Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2012, Vol. 38 ›› Issue (08): 1347-1353.doi: 10.3724/SP.J.1006.2012.01347

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS •     Next Articles

Genetic Analysis and Gene Mapping of Early Senescence Leaf Mutant esl2 in Rice

XU Fang-Fang,SANG Xian-Chun,REN De-Yong,TANG Yan-Qiang,HU Hong-Wei,YANG Zheng-Lin,ZHAO Fang-Ming,HE Guang-Hua*   

  1. Rice Research Institute, Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing 400716, China
  • Received:2012-01-05 Revised:2012-04-20 Online:2012-08-12 Published:2012-06-04
  • Contact: 何光华, E-mail: hegh@swu.edu.cn E-mail:xff806954@163.com

Abstract: An early senescence leaf mutant temporarily designated as esl2was discovered in the progeny of an excellent indica restorer line Jinhui 10 with seeds treated by ethyl methane sulfonate (EMS). Themutant kept normal at seedling stage and showed etiolated senescence leaves from booting sage to the maturity, especially at tip and margin of leaf blade. By contrast with the wild type, photosynthetic pigment contents decreased significantly at both booting stage and heading stage, superoxide dismutase (SOD) activity and soluble protein contents decreased significantly, while the activities of peroxidase (POD) and catalase (CAT), and contents of reactive oxygen species (ROS), malondialdehyde (MDA) and praline increased significantly at heading stage in the esl2 mutant. The assay of Transmission Electronic Microscope (TEM) observation was performed and demonstrated that the most cells appeared irregular and void with endolysis and disrupted organelles at senescence part of the mutational leaf, concomitantly, abnormal chloroplast appeared and showed dissolved membrane, indistinct grana, disorganized lamellar structure and incorrect thylakoid. Genetic analysis suggested that the mutational trait was controlled by one nuclear recessive gene. Xinong 1A was crossed with the esl2 and 1005 mutational F2single plants were used for gene mapping. Finally, Esl2 locus was mapped between SSR marker RM17122 and swu4-13 on the chromosome 4 with physical distance of 244 kb. This result provides a foundation of Esl2 gene cloning by map-based strategy as well as its functional analysis.

Key words: Rice (Oryza sativa L.), Early senescence, Gene mapping

[1]Yoshida S. Molecular regulation of leaf senescence. Curr Opin Plant Biol, 2003, 6: 79–84

[2]Wu Z M, Zhang X, He B, Diao L P, Sheng S L, Wang J L, Guo X P, Su N, Wang L F, Jiang L, Wang C M, Zhai H Q, Wan J M. A chlorophyll-deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis. Plant Physiol, 2007, 145: 29–40

[3]He Y, Tang W, Swain J D, Green A L, Jack T P, Gan S. Networking senescence-regulating pathways by using Arabidopsis enhancer trap lines. Plant Physiol, 2001, 126: 707–716

[4]Ansari M I, Lee R H, Chen S C G. A novel senescence-associated gene encoding GABA: Pyruvate transaminase is up-regulated during rice leaf senescence. Physiol Plant, 2005, 123: 1–8

[5]Lee R H, Lin M C, Chen S C. A novel alkaline a-galactosidase gene is involved in rice leaf senescence. Plant Mol Biol, 2004, 55: 281–295

[6]Cha K W, Lee Y J, Koh H J, Lee B M, Nam Y W, Paek N C. Isolation, characterization, and mapping of stay green mutant in rice. Theor Appl Genet, 2002, 104: 526–532

[7]Jiang H W, Li M R, Liang N T, Yan H B, Wei Y B, Xu X L, Liu J, Xu Z F, Chen F, Wu G J. Molecular cloning and function analysis of the stay green gene in rice. Plant J, 2007, 52: 197–209

[8]Park S Y, Yu J W, Park J S, Li J J, Yoo S C, Lee N Y, Lee S K, Jeong S W, Seo H S, Koh H J, Jeon J S, Park Y, Paek N C. The senescence-induced stay green protein regulates chlorophyll degradation. Plant Cell, 2007, 19: 1649–1664

[9]Kusaba M, Ito H, Morita R, Iida S, Sato Y, Fujimoto M, Kawasaki S, Tanaka R, Hirochika H, Nishimura M, Tanaka A. Rice NON-YELLOW COLORINGI is involved in light-harvesting complex II and grana degradation during leaf senescence. Plant Cell, 2007, 19: 1362–1375

[10]Kong Z S, Li M N, Yang W Q, Xu W Y, Xue Y B. A novel nuclear localized CCCH-type zinc finger protein, OsDOS, is involved in delaying 1388?leaf senescence in rice. Plant Physiol, 2006, 141: 1376–1388

[11]Wu Z M, Zhang X, He B, Diao L P, Sheng S L, Wang J L, Guo X P, Su N, Wang L F, Jiang L, Wang C M, Zhai H Q, Wan J M. A chlorophyll-deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis. Plant Physiol, 2007, 145: 29–40

[12]Qiao Y L, Jiang W Z, Lee J H, Park B S, Choi M S, Piao R H, Woo M O, Roh J H, Han L Z, Paek N C, Seo H S, Koh H J. SPL28 encodes a clathrin-associated adaptor protein complex 1, medium subunitμ1 (AP1M1) and is responsible for spotted leaf and early senescence in rice (Oryza sativa). New Phytol, 2009, 185: 258–274

[13]Lin A H, Wang Y Q, Tang J Y, Xue P, Li C L, Liu L C, Hu B, Yang F Q, Loake G J, Chu C C. Nitric oxide and protein S-nitrosylation are integral to hydrogen peroxide induced leaf cell death in rice. Plant Physiol, 2011, DOI: 10.1104/pp.111.184531

[14]Wang J, Wu S J, Zhou Y, Zhou L H, Xu J F, Hu J, Fang Y X, Gu M H, Liang G H. Genetic analysis and molecular mapping of a presenescing leaf gene psl1 in rice (Oryza sativa L.). Chin Sci Bull, 2006, 51: 2986–2992

[15]Li F Z, Hu G C, Fu Y P, Si H M, Bai X M, Sun Z X. Genetic analysis and high-resolution mapping of premature senescence gene Pse(t) in rice (Oryza sativa L.). Genome, 2005, 48: 738–746

[16]Yan W Y, Ye S h, Jin Q S, Zeng L J, Peng Y, Yan D W, Yang W B, Yang D l, He Z H, Dong Y J, Zhang X M. Characterization and mapping of a novel mutant sms1(senescence and male sterility 1) in rice. J Genet Genomics, 2010, 37: 47–55

[17]Fang L K, Li Y F, Gong X P, Sang X C, Ling Y H, Wang X W, Cong Y F, He G H. Genetic analysis and high-resolution mapping of psl3 (presenescing leaf 3) in rice. Chin Sci Bull, 2010, 5: 1676–1681

[18]Yang Y L, Rao Y C, Liu H J, Fang Y X, Dong G J, Huang L C, Leng Y J, Guo L B, Zhang G H, Hu J, Gao Z Y, Qian Q, Zeng D L. Characterization and fine mapping of an early senescence mutant (es-t) in Oryza sativa L. Chin Sci Bull, 2011, DOI: 10.1007/s11434-011-4587-8

[19]Wellburn A R. The spectral determination of chlorophyll a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J Plant Physiol, 1994, 144: 307–313

[20]Gao J-F(高俊凤). Experimental Guidance for Plant Physiology(植物生理学实验指导). Beijing: Higher Education Press, 2006. pp: 208-233 (in Chinese)

[21]Wang A-G(王爱国), Luo G-H(罗广华). Quantitative relation between the reaction of hydroxylamine and superoxide anion radicals in plant. Plant Physiol Commun (植物生理学通讯), 1990, 26(6): 55–57 (in Chinese with English abstract)

[22]He R-F(何瑞锋), Ding Y(丁毅), Yu J-H(余金洪), Zu M-S(祖明生). Study on leaf ultrastructure of the thermo-sensitive chlorophyll deficient mutant in rice. J Wuhan Bot Res (武汉植物学研究), 2001, 19(1): 1–5 (in Chinese with English abstract)

[23]Michelmore R W, Paran I, Kesseli R V. Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA, 1991, 88: 9828–9832

[24]Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA. Nucl Acids Res, 1980, 8: 4321–4325

[25]Sang X-C(桑贤春), He G-H(何光华), Zhang Y(张毅), Yang Z-L(杨正林), Pei Y(裴炎). The simple gain of templates of rice genomes DNA for PCR. Hereditas (Beijing) (遗传), 2003, 25(6): 705–707 (in Chinese with English abstract)

[26]Panaud O, Chen X, McCouch S R. Development of microsatellite markers and characterization of simple sequence length polymorphism (SSLPs) in rice (Oryza sativa L.). Mold Gen Genet, 1996, 252: 597–607

[27]Lander E S, Green P, Abrahamson J, Barlow A, Daly M J, Lincoln S E, Newburg L. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics, 1987, 1: 174–181

[28]Kosambi D D. The estimation of map distances from recombination values. Ann Human Genet, 1944, 12: 172–175

[29]Buchanan-Wollaston V, Earl S, Harrison E, Mathas E, Navabpour S, Page T, Pink D. The molecular analysis of leaf senescence-a genomics approach. Plant Biotechnol, 2003, 1: 3–22

[30]Wilson K A, McManusM T, Gordon M E, Jordan T W. The proteomics of senescence in leaves of white clover, Trifolium repens L. Proteomics, 2002, 2: 1114–1122

[31]Belknap W R, Garbarino J E. The role of ubiquitin in plant senescence and stress responses. Trends Plant Sci, 1996, 1: 331–335

[32]Yan H F, Saika H, Maekawa M, Takamure I, Tsutsumi N, Kyozuka J, Nakazono M. Rice tillering dwarf mutant dwarf3 has increased leaf longevity during darkness-induced senescence or hydrogen peroxide-induced cell death. Genes and Genetic Systems, 2007, 82: 361–366

[33]Lim P O, Kim H J, Nam H G. Leaf senescence. Annu Rev Plant Biol, 2007, 58: 115–136
[1] ZHENG Chong-Ke, ZHOU Guan-Hua, NIU Shu-Lin, HE Ya-Nan, SUN wei, XIE Xian-Zhi. Phenotypic characterization and gene mapping of an early senescence leaf H5(esl-H5) mutant in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1389-1400.
[2] LIU Lei, ZHAN Wei-Min, DING Wu-Si, LIU Tong, CUI Lian-Hua, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping. Genetic analysis and molecular characterization of dwarf mutant gad39 in maize [J]. Acta Agronomica Sinica, 2022, 48(4): 886-895.
[3] XU Ning-Kun, LI Bing, CHEN Xiao-Yan, WEI Ya-Kang, LIU Zi-Long, XUE Yong-Kang, CHEN Hong-Yu, WANG Gui-Feng. Genetic analysis and molecular characterization of a novel maize Bt2 gene mutant [J]. Acta Agronomica Sinica, 2022, 48(3): 572-579.
[4] JIANG Cheng-Gong, SHI Hui-Min, WANG Hong-Wu, LI Kun, HUANG Chang-Ling, LIU Zhi-Fang, WU Yu-Jin, LI Shu-Qiang, HU Xiao-Jiao, MA Qing. Phenotype analysis and gene mapping of small kernel 7 (smk7) mutant in maize [J]. Acta Agronomica Sinica, 2021, 47(2): 285-293.
[5] GUO Qing-Qing, ZHOU Rong, CHEN Xue, CHEN Lei, LI Jia-Na, WANG Rui. Location and InDel markers for candidate interval of the orange petal gene in Brassica napus L. by next generation sequencing [J]. Acta Agronomica Sinica, 2021, 47(11): 2163-2172.
[6] HUANG Yan, HE Huan-Huan, XIE Zhi-Yao, LI Dan-Ying, ZHAO Chao-Yue, WU Xin, HUANG Fu-Deng, CHENG Fang-Min, PAN Gang. Physiological characters and gene mapping of a dwarf and wide-leaf mutant osdwl1 in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2021, 47(1): 50-60.
[7] JIANG Hong-Rui, YE Ya-Feng, HE Dan, REN Yan, YANG Yang, XIE Jian, CHENG Wei-Min, TAO Liang-Zhi, ZHOU Li-Bin, WU Yue-Jin, LIU Bin-Mei. Identification and gene localization of a novel rice brittle culm mutant bc17 [J]. Acta Agronomica Sinica, 2021, 47(1): 71-79.
[8] SHI Hui-Min, JIANG Cheng-Gong, WANG Hong-Wu, MA Qing, LI Kun, LIU Zhi-Fang, WU Yu-Jin, LI Shu-Qiang, HU Xiao-Jiao, HUANG Chang-Ling. Phenotype identification and gene mapping of defective kernel 48 mutant (dek48) in maize [J]. Acta Agronomica Sinica, 2020, 46(9): 1359-1367.
[9] TIAN Shi-Ke, QIN Xin-Er, ZHANG Wen-Liang, DONG Xue, DAI Ming-Qiu, YUE Bing. Genetic analysis and characterization of male sterile mutant mi-ms-3 in maize [J]. Acta Agronomica Sinica, 2020, 46(12): 1991-1996.
[10] XIE Yuan-Hua,LI Feng-Fei,MA Xiao-Hui,TAN Jia,XIA Sai-Sai,SANG Xian-Chun,YANG Zheng-Lin,LING Ying-Hua. Phenotype characterization and gene mapping of the semi-outcurved leaf mutant sol1 in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2020, 46(02): 204-213.
[11] MO Yi,SUN Zhi-Zhong,DING Jia,YU Dong,SUN Xue-Wu,SHENG Xia-Bing,TAN Yan-Ning,YUAN Gui-Long,YUAN Ding-Yang,DUAN Mei-Juan. Genetic analysis and fine mapping of white stripe leaf mutant wsl1 in rice [J]. Acta Agronomica Sinica, 2019, 45(7): 1050-1058.
[12] Rui WANG,Yang-Song CHEN,Ming-Hao SUN,Xiu-Yan ZHANG,Yi-Cong DU,Jun ZHENG. Genetic analysis and causal gene identification of maize viviparous mutant vp-like8 [J]. Acta Agronomica Sinica, 2019, 45(5): 656-661.
[13] Li-Na SHANG,Xin-Long CHEN,Sheng-Nan MI,Gang WEI,Ling WANG,Ya-Yi ZHANG,Ting LEI,Yong-Xin LIN,Lan-Jie HUANG,Mei-Dan ZHU,Nan WANG. Phenotypic identification and gene mapping of temperature-sensitive green- revertible albino mutant tsa2 in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2019, 45(5): 662-675.
[14] ZHANG Li-Sha,MI Sheng-Nan,WANG Ling,WEI Gang,ZHENG Yao-Jie,ZHOU Kai,SHANG Li-Na,ZHU Mei-Dan,WANG Nan. Physiological and biochemical analysis and gene mapping of a novel short radicle and albino mutant sra1 in rice [J]. Acta Agronomica Sinica, 2019, 45(4): 556-567.
[15] WANG Xiao-Juan,PAN Zhen-Yuan,LIU Min,LIU Zhong-Xiang,ZHOU Yu-Qian,HE Hai-Jun,QIU Fa-Zhan. Genetic analysis and molecular characterization of a new allelic mutant of silky1 gene in maize [J]. Acta Agronomica Sinica, 2019, 45(11): 1649-1655.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!