN Yu-Ning, LUO Huai-Yong, ZHOU Xiao-Jing, LIU Nian, CHEN Wei-Gang, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Advances of QTL mapping for seed size related traits in peanut [J]. Acta Agronomica Sinica, 2022, 48(2): 280-291. |
[7] | ZHANG Yan-Bo, WANG Yuan, FENG Gan-Yu, DUAN Hui-Rong, LIU Hai-Ying. QTLs analysis of oil and three main fatty acid contents in cottonseeds [J]. Acta Agronomica Sinica, 2022, 48(2): 380-395. |
[8] | XU De-Rong, SUN Chao, BI Zhen-Zhen, QIN Tian-Yuan, WANG Yi-Hao, LI Cheng-Ju, FAN You-Fang, LIU Yin-Du, ZHANG Jun-Lian, BAI Jiang-Ping. Identification of StDRO1 gene polymorphism and association analysis with root traits in potato [J]. Acta Agronomica Sinica, 2022, 48(1): 76-85. |
[9] | ZHANG Bo, PEI Rui-Qing, YANG Wei-Feng, ZHU Hai-Tao, LIU Gui-Fu, ZHANG Gui-Quan, WANG Shao-Kui. Mapping and identification QTLs controlling grain size in rice (Oryza sativa L.) by using single segment substitution lines derived from IAPAR9 [J]. Acta Agronomica Sinica, 2021, 47(8): 1472-1480. |
[10] | JIANG Jian-Hua, ZHANG Wu-Han, DANG Xiao-Jing, RONG Hui, YE Qin, HU Chang-Min, ZHANG Ying, HE Qiang, WANG De-Zheng. Genetic analysis of stigma traits with genic male sterile line by mixture model of major gene plus polygene in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2021, 47(7): 1215-1227. |
[11] | LUO Lan, LEI Li-Xia, LIU Jin, ZHANG Rui-Hua, JIN Gui-Xiu, CUI Di, LI Mao-Mao, MA Xiao-Ding, ZHAO Zheng-Wu, HAN Long-Zhi. Mapping QTLs for yield-related traits using chromosome segment substitution lines of Dongxiang common wild rice (Oryza rufipogon Griff.) and Nipponbare (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2021, 47(7): 1391-1401. |
[12] | YIN Ming, YANG Da-Wei, TANG Hui-Juan, PAN Gen, LI De-Fang, ZHAO Li-Ning, HUANG Si-Qi. Genome-wide identification of GRAS transcription factor and expression analysis in response to cadmium stresses in hemp (Cannabis sativa L.) [J]. Acta Agronomica Sinica, 2021, 47(6): 1054-1069. |
[13] | HUANG Xing, XI Jin-Gen, CHEN Tao, QIN Xu, TAN Shi-Bei, CHEN He-Long, YI Ke-Xian. Identification and expression of PAL genes in sisal [J]. Acta Agronomica Sinica, 2021, 47(6): 1082-1089. |
[14] | HAN Yu-Zhou, ZHANG Yong, YANG Yang, GU Zheng-Zhong, WU Ke, XIE Quan, KONG Zhong-Xin, JIA Hai-Yan, MA Zheng-Qiang. Effect evaluation of QTL Qph.nau-5B controlling plant height in wheat [J]. Acta Agronomica Sinica, 2021, 47(6): 1188-1196. |
[15] | WU Ran-Ran, LIN Yun, CHEN Jing-Bin, XUE Chen-Chen, YUAN Xing-Xing, YAN Qiang, GAO Ying, LI Ling-Hui, ZHANG Qin-Xue, CHEN Xin. Genetic and cytological analysis of male sterile mutant msm2015-1 in mungbean [J]. Acta Agronomica Sinica, 2021, 47(5): 860-868. |
|