Acta Agron Sin ›› 2011, Vol. 37 ›› Issue (05): 772-777.doi: 10.3724/SP.J.1006.2011.00772
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
FENG Jing1,FU Xue-Qian1,WANG Ting-Ting2,TAO Yong-Sheng2,GAO You-Jun1,*,ZHENG Yong-Lian1
[1]Carpenter A E, Sabatini D M. Systematic genome-wide screens of gene function. Genetics, 2004, 5: 11–12 [2]Alonso J M, Stepanova A N, Leisse T J, Kim C J, Chen H M, Shinn P, Stevenson D K, Zimmerman J, Barajas P, Cheuk R, Gadrinab C, Heller C, Jeske A, Koesema E, Meyers C C, Parker H, Prednis L, Ansari Y, Choy N, Deen H, Geralt M, Hazari N, Hom E, Karnes M, Mulholland C, Ndubaku R, Schmidt I, Guzman P, Aguilar-Henonin L, Schmid M, Weigel D, Carter D E, Marchand T, Risseeuw E, Brogden D, Zeko A, Crosby W L, Berry C C, Ecker J R. Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science, 301: 653–657 [3]Rosso M G, Y Li, Strizho N, Reiss B, Dekker K, Weisshaar B. An Arabidopsis thaliana T-DNA mutagenized population (GABI-Kat) for flanking sequence tag-based reverse genetics. Plant Mol Biol, 2003, 53: 247–259 [4]An G H, Lee S, Kim S H, Kim S R. Molecular genetics using T-DNA in rice. Plant Cell Physiol, 2005, 46: 14–22 [5]Yazaki J, Kojima K, Suzuki K, Kishimoto N, Kikuchi S. The Rice PIPELINE: a unification tool for plant functional genomics. Nucl Acids Res, 2004, 32: D383–D387 [6]Zhang J, Guo D, Chang Y X, You C J, Li X W, Dai X X, Weng Q J, Zhang J W, Chen G X, Li X H, Liu H F, Han B, Zhang Q F, Wu C Y. Non-random distribution of T-DNA insertions at various levels of the genome hierarchy as revealed by analyzing 13 804 T-DNA flanking sequences from an enhancer-trap mutant library. Plant J, 2007, 49: 947–959 [7]Droc G, Perin C, Fromentin S, Larmande P, OryGenesD B. 2008 update: database interoperability for functional genomics of rice. Nucl Acids Res, 2009, 37: D992–D995 [8]Lunde C F, Morrow D J, Roy L M, Walbot V. Progress in maize gene discovery: a project update. Funct Integr Genomics, 2003, 3: 25–32 [9]Settles A M, Holding D R, Tan B C, Latshaw S P, Liu J, Suzuki M, Li L, O'Brien B A, Fajardo D S, Wroclawska E, Tseung C, Lai J S, Hunter C T, Avigne W T, Baier J, Messing J, Hannah L C, Koch K E, Becraft P W, Larkins B A, McCarty D R. Sequence-indexed mutations in maize using the UniformMu transposon-tagging population. BMC Genomics, 2007, 8: 116 [10]McClintock B. Mutable loci in maize. Carnegie Inst Wash Year Book, 1948, 47: 155–169 [11]Liu W T, Gao Y J, Teng F, Shi Q, Zheng Y L. Construction and genetic analysis of mutator insertion mutant population in maize. Chin Sci Bull, 2006, 51: 2604–2610 [12]Walbot V. Saturation mutagenesis using maize transposons. Curr Opin Plant Biol, 2000, 3: 103–107 [13]Brutnell T P. Transposon taggging in maize. Funct Integr Genomics, 2002, 2: 4–12 [14]Dooner H K, Belachew R. Transposition pattern of the maize element Ac from the bz-m2 (Ac) allele. Genetics, 1989, 122: 447–457 [15]Brutnell T P, Conrad L J. Transposon tagging using Activator (Ac) in maize. Methods Mol Biol, 2003, 236: 157–176 [16]Cowperthwaite M, Park W, Xu Z N, Yan X H, Maurais S C, Dooner H K. Use of the transposon Ac as a gene-searching engine in the maize genome. Plant Cell, 2002, 14: 713–726 [17]Robertson D S. Characterization of a mutator system in maize. Mutation Res, 1978, 51: 21–28 [18]Lisch D. Mutator transposons. Trends Plant Sci, 2002, 7: 498–504 [19]Settles A M. Maize community resources for forward and reverse genetics. Maydica, 2005, 50: 405–411 [20]Kriz A L, Larkins B A. Molecular Genetic Approaches to Maize Improvement Biotechnology in Agriculture and Forestry, vol 63. Heidelberg: Springer-Verlag Berlin Heidelberg, 2009. pp 143–159 [21]Walbot V, Hulbert G N. MuDR/Mu Transposon of Maize. Washington, D C: Amer Soc Microbiology, 2002 [22]Bennetzen J L. The Mutator transposable element system of maize. Curr Top Microbiol Immunol, 1996, 204: 195–229 [23]Liu S, Yeh C T, Ji T, Ying K, Wu H, Tang H M, Fu Y, Nettleton D, Schnable P S. Mu transposon insertion sites and meiotic recombination events co-localize with epigenetic marks for open chromatin across the maize genome. PLoS Genet, 2009, 5: e1000733 [24]Hershberger R J, Warren C A, Walbot V. Mutator activity in maize correlates with the presence and expression of the Mu transposable element Mu9. Proc Natl Acad Sci USA, 1991, 88: 10198–202 [25]Takumi S, Walbot V. Epigenetic silencing and unstable inheritance of MuDR activity monitored at four b22-mu alleles in maize (Zea mays L.). Genes Genet Syst, 2007, 82: 387–401 [26]Cresse A D, Hulbert S H, Brown W E, Lucas J R, Bennetzen J L. Mu1-related transposable elements of maize preferentially insert into low copy number DNA. Genetics, 1995, 140: 315–24 [27]Fernandes J, Dong Q F, Schneider B, Morrow D J, Nan G L, Brendel V, Walbot V. Genome-wide mutagenesis of Zea mays L. using RescueMu transposons. Genome Biol, 2004, 5: R82 [28]Settles A M, Latshaw S, McCarty D R. Molecular analysis of high-copy insertion sites in maize. Nucl Acids Res, 2004, 32: e54 [29]Frey M, Stettner C, Gierl A. A general method for gene isolation in tagging approaches: amplification of insertion mutagenised sites (AIMS). Plant J, 1998, 13: 717–721 [30]Liu Y G, Mitsukawa N, Oosumi T, Whittier R F. Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J, 1995, 8: 457–463 [31]Yi G, Luth D, Goddman T D, Lawrence C L, Becraft P W. High-throughput linkage of Mutator insertion sites in maize. Plant J, 2009, 58: 883–892 [32]Liu S Z, Dietrich C R, Schnable P S. DLA-based strategies for cloning insertion mutants: cloning the gl4 locus of maize using Mu transposon tagged alleles. Genetics, 2009, 183: 1215–1225 [33]Ashburner M, Ball C A, Blake J A, Botstein D, Butler H, Cherry J M, Davis A P, Dolinski K, Dwight S S, Eppig J T, Harris M A, Hill D P, Issel-Tarver L, Kasarskis A, Lewis S, Matese J C, Richardson J E, Ringwald M, Rubin G M, Sherlock G. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet, 2000, 25: 25–29 [34]Maere S, Heymans K, Kuiper M. BiNGO: a cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics, 2005, 21: 3448–3449 [35]Shannon P, Markiel A, Ozier O, Baliga N S, Wang J T, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res, 2003, 13: 2498–2504 [36]McCarty D R, Hattori T, Carson C B, Vasil V, Lazar M, Vasil I K. The Viviparous-1 developmental gene of maize encodes a novel transcriptional activator. Cell, 1991, 66: 895–905 [37]Porch T G, Tseung C W, Schmelz E A, Settles A M. The maize Viviparous10/Viviparous13 locus encodes the Cnx1 gene required for molybdenum cofactor biosynthesis. Plant J, 2006, 45: 250–263 [38]Tan B C, Schwartz S H, Zeevaart J A, McCarty D R. Genetic control of abscisic acid biosynthesis in maize. Proc Natl Acad Sci USA, 1997, 94: 12235–12240 [39]Suzuki M, Settles A M, Tseung C W, Li Q B, Latshaw S, Wu S, Porch T G, Schmelz E A, James M G, McCarty D R. The maize viviparous15 locus encodes the molybdopterin synthase small subunit. Plant J, 2006, 45: 264–274 [40]Bensen R J, Johal G S, Crane V C, Tossberg J T, Schnable P S, Meeley R B, Briggs S P. Cloning and characterization of the maize An1 gene. Plant Cell, 1995, 7: 75–84 [41]May B P, Liu H, Vollbrecht E, Senior L, Rabinowicz P D, Roh D, Pan X, Stein, Freeling M, Alexander D, Martienssen R. Maize-targeted mutagenesis: a knockout resource for maize. Proc Natl Acad Sci USA, 2003, 100: 11541–11546 |
[1] | CUI Lian-Hua, ZHAN Wei-Min, YANG Lu-Hao, WANG Shao-Ci, MA Wen-Qi, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping, YANG Qing-Hua. Molecular cloning of two maize (Zea mays) ZmCOP1 genes and their transcription abundances in response to different light treatments [J]. Acta Agronomica Sinica, 2022, 48(6): 1312-1324. |
[2] | LI Wen-Lan, LI Wen-Cai, SUN Qi, YU Yan-Li, ZHAO Meng, LU Shou-Ping, LI Yan-Jiao, MENG Zhao-Dong. A study of expression pattern of auxin response factor family genes in maize (Zea mays L.) [J]. Acta Agronomica Sinica, 2021, 47(6): 1138-1148. |
[3] | ZHOU Lian, LIU Chao-Xian, CHEN Qiu-Lan, WANG Wen-Qin, YAO Shun, ZHAO Zi-Kun, ZHU Si-Ying, HONG Xiang-De, XIONG Yu-Han, CAI Yi-Lin. Fine mapping and candidate gene analysis of maize defective kernel mutant dek54 [J]. Acta Agronomica Sinica, 2021, 47(10): 1903-1912. |
[4] | MA Shuo, JIAO Yue, YANG Jiang-Tao, WANG Xu-Jing, WANG Zhi-Xing. Molecular characterization identification by genome sequencing of transgenic glyphosate-tolerant rice G2-7 [J]. Acta Agronomica Sinica, 2020, 46(11): 1703-1710. |
[5] | Xiao-Qiang ZHAO,Bin REN,Yun-Ling PENG,Ming-Xia XU,Peng FANG,Ze-Long ZHUANG,Jin-Wen ZHANG,Wen-Jing ZENG,Qiao-Hong GAO,Yong-Fu DING,Fen-Qi CHEN. Epistatic and QTL × environment interaction effects for ear related traits in two maize (Zea mays) populations under eight watering environments [J]. Acta Agronomica Sinica, 2019, 45(6): 856-871. |
[6] | Yun-Fu LI,Jing-Xian WANG,Yan-Fang DU,Hua-Wen ZOU,Zu-Xin ZHANG. Identification of indeterminate domain protein family genes associated with flowering time in maize [J]. Acta Agronomica Sinica, 2019, 45(4): 499-507. |
[7] | ZHANG Chun-Xiao,LI Shu-Fang,JIN Feng-Xue,LIU Wen-Ping,LI Wan-Jun,LIU Jie,LI Xiao-Hui. QTL mapping of salt and alkaline tolerance-related traits at the germination and seedling stage in maize (Zea mays L.) using three analytical methods [J]. Acta Agronomica Sinica, 2019, 45(4): 508-521. |
[8] | Zhong-Xiang LIU,Mei YANG,Peng-Cheng YIN,Yu-Qian ZHOU,Hai-Jun HE,Fa-Zhan QIU. Fine Mapping and Genetic Effect Analysis of a Major QTL qPH3.2 Associated with Plant Height in Maize (Zea mays L.) [J]. Acta Agronomica Sinica, 2018, 44(9): 1357-1366. |
[9] | Qi-Yue WANG, Shu-Jun MENG, Ke ZHANG, Zhan-Hui ZHANG, Ji-Hua TANG, Dong DING. Investigation of Maize miRNA Involved in Developing-ear Heterosis [J]. Acta Agronomica Sinica, 2018, 44(6): 796-813. |
[10] | Qing-Fei WU, Lei QIN, Lei DONG, Ze-Hong DING, Ping-Hua LI, Bai-Juan DU. Transcriptome Analysis on a Maize Photosynthetic Mutant hcf136 (high chlorophyll fluorescence 136) [J]. Acta Agronomica Sinica, 2018, 44(04): 493-504. |
[11] | YAN Lei,YANG Zong-Ju,SU Liang,XIAO Yang,GUO Lin,SONG Mei-Fang,SUN Lei,MENG Fan-Hua,BAI Jian-Rong,YANG Jian-Ping. Molecular Cloning of Two Maize (Zea mays) CRY1a Genes and Their Expression Patterns of in Response to Different Light Treatments [J]. Acta Agron Sin, 2016, 42(09): 1298-1308. |
[12] | YUAN Huan-Huan,SUN Guang-Hua,YAN Lei,GUO Lin,FAN Xiao-Cong,XIAO Yang,MENG Fan-Hua,SONG Mei-Fang,ZHAN Ke-Hui,YANG Qing-hua, YANG Jian-Ping. Molecular Cloning of ZmPP6C Gene and Its Expression Patterns in Response to Light and Stress Treatments in Maize (Zea mays L.) [J]. Acta Agron Sin, 2016, 42(02): 170-179. |
[13] | LI Cong-Feng,ZHAO Ming,LIU Peng,ZHANG Ji-Wang,YANG Jin-Sheng,DONG Shu-Ting. Characteristics of Grain Filling and Nitrogen Translocation of Maize Parent Lines Released in Different Eras in China [J]. Acta Agron Sin, 2014, 40(11): 1990-1998. |
[14] | MA Hai-Zhen,ZHU Wei-Wei,WANG Qi-Bai,WANG Guo-Liang,LI Xin-Zhen,QI Bao-Xiu. Regeneration Capacity and Some Affecting Factors of Different Parts of Young Seedlings of Maize (Zea mays L.) [J]. Acta Agron Sin, 2014, 40(02): 313-319. |
[15] | LI Zhao,ZHANG Deng-Feng,SUN Yong-Hua,WU Xun,LI Yong-Xiang,SHI Yun-Su,SONG Yan-Chun,YANG De-Guang,WANG Tian-Yu,LI Yu. Sequence Diversity of ZmLEC1 and Association Analysis of Embryogenic calli Formation Ability in Maize [J]. Acta Agron Sin, 2013, 39(10): 1727-1738. |
|