Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2019, Vol. 45 ›› Issue (5): 656-661.doi: 10.3724/SP.J.1006.2019.83058


Genetic analysis and causal gene identification of maize viviparous mutant vp-like8

Rui WANG1,Yang-Song CHEN1,Ming-Hao SUN1,2,Xiu-Yan ZHANG3,Yi-Cong DU1,Jun ZHENG1,*()   

  1. 1 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    2 College of Agronomy, Jilin Agricultural University, Changchun 130118, Jilin, China
    3 School of Life Science, China Agricultural University, Beijing 100193, China
  • Received:2018-08-15 Accepted:2019-01-12 Online:2019-05-12 Published:2019-02-22
  • Contact: Jun ZHENG E-mail:zhengjun02@caas.cn
  • Supported by:
    This work was supported by the National Key Research and Development Program of China(2016YFD0101002);the Agricultural Science and Technology Innovation Program of Chinese Academy of Agricultural Sciences.


The maize mutant vp-like8 shows clear viviparous phenotype and stable inheritance, and genetic analysis showed that the mutant phenotype was controlled by a single recessive gene. Using an F2 segregation population derived from vp-like8 and inbred line Zheng 58, the causal gene was mapped to an interval from 160.4 Mb to 165.6 Mb on chromosome 3 by the BSR-Seq technology. According to the maize genomic database, a previously discovered viviparous gene Vp1 was identified to be in this mapping interval. The test crosses from vp1 and vp-like8 heterozygous plants showed a 3:1 segregation ratio between normal and viviparous kernels. The genomic sequence analysis revealed that vp-like8 mutant had a 343 bp deletion in the second intron and 222 bp insertion in the third intron of Vp1 gene, which is different from vp1 mutation of an only 343 bp deletion in the second intron of Vp1 gene. Further real time PCR analysis revealed that, compared with the normal kernels, the transcript level of Vp1 was significantly decreased both in vp-like8 and vp1 viviparous kernels. Taken together, these evidences suggest that vp-like8 is a new allele mutant of Vp1.

Key words: maize, viviparous, mutant, Vp1, gene mapping

Table 1

Primers used in this study"

Forward sequence (5°-3°)
Reverse sequence (5°-3°)

Fig. 1

Viviparous phenotype of vp-like8 mutant A: viviparous and normal kernels on a vp-like8 heterozygous ear at 30 days after self-pollination; B: viviparous and normal kernels on a vp-like8 heterozygous ear at 60 days after self-pollination; C: mature normal (WT) and viviparous kernels (vp-like8); Bar = 1 cm."

Table 2

Segregation of normal and viviparous kernels on vp-like8 self-pollinated heterozygous ears"

Plant genotype
籽粒表型Kernel phenotype
2014 海南Hainan vp-like8/+ 150 45 195 0.289
361 118 479 0.017
2016 北京Beijing vp-like8/+ 132 46 178 0.030
121 38 159 0.052

Fig. 2

Gene mapping of the vp-like8 mutant by the BSR-Seq strategy"

Fig. 3

Allelism test of vp-like8 with vp1 by heterozygous mutants A: viviparous kernels were emerged on vp-like8 heterozygous ear crossed by the mixed pollen of vp1 heterozygous plants; B: viviparous kernels were emerged on vp1 heterozygous ear crossed by the mixed pollen of vp-like8 heterozygous plants."

Fig. 4

Gene structure of Vp1 and mutation site of two mutants"

Table 3

Test of vp-like8 with vp1"

Parental genotype
籽粒表型 Kernel phenotype
vp-like8/+ × vp1 /+ 208 72 280 0.042
vp1 /+ × vp-like8/+ 158 48 206 0.233

Fig. 5

Gene expression level of Vp1 in normal and viviparous (vp) kernels of vp-like8 and vp1 mutants by quantitative real- time PCR analysis"

[1] Eyster W H . A primitive sporophyte in maize. Am J Bot, 1924,11:7-14.
doi: 10.1002/j.1537-2197.1924.tb05754.x
[2] Eyster W H . A second factor for primitive sporophyte in maize. Am Nat, 1924,58:436-439.
doi: 10.1086/279994
[3] Lindstrom E W . Heritable characters of maize: XIII. Endosperm defects-sweet defective and flint-defective. J Hered, 1923,14:127-135.
doi: 10.1093/oxfordjournals.jhered.a102292
[4] Mangelsdorf P C . The inheritance of defective seeds in maize. J Hered, 1923,14:119-125.
doi: 10.1093/oxfordjournals.jhered.a102290
[5] Mangelsdorf P C . The genetics and morphology of some endosperm characters in maize. Conn Agric Exp Stn Bull, 1926,279:513-614.
[6] Robertson D S . The genetics of vivipary in maize. Genetics, 1955,40:745.
[7] McCarty D R, Hattori T, Carson C B, Vasil V, Lazar M, Vasil I K . The Viviparous1 developmental gene of maize encodes a novel transcriptional activator. Cell, 1991,66:895-905.
[8] Suzuki M, Kao C Y, Cocciolone S , McCarty D R . Maize VP1 complements Arabidopsis abi3 and confers a novel ABA/auxin interaction in roots. Plant J, 2001,28:409-418.
[9] Suzuki M, Latshaw S, Sato Y, Settles A M, Koch K E, Hannah L C , McCarty D R . The maize Viviparous8 locus, encoding a putative ALTERED MERISTEM PROGRAM1-like peptidase, regulates abscisic acid accumulation and coordinates embryo and endosperm development. Plant Physiol, 2008,146:1193-1206.
[10] Porch T G, Tseung C W, Schmelz E A, Settles A M . The maize Viviparous10/Viviparous13 locus encodes the Cnx1 gene required for molybdenum cofactor biosynthesis. Plant J, 2006,45:250-263.
[11] Schwartz S H, Tan B C, Gage D A, Zeevaart J A , McCarty D R . Specific oxidative cleavage of carotenoids by VP14 of maize. Science, 1997,276:1872-1874.
[12] Suzuki M, Mark Settles A, Tseung C W, Li Q B, Latshaw S, Wu S , McCarty D R . The maize viviparous15 locus encodes the molybdopterin synthase small subunit. Plant J, 2006,45:264-274.
[13] Hable W E, Oishi K K, Schumaker K S . Viviparous-5 encodes phytoenedesaturase, an enzyme essential for abscisic acid (ABA) accumulation and seed development in maize. Mol General Genet, 1998,257:167-176.
[14] Singh M, Lewis P E, Hardeman K, Bai L, Rose J K, Mazourek M, Brutnell T P . Activator mutagenesis of the pink scutellum1/viviparous7 locus of maize. Plant Cell, 2003,15:874-884.
[15] Maluf M P, Saab I N, Wurtzel E T, Mark Settles A . The viviparous12 maize mutant is deficient in abscisic acid, carotenoids, and chlorophyll synthesis. J Exp Bot, 1997,48:1259-1268.
[16] Mayfield S P, Nelson T, Taylor W C, Malkin R . Carotenoid synthesis and pleiotropic effects in carotenoid-deficient seedlings of maize. Planta, 1986,169:23-32.
doi: 10.1007/BF01369771
[17] Treharne K J, Mercer E I, Goodwin T W . Carotenoid biosynthesis in some maize mutants. Phytochemistry, 1966,5:581-587.
doi: 10.1016/S0031-9422(00)83636-5
[18] Qi W, Zhu J, Wu Q, Wang Q, Li X, Yao D, Jin Y, Wang G, Wang G, Song R . Maize rea1 mutant stimulates ribosome use efficiency and triggers distinct transcriptional and translational responses. Plant Physiol, 2016,170:971-988.
doi: 10.1104/pp.15.01722
[19] McCarty D R, Carson C B, Stinard P S, Robertson D S . Molecular analysis of viviparous-1: an abscisic acid-insensitive mutant of maize. Plant Cell, 1989,1:523-532.
[20] Hattori T, Vasil V, Rosenkrans L, Cocciolone S M, Vasil I K, Quatrano R S , McCarty D R . The Viviparous1 gene and abscisic acid activate the C1 regulatory gene for anthocyanin biosynthesis during seed maturation in maize. Gene Dev, 1992,6:609-618.
[21] Carson C B, Hattori T, Rosenkrans L, Vasil V, Vasil I K, Peterson P A , McCarty D R . The quiescent/colorless alleles of viviparous1 show that the conserved B3 domain of VP1 is not essential for ABA-regulated gene expression in the seed. Plant J, 1997,12:1231-1240.
[22] Liu S, Yeh C T, Tang H M, Nettleton D, Schnable P S . Gene mapping via bulked segregant RNA-Seq (BSR-Seq). PLoS One, 2012,7:e36406.
doi: 10.1371/journal.pone.0036406
[23] 王瑞, 张秀艳, 陈阳松, 杜依聪, 汤继华, 王国英, 郑军 . 一个新的玉米Vp15基因等位突变体的遗传分析与分子鉴定. 作物学报, 2018,44:370-376.
Wang R, Zhang X Y, Chen Y S, Du Y C, Tang J H, Wang G Y, Zheng J . Genetic analysis and molecular characterization of a new allelic mutant of vp15 gene in maize. Acta Agron Sin, 2018,44:370-376 (in Chinese with English abstract).
[24] 王关林, 方宏筠 . 植物基因工程(第2版). 北京: 科学出版社, 2002. pp 742-744.
Wang G L , Fang H J . Plant Genetic Engineering, 2nd edn. Beijing: Science Press, 2002. pp 742-744(in Chinese).
[25] Li C, Ni P, Francki M, Hunter A, Zhang Y, Schibeci D, Li H, Tarr A, Wang J, Cakir M, Yu J, Bellgard M, Lance R, Appels R . Genes controlling seed dormancy and pre-harvest sprouting in a rice-wheat-barley comparison. Funct Integr Genomic, 2004,4:84-93.
doi: 10.1007/s10142-004-0104-3
[26] Rohde A, Van Montagu M, Boerjan W . The ABSCISIC ACID- INSENSITIVE 3 (ABI3) gene is expressed during vegetative quiescence processes in Arabidopsis. Plant Cell Environ, 1999,22:261-270.
[27] Hoecker U, Vasil I K , McCarty D R . Integrated control of seed maturation and germination programs by activator and repressor functions of Viviparous 1 of maize. Gene Dev, 1995,9:2459-2469.
[28] Rohde A, De Rycke R, Beeckman T, Engler G, Van Montagu M, Boerjan W . ABI3 affects plastid differentiation in dark-grown Arabidopsis seedlings. Plant Cell, 2000,12:35-52.
[29] Rohde A, Kurup S, Holdsworth M . ABI3 emerges from the seed. Trends Plant Sci, 2000,5:418-419.
doi: 10.1016/S1360-1385(00)01736-2
[30] Rohde A, Prinsen E, De Rycke R, Engler G, Van Montagu M, Boerjan W . PtABI3 impinges on the growth and differentiation of embryonic leaves during bud set in poplar. Plant Cell, 2002,14:1885-1901.
doi: 10.1105/tpc.003186
[31] Brady S M, Sarkar S F, Bonetta D , McCourt P . The ABSCISIC ACID INSENSITIVE 3 (ABI3) gene is modulated by farnesylation and is involved in auxin signaling and lateral root development in Arabidopsis. Plant J, 2003,34:67-75.
[1] ZHENG Chong-Ke, ZHOU Guan-Hua, NIU Shu-Lin, HE Ya-Nan, SUN wei, XIE Xian-Zhi. Phenotypic characterization and gene mapping of an early senescence leaf H5(esl-H5) mutant in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1389-1400.
[2] WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450.
[3] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[4] CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515.
[5] SHAN Lu-Ying, LI Jun, LI Liang, ZHANG Li, WANG Hao-Qian, GAO Jia-Qi, WU Gang, WU Yu-Hua, ZHANG Xiu-Jie. Development of genetically modified maize (Zea mays L.) NK603 matrix reference materials [J]. Acta Agronomica Sinica, 2022, 48(5): 1059-1070.
[6] WANG Hao-Rang, ZHANG Yong, YU Chun-Miao, DONG Quan-Zhong, LI Wei-Wei, HU Kai-Feng, ZHANG Ming-Ming, XUE Hong, YANG Meng-Ping, SONG Ji-Ling, WANG Lei, YANG Xing-Yong, QIU Li-Juan. Fine mapping of yellow-green leaf gene (ygl2) in soybean (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(4): 791-800.
[7] XU Jing, GAO Jing-Yang, LI Cheng-Cheng, SONG Yun-Xia, DONG Chao-Pei, WANG Zhao, LI Yun-Meng, LUAN Yi-Fan, CHEN Jia-Fa, ZHOU Zi-Jian, WU Jian-Yu. Overexpression of ZmCIPKHT enhances heat tolerance in plant [J]. Acta Agronomica Sinica, 2022, 48(4): 851-859.
[8] DU Xiao-Fen, WANG Zhi-Lan, HAN Kang-Ni, LIAN Shi-Chao, LI Yu-Xin, ZHANG Lin-Yi, WANG Jun. Identification and analysis of RNA editing sites of chloroplast genes in foxtail millet [Setaria italica (L.) P. Beauv.] [J]. Acta Agronomica Sinica, 2022, 48(4): 873-885.
[9] LIU Lei, ZHAN Wei-Min, DING Wu-Si, LIU Tong, CUI Lian-Hua, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping. Genetic analysis and molecular characterization of dwarf mutant gad39 in maize [J]. Acta Agronomica Sinica, 2022, 48(4): 886-895.
[10] YAN Yu-Ting, SONG Qiu-Lai, YAN Chao, LIU Shuang, ZHANG Yu-Hui, TIAN Jing-Fen, DENG Yu-Xuan, MA Chun-Mei. Nitrogen accumulation and nitrogen substitution effect of maize under straw returning with continuous cropping [J]. Acta Agronomica Sinica, 2022, 48(4): 962-974.
[11] XU Ning-Kun, LI Bing, CHEN Xiao-Yan, WEI Ya-Kang, LIU Zi-Long, XUE Yong-Kang, CHEN Hong-Yu, WANG Gui-Feng. Genetic analysis and molecular characterization of a novel maize Bt2 gene mutant [J]. Acta Agronomica Sinica, 2022, 48(3): 572-579.
[12] SONG Shi-Qin, YANG Qing-Long, WANG Dan, LYU Yan-Jie, XU Wen-Hua, WEI Wen-Wen, LIU Xiao-Dan, YAO Fan-Yun, CAO Yu-Jun, WANG Yong-Jun, WANG Li-Chun. Relationship between seed morphology, storage substance and chilling tolerance during germination of dominant maize hybrids in Northeast China [J]. Acta Agronomica Sinica, 2022, 48(3): 726-738.
[13] QU Jian-Zhou, FENG Wen-Hao, ZHANG Xing-Hua, XU Shu-Tu, XUE Ji-Quan. Dissecting the genetic architecture of maize kernel size based on genome-wide association study [J]. Acta Agronomica Sinica, 2022, 48(2): 304-319.
[14] YAN Yan, ZHANG Yu-Shi, LIU Chu-Rong, REN Dan-Yang, LIU Hong-Run, LIU Xue-Qing, ZHANG Ming-Cai, LI Zhao-Hu. Variety matching and resource use efficiency of the winter wheat-summer maize “double late” cropping system [J]. Acta Agronomica Sinica, 2022, 48(2): 423-436.
[15] ZHANG Qian, HAN Ben-Gao, ZHANG Bo, SHENG Kai, LI Lan-Tao, WANG Yi-Lun. Reduced application and different combined applications of loss-control urea on summer maize yield and fertilizer efficiency improvement [J]. Acta Agronomica Sinica, 2022, 48(1): 180-192.
Full text



No Suggested Reading articles found!