Acta Agron Sin ›› 2010, Vol. 36 ›› Issue (10): 1786-1790.doi: 10.3724/SP.J.1006.2010.01786
• RESEARCH ACTIVITIES • Previous Articles Next Articles
WU Xin1, 2,CUI Zi-Tian1,HU Yan-Min1,LIU Zong-Hua1,LI Shao-Wei2,WANG Jian-Wen2,TANG Ji-Hua1,*
[1]Bassetti P, Westgate M E. Senescence and receptivity of maize silks. Crop Sci, 1993, 33: 275-278 [2]Li J-C(李金才), Cui Y-H(崔彦宏), Dong H-R(董海荣), Wang Y-Z(王艳哲), Zhang L-H(张丽华). The advances on the growth and development and the fertilization capability of maize (Zea mays L.) silk. J Hebei Agric Univ (河北农业大学学报), 2002, 25(1): 86-89 [3]Zhang W-Q(张维强), Shen X-Y(沈秀瑛), Dai J-Y(戴俊英). The effects of drought to pollen, silk vigor and kernel formation. J Maize Sci (玉米科学), 1993, 1(2): 45-48 (in Chinese) [4]Peterson D P. Duration of receptiveness in corn silks. Agron J, 1949, 34: 369-371 [5]Cárcova J, Otegui M E. Ear temperature and pollination timing effects on maize kernel set. Crop Sci, 2001, 41: 1809-1815 [6]Hall A J, Vilella F, Trapani N, Chimenti C. The effects of water stress and genotype on the dynamics of pollen-shedding and silking in maize. Field Crops Res, 1982, 5: 349-363 [7]Otegui M E, Andrade F H, Suero E E. Growth, water use, and kernel abortion of maize subjected to drought at silking. Field Crops Res, 1995, 40: 87-94 [8]Otegui M E. Kernel set and flower synchrony within the ear of maize: II. Plant population effects. Crop Sci, 1997, 37: 448-455 [9]Schoper J B, Lambert R J, Vasilas B L. Pollen viability, pollen shedding, and combining ability for tassel heat tolerance in maize. Crop Sci, 1987, 27: 27-31 [10]Schoper J B, Lambert R J, Vasilas B L. Maize pollen viability and ear receptivity under water and high temperature stress. Crop Sci, 1986, 26: 1029-1033 [11]Anderson S R, Lauer M J, Schoper J B, Shibles R M. Pollination timing effects on kernel set and silk receptivity in four maize hybrids. Crop Sci, 2004, 44: 464-473 [12]Bassetti P, Westgate M E. Emergence, elongation, and senescence of maize silks. Crop Sci, 1993, 33: 271-275 [13]Bassetti P, Westgate M E. Senescence and receptivity of maize silks. Crop Sci, 1993, 33: 275-278 [14]Lander E S, Green P, Abrahamson J, Barlow A, Daly M J, Lincoln S E, Etoh T. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics, 1987, 1: 174–181 [15]Wang S, Basten C J, Zeng Z B. Windows QTL Cartographer 2.0. Department of Statistics, North Carolina State University, Raleigh, NC, 2001-2004 [16]Zeng Z B. Precision mapping of quantitative trait loci. Genetics, 1994, 136: 1457-1468 [17]Lander E S, Botstein D. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics, 1989, 12: 185-199 [18]Cárcova J, Uribelarrea M, Borrás L, Otegui M E, Westgate M E. Synchronous pollination within and between ears improves kernel set in maize. Crop Sci, 2000, 40: 1056-1061 [19]Uribelarrea M, Cárcova J, Otegui M E, Westgate M E. Pollen production, pollination dynamics, and kernel set in maize. Crop Sci, 2002, 42: 1910-1918 [20]Struik P C, Doorgeest M, Boonman J G. Environmental effects on flowering characteristics and kernel set of maize (Zea may L.). Neth J Agric Sci, 1986, 34: 469-484 [21]Cárcova J, Andrieu B, Otegui M E. Silk elongation in maize: relationship with flower development and pollination. Crop Sci, 2003, 43: 914-920 [22]Berke T, Rocheford T R. Quantitative trait loci for flowering, plant and ear height, and kernel traits in maize. Crop Sci, 1995, 35: 1542-1549 [23]Khairallah M, Bohn M, Jiang C Z, Deutsch J A, Jewell D C, Mihm J A, Melchinger A E, Gonzalez de Leon D, Hoisington D. Molecular mapping of QTL for southwestern corn borer resistance, plant height and flowering in tropical maize. Z Pflanzenzuecht, 1998, 117: 309-318 [24]Hu Y-M(胡彦民), Wu X(吴欣), Li C-X(李翠香), Fu Z-Y(付志远), Liu Z-H(刘宗华), Tang J-H(汤继华). Genetic analysis on the related traits of florescence for hybrid seed production in maize. J Nanjing Agric Univ (南京农业大学学报), 2008, 31(1): 11-16 (in Chinese with English abstract) |
[1] | HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356. |
[2] | CHEN Song-Yu, DING Yi-Juan, SUN Jun-Ming, HUANG Deng-Wen, YANG Nan, DAI Yu-Han, WAN Hua-Fang, QIAN Wei. Genome-wide identification of BnCNGC and the gene expression analysis in Brassica napus challenged with Sclerotinia sclerotiorum and PEG-simulated drought [J]. Acta Agronomica Sinica, 2022, 48(6): 1357-1371. |
[3] | TIAN Tian, CHEN Li-Juan, HE Hua-Qin. Identification of rice blast resistance candidate genes based on integrating Meta-QTL and RNA-seq analysis [J]. Acta Agronomica Sinica, 2022, 48(6): 1372-1388. |
[4] | WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450. |
[5] | YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487. |
[6] | CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515. |
[7] | SHAN Lu-Ying, LI Jun, LI Liang, ZHANG Li, WANG Hao-Qian, GAO Jia-Qi, WU Gang, WU Yu-Hua, ZHANG Xiu-Jie. Development of genetically modified maize (Zea mays L.) NK603 matrix reference materials [J]. Acta Agronomica Sinica, 2022, 48(5): 1059-1070. |
[8] | YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102. |
[9] | ZHANG Yi-Zhong, ZENG Wen-Yi, DENG Lin-Qiong, ZHANG He-Cui, LIU Qian-Ying, ZUO Tong-Hong, XIE Qin-Qin, HU Deng-Ke, YUAN Chong-Mo, LIAN Xiao-Ping, ZHU Li-Quan. Codon usage bias analysis of S-locus genes SRK, SLG, and SP11/SCR in Brassica oleracea [J]. Acta Agronomica Sinica, 2022, 48(5): 1152-1168. |
[10] | WANG Hao-Rang, ZHANG Yong, YU Chun-Miao, DONG Quan-Zhong, LI Wei-Wei, HU Kai-Feng, ZHANG Ming-Ming, XUE Hong, YANG Meng-Ping, SONG Ji-Ling, WANG Lei, YANG Xing-Yong, QIU Li-Juan. Fine mapping of yellow-green leaf gene (ygl2) in soybean (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(4): 791-800. |
[11] | JIN Min-Shan, QU Rui-Fang, LI Hong-Ying, HAN Yan-Qing, MA Fang-Fang, HAN Yuan-Huai, XING Guo-Fang. Identification of sugar transporter gene family SiSTPs in foxtail millet and its participation in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 825-839. |
[12] | XU Jing, GAO Jing-Yang, LI Cheng-Cheng, SONG Yun-Xia, DONG Chao-Pei, WANG Zhao, LI Yun-Meng, LUAN Yi-Fan, CHEN Jia-Fa, ZHOU Zi-Jian, WU Jian-Yu. Overexpression of ZmCIPKHT enhances heat tolerance in plant [J]. Acta Agronomica Sinica, 2022, 48(4): 851-859. |
[13] | LIU Lei, ZHAN Wei-Min, DING Wu-Si, LIU Tong, CUI Lian-Hua, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping. Genetic analysis and molecular characterization of dwarf mutant gad39 in maize [J]. Acta Agronomica Sinica, 2022, 48(4): 886-895. |
[14] | YAN Yu-Ting, SONG Qiu-Lai, YAN Chao, LIU Shuang, ZHANG Yu-Hui, TIAN Jing-Fen, DENG Yu-Xuan, MA Chun-Mei. Nitrogen accumulation and nitrogen substitution effect of maize under straw returning with continuous cropping [J]. Acta Agronomica Sinica, 2022, 48(4): 962-974. |
[15] | LIU Dan, ZHOU Cai-E, WANG Xiao-Ting, WU Qi-Meng, ZHANG Xu, WANG Qi-Lin, ZENG Qing-Dong, KANG Zhen-Sheng, HAN De-Jun, WU Jian-Hui. Rapid identification of adult plant wheat stripe rust resistance gene YrC271 using high-throughput SNP array-based bulked segregant analysis [J]. Acta Agronomica Sinica, 2022, 48(3): 553-564. |
|