Acta Agron Sin ›› 2013, Vol. 39 ›› Issue (08): 1469-1477.doi: 10.3724/SP.J.1006.2013.01469
• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles Next Articles
FENG Wei,WANG Xiao-Yu,SONG Xiao,HE Li,WANG Yong-Hua,GUO Tian-Cai*
[1]Maxwell J J, Lyerly J H, Cowger C, Marshall D, Brown-Guedira G, Paul Murphy J. MlAG12: a Triticum timopheevii-derived powdery mildew resistance gene in common wheat on chromosome 7AL. Theor Appl Genet, 2009, 119: 1489–1495 [2]Lin J-Y(刘金元), Tao W-J(陶文静), Duan X-Y(段霞瑜), Xiang Q-J(向齐君), Liu D-J(刘大钧), Chen P-D(陈佩度). Molecular marker assisted identification of Pm genes involved in the powdery mildew resistant wheat cultivars (1ines). Acta Phytopathol Sin (植物病理学报), 2000, 30(2): 133–139 (in Chinese with English abstract)[3]Wu D(吴迪), Zhu D-S(朱登胜), He Y(何勇), Zhang C-Q(张传清), Feng L(冯雷). Nondestructive detection of grey mold of eggplant based on ground multi-spectral imaging sensor. Spectroscopy Spectral Anal (光谱学与光谱分析), 2008, 28(7): 1496–1500 (in Chinese with English abstract)[4]Bawden F C. Infra-red photography and plant virus diseases. Nature, 1933, 132: 168 [5]Taubenhaus J J, Ezekiel W N, Neblette C B. Airplane photography in the study of cotton root rot. Phytopathology, 1929, 19: 1025–1029[6]Raikes C, Burpee L L. Use of multispectral radiometry for assessment of rhizoctonia blight in creeping bentgrass. Phytopathology, 1998, 88: 446–449 [7]Wang D, Dowell F E, Lan Y, Pasikatan M, Maghirang E. Determining pecky rice kernels using visible and near-infrared spectroscopy. Int J Food Properties, 2002, 5: 629–639 [8]Cheng T, Rivard B, Sánchez-Azofeifa G A, Feng J, Calvo-Polanco M. Continuous wavelet analysis for the detection of green attack damage due to mountain pine beetle infestation. Remote Sens Environ, 2010, 114: 899–910 [9]Zhang J-C(张竞成), Yuan L(袁琳), Wang J-H(王纪华), Luo J-H(罗菊花), Du S-Z(杜世州), Huang W-J(黄文江). Research progress of crop diseases and pests monitoring based on remote sensing. Trans CSAE (农业工程学报), 2012, 28(20): 1–11 (in Chinese with English abstract)[10]Zhang M H, Qin Z H, Liu X, Ustin S L. Detection of stress in tomatoes induced by late blight disease in California, USA, using hyperspectral remote sensing. Int J Appl Earth Observ Geoinf, 2003, 4: 295–310[11]Huang M-Y(黄木易), Wang J-H(王纪华), Huang W-J(黄文江), Huang Y-D(黄义德), Zhao C-J(赵春江), Wan A-M(万安民). Hyperspectral character of stripe rust on winter wheat and monitoring by remote sensing. Trans CSAE (农业工程学报), 2003, 19(6): 154–158 (in Chinese with English abstract)[12]Jiang J B(蒋金豹), Chen Y H(陈云浩), Huang W J(黄文江). Using the Distance between hyperspectral red edge position and yellow edge position to identify wheat yellow rust disease. Spectroscopy Spectral Anal (光谱学与光谱分析), 2010, 30(6): 1614–1618 (in Chinese with English abstract)[13]Guo J-B(郭洁滨), Huang C(黄冲), Wang H-G(王海光), Sun Z-Y(孙振宇), Ma Z-H(马占鸿). Disease index inversion of wheat stripe rust on different wheat varieties with hyperspectral remote sensing. Spectroscopy Spectral Anal (光谱学与光谱分析), 2009, 29(12): 3353–3357 (in Chinese with English abstract) [14]Riedell W E, Blackmer T M. Leaf reflectance spectra of cereal aphid-damaged wheat. Crop Sci, 1999, 39: 1835–1840[15]Yang Z, Rao M N, Elliott N C, Kindler S D, Popham T W. Differentiating stress induced by greenbugs and Russian wheat aphids in wheat using remote sensing. Comput Electron Agric, 2009, 67: 64–70[16]Qiao H-B(乔红波), Cheng D-F(程登发), Sun J-R(孙京瑞), Tian Z(田喆), Chen L(陈林), Lin F-R(林芙蓉). Effects of wheat aphid on spectrum reflectance of the wheat canopy. Plant Prot (植物保护), 2005, 31(2): 21–26 (in Chinese with English abstract) [17]Kobayashi T, Kanda E, Kitada K, Ishiguro K, Torigoe Y. Detection of rice panicle blast with multi-spectral radiometer and the potential of using airborne multi-spectral scanner. Phytopathology, 2001, 91: 316–323 [18]Cheng S-X(程术希), Shao Y-N(邵咏妮), Wu D(吴迪), He Y(何勇). Determination of rice leaf blast disease level based on visible near infrared spectroscopy. J Zhejiang Univ (Agric & Life Sci) (浙江大学学报?农业与生命科学版), 2011, 37(3): 307–311 (in Chinese with English abstract) [19]Chen B(陈兵), Wang K-R(王克如), Li S-K(李少昆), Jin X-L(金秀良), Chen J-L(陈江鲁), Zhang D-S(张东升). The effects of disease stress on spectra reflectance and chlorophyll fluorescence characteristics of cotton leaves. Trans CSAE (农业工程学报), 2011, 27(9): 86–92 (in Chinese with English abstract) [20]Jing X(竞霞), Huang W-J(黄文江), Wang J-H(王纪华), Wang J-D(王锦地), Wang K-R(王克如). Hyperspectral inversion models on verticillium wilt severity of cotton leaf. Spectroscopy Spectral Anal (光谱学与光谱分析), 2009, 29(12): 3348–3352 (in Chinese with English abstract) [21]Zhang J C, Pu R L, Wang J H, Huang W J, Yuan L, Luo J H. Detecting powdery mildew of winter wheat using leaf level hyperspectral measurements. Comput Electron Agric, 2012, 85: 13–23[22]Franke J, Menz G. Multi-temporal wheat disease detection by multi-spectral remote sensing. Precision Agric, 2007, 8: 161–172[23]Peñuelas J, Baret F, Filella I. Semi-empirical indices to assess carotenoids/chlorophyll a ratio from leaf spectral reflectance. Photosynthetica, 1995, 31: 221–230[24]Baret F, Guyot G, Major D J. TSAVI: a vegetation index which minimizes soil brightness effects on LAI and APAR estimation. In: Proc. IGARRS’89. 12th Canadian Symposium on Remote Sensing, Vol. 3, Vancouver, Canada, 1989, pp 1355–1358 [25]Qi J, Chehbouni A, Huete A R, Kerr Y H. Modified soil adjusted vegetation index (MSAVI). Remote Sens Environ, 1994, 48: 119–126 [26]Merzlyak M N, Gitelson A A, Chivkunova O B, Rakitin V Y. Non-destructive optical detection of pigment changes during leaf senescence and fruit ripening. Physiol Plant, 1999, 106: 135–141 [27]Carter G A, Miller R L. Early detection of plant stress by digital imaging within narrow stress sensitive wavebands. Remote Sens Environ, 1994, 50: 295–302[28]Sims D A, Gamon J A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sensing Environ, 2002, 81: 337–354[29]Haboudane D, Miller J R, Pattey E, Zarco-Tejada P J, Strachan I. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: modeling and validation in the context of precision agriculture. Remote Sensing Environ, 2004, 90: 337–352 [30]Kokaly R F, Clark R N. Spectroscopic determination of leaf biochemistry using band-depth analysis of absorption features and stepwise multiple linear regression. Remote Sensing Environ, 1999, 67: 267–287[31]Miller J R, Hare E W, Wu J. Quantitative characterization of the vegetation red edge reflectance: 1. An inverted-Gaussian reflectance model. Int J Remote Sensing, 1990, 11: 1755–1773[32]Wang X Z(王秀珍), Huang J F(黄敬峰), Li Y M(李云梅), Wang R C(王人潮). Correlation between chemical contents of leaves and characteristic variables of hyperspectra on rice field. Trans CSAE (农业工程学报), 2003, 19(2): 144–148 (in Chinese with English abstract)[33]Liu L-Y(刘良云), Song X-Y(宋晓宇), Li C-J(李存军), Qi L(齐腊), Huang W-J(黄文江), Wang J-H(王纪华). Monitoring and evaluation of the diseases of and yield winter wheat from multi-temporal remotely-sensed data. Trans CSAE (农业工程学报), 2009, 25: 137–143 (in Chinese with English abstract) [34]Zhang D-Y(张东彦), Zhang J-C(张竞成), Zhu D-Z(朱大洲), Wang J-H(王纪华), Luo J-H(罗菊花), Zhao J-L(赵晋陵), Huang W-J(黄文江). Investigation of the hyperspectral image characteristics of wheat leaves under different stress. Spectroscopy Spectral Anal (光谱学与光谱分析), 2011, 31(4): 1101–1105 (in Chinese with English abstract) |
[1] | LI Jin-Min, CHEN Xiu-Qing, YANG Qi, SHI Liang-Sheng. Deep learning models for estimation of paddy rice leaf nitrogen concentration based on canopy hyperspectral data [J]. Acta Agronomica Sinica, 2021, 47(7): 1342-1350. |
[2] | WU Ya-Peng,HE Li,WANG Yang-Yang,LIU Bei-Cheng,WANG Yong-Hua,GUO Tian-Cai,FENG Wei. Dynamic model of vegetation indices for biomass and nitrogen accumulation in winter wheat [J]. Acta Agronomica Sinica, 2019, 45(8): 1238-1249. |
[3] | GAO Lin,YANG Gui-Jun,LI Chang-Chun,FENG Hai-Kuan,XU Bo,WANG Lei,DONG Jin-Hui,FU Kui. Application of an Improved Method in Retrieving Leaf Area Index Combined Spectral Index with PLSR in Hyperspectral Data Generated by Unmanned Aerial Vehicle Snapshot Camera [J]. Acta Agron Sin, 2017, 43(04): 549-557. |
[4] | ZOU Jing-Wei,QIU Dan,SUN Yan-Ling,ZHENG Chao-Xing,LI Jing-Ting,WU Pei-Pei,WU Xiao-Fei,WANG Xiao-Ming,ZHOU Yang,LI Hong-Jie . Pm52: Effectiveness of the Gene Conferring Resistance to Powdery Mildew in Wheat Cultivar Liangxing 99 [J]. Acta Agron Sin, 2017, 43(03): 332-342. |
[5] | JIANG Yan-Tao,XU Tao,DUAN Xia-Yu*,ZHOU Yi-Lin. Effect of Variety Mixure Planting on Powdery Mildew Controlling as Well as Yield and Protein Contents in Common Wheat [J]. Acta Agron Sin, 2015, 41(02): 276-285. |
[6] | XING Li-Ping,QIAN Chen,LI Ming-Hao,CAO Ai-Zhong,WANG Xiu-E,CHEN Pei-Du. Transformation of Antisense Wheat Mlo (Ta-Mlo) Gene and Wheat Powdery Mildew Resistance Analysis of Transgenic Plants [J]. Acta Agron Sin, 2013, 39(03): 431-439. |
[7] | WU Qiong,QI Bo,ZHAO Tuan-Jie,YAO Xin-Feng,ZHU Yan,GAI Jun-Yi. A Tentative Study on Utilization of Canopy Hyperspectral Reflectance to Esti-mate Canopy Growth and Seed Yield in Soybean [J]. Acta Agron Sin, 2013, 39(02): 309-318. |
[8] | LIU Zi-Ji, ZHU Jie, HUA Wei, YANG Zuo-Min, SUN Ji-Shen, LIU Zhi-Yong. Comparative Genomics Analysis and Constructing EST Markers Linkage Map of Powdery Mildew Resistance Gene pm42 in Wheat [J]. Acta Agron Sin, 2011, 37(09): 1569-1576. |
[9] | WANG Hua-Zhong, ZHANG Zhen, HE Xiang, YUE Ji-Yu. Dissecting and QTL Mapping of Component Traits of Resistance to Wheat Powdery Mildew at Early Infection Stage [J]. Acta Agron Sin, 2011, 37(07): 1219-1228. |
[10] | ZHANG Zhen, LIU Xin-Hong, CUI Hong-Cui, WANG Hua-Zhong. Primary Infection Suppression of Blumeria graminis f. sp. Tritici and Host Cell Responses Regulated by Pm21 Gene in Wheat [J]. Acta Agron Sin, 2011, 37(01): 67-73. |
[11] | CAO Shi-Qi,LUO Hui-Sheng,WU Cui-Peng,JIN he-Lin, ANG Xiao-Ming,ZHU Zhen-Dong,JIA Qiu-Zhen,HUANG Jin,ZHANG Bo,CHANG Xun-Wu. Postulation of Powder Mildew Resistance Genes in 64 Wheat Cultivars (Lines) in Gansu Province, China [J]. Acta Agron Sin, 2010, 36(12): 2107-2115. |
[12] | ZHANG Kun-Pu;ZHAO Liang;HAI Yan;CHEN Guang-Feng;TIAN Ji-Chun. QTL Mapping for Adult-Plant Resistance to Powdery Mildew, Lodging Resistance and Internode Length below Spike in Wheat [J]. Acta Agron Sin, 2008, 34(08): 1350-1357. |
[13] | WANG Zhen-Ying;ZHAO Hong-Mei;HONG Jing-Xin;CHEN Li-Yuan;ZHU Jie;LI Gang;PENG Yong-Kang;XIE Chao-Jie;LIU Zhi-Yong;SUN Qi-Xin;YANG Zuo-Min. Identification and Analysis of Four Novel Molecular Markers Linked to Powdery Mildew Resistance Gene Pm21 in 6VS Chromosome Short Arm of Haynaldia villosa [J]. Acta Agron Sin, 2007, 33(04): 605-611. |
[14] | BAI Jun-Hua;LI Shao-Kun;WANG Ke-Ru;SHUI Xue-Yan;CHEN Bing. Estimation Models of Cotton Aboveground Fresh Biomass Based on Field Hyperspectral Remote Sensing [J]. Acta Agron Sin, 2007, 33(02): 311-316. |
[15] | GAO An-Li;HE Hua-Gang;CHEN Quan-Zhan;ZHANG Shou-Zhong;CHEN Pei-Du. Pyramiding Wheat Powdery Mildew Resistance Genes Pm2, Pm4a and Pm21 by Molecular Marker-assisted Selection [J]. Acta Agron Sin, 2005, 31(11): 1400-1405. |
|