Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2012, Vol. 38 ›› Issue (06): 1127-1134.doi: 10.3724/SP.J.1006.2012.01127

• RESEARCH NOTES • Previous Articles     Next Articles

Expression of Potassium Metabolism-Related Gene in Tobacco

XIA Kai1,2,XU Shuang-Hong1,WANG Xiang1,DAI Lin-Jian2,LI Peng-Fei3,LUO Jian-Xing2,QI Shao-Wu2,YANG Qiong2,ZHOU Qing-Ming2,*   

  1. 1 Hunan Tobacco Industrial Co., Ltd, Changsha 410014, China; 2 Hunan Agricultural University, Changsha 410128, China; 2 Wenshan Company of Yunnan Provincial Tobacco Company, Wenshan 663000, China
  • Received:2011-09-21 Revised:2012-01-15 Online:2012-06-12 Published:2012-04-06
  • Contact: 周清明, E-mail: zqm8051@hunau.net, Tel: 0731-84618051 E-mail:xiak0502@hngytobacco.com

Abstract: The quality of flue-cured tobacco in production is currently limited by low potassium level in leaf. A simple and effective way to alleviate the supply of potassium in soil is screening the potassium-enriched flue-cured tobacco types. In the experiment, the tobacco seedlings were cultured in nutrient solution, and then replanted in sand soil. To investigate the potassium metabolism related gene’s expression and kinetic parameters of potassium uptake and utilization with six different lines including five potassium-enriched genotypes of K2, K3, K5, K7, and K9 and a conventional genotype of K326. The results showed that the tobacco lines K2, K7, and K9 were typical potassium-enriched genotypes, TORK1 and NtTPK1 out of 12 genes performed high expression. The ability of potassium absorption of K3, K5, K9, K7, and K2 was significantly stronger than that of K326. The potassium absorption abilities of potassium -enriched types of K9, K2, K7, K3, and K5 were stronger but their use efficiencies were lower than these of K326 in high potassium environment, and higher in low potassium environment, especially for the genotypes K2, K7, and K9.

Key words: Potassium metabolism, Gene, Expression, Nicotiana tabacum

[1]Chaplin J R. Production factors affecting chemical compounds of the tobacco leaf. Recent Adv Tob Sci, 1980, (6): 3–63

[2]Sims J L, Casy M, Legget J E. Effect of transplant water fertilization on growth and chemical composition of burley tobacco. Annual report of the college of agriculture and the K. Y. Agric Exp Station, 1981, 59–60

[3]Cao Z-H(曹志洪), Hu G-S(胡国松). Relationship between control of potassium and trace elements and quality of tobacco leaf. Soils (土壤), 1993, 25(3): 119–128 (in Chinese)

[4]Anderson J A, Huprikar S S, Kochian L V, Lucas W J, Gaber R F. Function expression of a probable Arabidopsis thaliana potassium channel in Saccharomycex cerevisiae. Proc Natl Acad Sci USA, 1992, 89: 3736–3740

[5]Sentenac H, Bonneaud N, Minet M. Cloning and expression in yeast of a plant potassium ion transport system. Science, 1992, 256: 663–665

[6]Lu L-M(鲁黎明). In silico cloning and bioinformatic analysis of TPK1 gene in tobacco. Sci Agric Sin (中国农业科学), 2011, 44(1): 28–35 (in Chinese with English abstract)

[7]Sano T, Becker D, Ivashikina N, Wegner L H, Zimmermann U, Roelfsema M R, Nagata T, Hedrich R. Plant cells must pass a K+ threshold to re-enter the cell cycle. Plant J, 2007, 50: 401–413

[8]Ache P, Becker D, Ivashikina N, Dietrich P, Roelfsema M R G, Hedrich R. GORK, a delayed outward rectifier expressed in guard cells of Arabidopsis thaliana, is a K+-selective, K+ -sensing ion channel. FEBS, 2000, 486, 93–98

[9]Hosy E, Vavasseur A, Mouline K, Dreyer I, Gaymard F, Poree F, Boucherez J, Lebaudy A, Bouchez D, Very A A, Simonneau T, Thibaud J B, Sentenac H. The Arabidopsis outward K+ channel GORK is involved in regulation of stomatal movements and plant transpiration. Proc Natl Acad Sci USA, 2003, 100: 5549–5554

[10]Xu J, Li H D, Chen L Q, Wang Y, Liu L L, He L, Wu W H. A protein kinase, interacting with two calcineurin B-like proteins, regulates K+ transporter AKT1 in Arabidopsis. Cell, 2006, 125(7): 1347–1360

[11]Dai L-J(戴林建), Xu S-H(徐双红), Zhu L-S(朱列书), Zhong J(钟军), Xia K(夏凯). Research of tobacco offspring characters variation causing by introducted DNA of high potassium plant. Crop Res (作物研究), 2010, (2): 109–111 (in Chinese with English abstract)

[12]Dai L-J(戴林建), Xu S-H(徐双红), Sun H-L(孙焕良), Wang K(王坤), Zhong J(钟军). SRAP analysis on the purity of tobacco D4 generation with portulaca DNA. Tob Sci (烟草科技), 2010, (7): 48–52 (in Chinese with English abstract)

[13]Yang T-Z(杨铁钊), Peng Y-F(彭玉富). Potassium accumulation characteristics of rich-potassium genotypic flue-cured tobacco. Plant Nutr Fert Sci (植物营养与肥料学报), 2006, 12(5): 750–753 (in Chinese)

[14]Yang T-Z(杨铁钊), Yang Z-X(杨志晓), Nie H-Z(聂红资), Zhang X-Q(张小全), Liu Y-J(刘友杰), Shang X-Y(尚晓颍), Ren Z-Y(任周营), Fan J-H(范进华). Potassium accumulation and root physiological characteristics of potassium-enriched flue-cured tobacco genotypes. Acta Agron Sin (作物学报), 2009, 35(3): 535–540 (in Chinese with English abstract)

[15]Zhao X-Q(赵学强), Jie X-L(介晓磊), Li Y-T(李有田), Xu X-J(许仙菊), Tan J-F(谭金芳), Hua D-L(化党领). Studies in screening indices and screening environments for efficient potassium wheat genotypes. Plant Nutr Fert Sci (植物营养与肥料学报), 2006, 12(2): 277–281 (in Chinese with English abstract)

[16]Verwoerd T C, Dekker B M, Hoekema A. A small-scale procedure for the rapid isolation of plant RNAs. Nucl Acids Res, 1989, 17: 2362

[17]Guo Z-K(郭兆奎), Yang Q(杨谦), Yan P-Q(颜培强), Wan X-Q(万秀清). Cloning and homology modeling of a potassium channel gene NKC1 from Nicotiana rustica. Acta Tab Sin (中国烟草学报), 2008, 14(5): 63–68 (in Chinese with English abstract)

[18]Liu K, Luan S. Intracellular potassium sensing of SKOR, a shaker-type K-channel from Arabidopsis. Plant J, 2006, 46, 260–268

[19]Pilot G, Lacombe B, Gaymard F, Cherel I, Boucherez J, Thibaud J B, Sentenac H. Guard cell inward K+ channel activity in Arabidopsis involves expression of the twin channel subunits KAT1 and KAT2. J Biol Chem, 2001, 276, 3215–3221

[20]Gaymard F, Pilot G, Lacombe B, Bouchez D, Bruneau D, Boucherez J, Michaux-Ferrière N, Thibaud J B, Sentenac H. Identification and disruption of a plant Shaker-like outward channel involved in K+ release into the xylem sap. Cell, 1998, 94, 647–655

[21]Mao R-D(毛达如). Plant Nutrition Research (植物营养研究). Beijing: Beijing Agricultural University Press, 1994. pp 132–135 (in Chinese)

[22]Min S-Z(闵水珠). Molecular biology research progress on plant potassium ion channel. Acta Agric Zhejiangensis (浙江农业学报), 2005, 17(3): 163–169 (in Chinese with English abstract)

[23]Shin R, Schachtman D P. Hydrogen peroxide mediates plant root cell response to nutrient deprivation. Proc Natl Acad Sci USA, 2004, 101: 8827–8832

[24]Zhao X-Q(赵学强), Jie X-L(介晓磊), Li Y-T(李有田), Xu X-J(许仙菊), Tan J-F(谭金芳), Hua D-L(化党领). Dynamics analysis of absorption of potassium ion in wheat with different genotypes. Plant Nutr Fert Sci (植物营养与肥料学报), 2006, 12(3): 307–312 (in Chinese with English abstract)

[25]Wang Z-Q(汪自强), Dong M-Y(董明远). Efficiency of using potassium for spring soybean varieties with different level of pitassium. Soybean Sci (大豆科学), 1996, 15(3): 202–207 (in Chinese with English abstract)

[26]Su B, Han X G, Huang J H, Qu C M. The nutrient use efficiency (NUE) of plants and its implications on the strategy of plant adaptation to nutrient Stressed environments. Acta Ecol Sin, 2000, 20: 335–343

[27]Bridgham S D, McClaugherty C A, Richardson C J, Pastor J. Nutrient-use-efficiency: a litter fall index, a model and a test along a nutrient availability gradient in North Carolina peat lands. Am Nat, 1995, 145: 1–21

[28]Jiang C-C(姜存仓), Wang Y-H(王运华), Lu J-W(鲁剑巍), Xu F-S(徐芳森), Gao X-Z(高祥照). Advances of study on the K-Efficiency in different plant genotypes. J Huazhong Agric Univ (华中农业大学学报), 2004, 23(4): 483–487 (in Chinese with English abstract)

[29]Mpelasoka B S, Schachtman D P, Treeby M T, Thomas M R. A review of potassium nutrition in grapevines with special emphasis on berry accumulation. Aust J Grape Wine Res, 2003, 9: 154–168
[1] XIAO Ying-Ni, YU Yong-Tao, XIE Li-Hua, QI Xi-Tao, LI Chun-Yan, WEN Tian-Xiang, LI Gao-Ke, HU Jian-Guang. Genetic diversity analysis of Chinese fresh corn hybrids using SNP Chips [J]. Acta Agronomica Sinica, 2022, 48(6): 1301-1311.
[2] CUI Lian-Hua, ZHAN Wei-Min, YANG Lu-Hao, WANG Shao-Ci, MA Wen-Qi, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping, YANG Qing-Hua. Molecular cloning of two maize (Zea mays) ZmCOP1 genes and their transcription abundances in response to different light treatments [J]. Acta Agronomica Sinica, 2022, 48(6): 1312-1324.
[3] ZHANG Yu-Kun, LU Ying, CUI Kan, XIA Shi-Tou, LIU Zhong-Song. Allelic variation and geographical distribution of TT8 for seed color in Brassica juncea Czern. et Coss. [J]. Acta Agronomica Sinica, 2022, 48(6): 1325-1332.
[4] CHEN Song-Yu, DING Yi-Juan, SUN Jun-Ming, HUANG Deng-Wen, YANG Nan, DAI Yu-Han, WAN Hua-Fang, QIAN Wei. Genome-wide identification of BnCNGC and the gene expression analysis in Brassica napus challenged with Sclerotinia sclerotiorum and PEG-simulated drought [J]. Acta Agronomica Sinica, 2022, 48(6): 1357-1371.
[5] TIAN Tian, CHEN Li-Juan, HE Hua-Qin. Identification of rice blast resistance candidate genes based on integrating Meta-QTL and RNA-seq analysis [J]. Acta Agronomica Sinica, 2022, 48(6): 1372-1388.
[6] ZHENG Chong-Ke, ZHOU Guan-Hua, NIU Shu-Lin, HE Ya-Nan, SUN wei, XIE Xian-Zhi. Phenotypic characterization and gene mapping of an early senescence leaf H5(esl-H5) mutant in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1389-1400.
[7] WANG Jing-Tian, ZHANG Ya-Wen, DU Ying-Wen, REN Wen-Long, LI Hong-Fu, SUN Wen-Xian, GE Chao, ZHANG Yuan-Ming. SEA v2.0: an R software package for mixed major genes plus polygenes inheritance analysis of quantitative traits [J]. Acta Agronomica Sinica, 2022, 48(6): 1416-1424.
[8] LI Hai-Fen, WEI Hao, WEN Shi-Jie, LU Qing, LIU Hao, LI Shao-Xiong, HONG Yan-Bin, CHEN Xiao-Ping, LIANG Xuan-Qiang. Cloning and expression analysis of voltage dependent anion channel (AhVDAC) gene in the geotropism response of the peanut gynophores [J]. Acta Agronomica Sinica, 2022, 48(6): 1558-1565.
[9] SHAN Lu-Ying, LI Jun, LI Liang, ZHANG Li, WANG Hao-Qian, GAO Jia-Qi, WU Gang, WU Yu-Hua, ZHANG Xiu-Jie. Development of genetically modified maize (Zea mays L.) NK603 matrix reference materials [J]. Acta Agronomica Sinica, 2022, 48(5): 1059-1070.
[10] DENG Zhao, JIANG Nan, FU Chen-Jian, YAN Tian-Zhe, FU Xing-Xue, HU Xiao-Chun, QIN Peng, LIU Shan-Shan, WANG Kai, YANG Yuan-Zhu. Analysis of blast resistance genes in Longliangyou and Jingliangyou hybrid rice varieties [J]. Acta Agronomica Sinica, 2022, 48(5): 1071-1080.
[11] YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102.
[12] LI A-Li, FENG Ya-Nan, LI Ping, ZHANG Dong-Sheng, ZONG Yu-Zheng, LIN Wen, HAO Xing-Yu. Transcriptome analysis of leaves responses to elevated CO2 concentration, drought and interaction conditions in soybean [Glycine max (Linn.) Merr.] [J]. Acta Agronomica Sinica, 2022, 48(5): 1103-1118.
[13] ZHU Zheng, WANG Tian-Xing-Zi, CHEN Yue, LIU Yu-Qing, YAN Gao-Wei, XU Shan, MA Jin-Jiao, DOU Shi-Juan, LI Li-Yun, LIU Guo-Zhen. Rice transcription factor WRKY68 plays a positive role in Xa21-mediated resistance to Xanthomonas oryzae pv. oryzae [J]. Acta Agronomica Sinica, 2022, 48(5): 1129-1140.
[14] ZHANG Yi-Zhong, ZENG Wen-Yi, DENG Lin-Qiong, ZHANG He-Cui, LIU Qian-Ying, ZUO Tong-Hong, XIE Qin-Qin, HU Deng-Ke, YUAN Chong-Mo, LIAN Xiao-Ping, ZHU Li-Quan. Codon usage bias analysis of S-locus genes SRK, SLG, and SP11/SCR in Brassica oleracea [J]. Acta Agronomica Sinica, 2022, 48(5): 1152-1168.
[15] YAO Xiao-Hua, WANG Yue, YAO You-Hua, AN Li-Kun, WANG Yan, WU Kun-Lun. Isolation and expression of a new gene HvMEL1 AGO in Tibetan hulless barley under leaf stripe stress [J]. Acta Agronomica Sinica, 2022, 48(5): 1181-1190.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!