Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2017, Vol. 43 ›› Issue (03): 332-342.doi: 10.3724/SP.J.1006.2017.00332

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Pm52: Effectiveness of the Gene Conferring Resistance to Powdery Mildew in Wheat Cultivar Liangxing 99

ZOU Jing-Wei1,2,QIU Dan1,2,SUN Yan-Ling2,ZHENG Chao-Xing3,LI Jing-Ting4,WU Pei-Pei2,WU Xiao-Fei2,WANG Xiao-Ming2,ZHOU Yang2,LI Hong-Jie2,*   

  1. 1 College of Life Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China; 2 National Key Facility for Crop Gene Resources and Genetic Improvement / Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China;   3 College of Chemistry and Environment Engineering, Pingdingshan College, Pingdingshan 467000, China; 4 College of Life Science, Beijing Normal University, Beijing 100875, China
  • Received:2016-06-11 Revised:2016-09-18 Online:2017-03-12 Published:2016-09-29
  • Contact: LI Hongjie, E-mail: lihongjie@caas.cn E-mail:zoujingwei2013@qq.com
  • Supported by:

    This study was supported by the National Natural Science Foundation of China (31471491 and 31501310), the National Major Project for Developing New GM Crops (2014ZX0800906B-003), and the Agricultural Science and Technology Innovation Program of CAAS.

Abstract:

Liangxing 99 is a powdery mildew-resistant winter wheat cultivar adapted to the Yellow–Huai Rivers Valley Facultative Wheat Zone and the Northern Winter Wheat Zone. Its powdery mildew resistance is conferred by gene Pm52 on chromosome 2BL. A total of 123 isolates of Blumeria graminis f. sp. tritici collected from different wheat producing regions were used in assessment of disease resistance, and Liangxing 99 was resistant to 80% of them. During the five consecutive growing seasons from 2012 to 2016, Liangxing 99 was immune or highly resistant to the mixture of Bgt isolate inoculated at the adult plant stage. A gene-specific marker Xgwm120 closedly linked to Pm52 and 27 Bgt isolates were used to analyze ten wheat cultivars with Liangxing 99 as a parent. Heng 4568, Hannong 2312, Zhongxinmai 99, and DH51302 may inherit Pm52 from Liangxing 99, while the powdery mildew resistance genes of Zhengmai 369 and Jimai 729 may differ from Pm52. Shi U09-4366, XR4429, Heng 10-5039, and Nongda 3486 were susceptible to all the Bgt isolates examined and did not carry gene Pm52. The responses of these cultivars at the adult plant stage were consistent with those at the seedling stage. Results from this study are favorable to facilitate the effective application of Pm52 from Liangxing 99 in breeding programs and the production of wheat.

Key words: Pm52, Liangxing 99, Wheat powdery mildew, Resistance

[1]Cowger C, Miranda L, Griffey C, Hall M, Murphy J P, Max-well J. Wheat powdery mildew. In: Sharma I (ed) Disease resistance in wheat. CABI, Oxfordshire, 2012. pp 84–119.
[2]Hardwick N V, Jenkins J E, Collins B, Groves S J. Powdery mildew (Erysiphe graminis) on winter wheat: control with fungicides and the effects on yield. Crop Prot, 1994, 13: 93–98
[3]史倩倩, 范洁茹, 周益林, 邹亚飞, 段霞瑜. 2012年部分麦区小麦白粉菌群体对三唑酮敏感性及其与毒性的关系. 植物病理学报, 2015, 45: 181–187
Shi Q Q, Fan J R, Zhou Y L, Zou Y F, Duan X Y. Triadimefon sensitivity and its correlation with the virulence population of Blumeria graminis f. sp. tritici in some wheat growing areas in 2012. Acta Phytopathol Sin, 2015, 45: 181–187 (in Chinese with English abstract)
[4]Rabinovich S V. Importance of wheat-rye translocation for breeding modern cultivars of Triticum aestivum L. Euphytica, 1998, 100: 323–340
[5]周阳, 何中虎, 张改生, 夏兰琴, 陈新民, 高永超, 井赵斌, 于广军. 1BL/1RS易位系在我国小麦育种中的应用. 作物学报, 2004, 30: 531–535
Zhou Y, He Z H, Zhang G S, Xia L Q, Chen X M, Gao Y C, Jing Z B, Yu G J. Utilization of 1BL/1RS translocation in wheat breeding in China. Acta Agron Sin, 2004, 30: 531–535 (in Chinese with English abstract)
[6]李洪杰, 王晓鸣, 宋凤景, 伍翠平, 武小菲, 张宁, 周阳, 张学勇. 中国小麦品种对白粉病的抗性反应与抗病基因检测. 作物学报, 2011, 37: 943–954
Li H J, Wang X M, Song F J, Wu C P, Wu X F, Zhang N, Zhou Y, Zhang X Y. Response to powdery mildew and detection of resistance genes in wheat cultivars from China. Acta Agron Sin, 2011, 37: 943–954 (in Chinese with English abstract)
[7]Zhao Z H, Sun H G, Song W, Lu M, Huang J, Wu L F, Wang X M, Li H J. Genetic analysis and detection of the gene MlLX99 on chromosome 2BL conferring resistance to powdery mildew in the wheat cultivar Liangxing 99. Theor Appl Genet, 2013, 126: 3081–3089
[8]McIntosh R A, Dubcovsky J, Rogers W J, Morris C, Appels R, Xia X C. Catalogue of gene symbols for wheat: 2013–2014 supplement. http://shigen.nig.ac.jp/wheat/komugi/genes/macgene/ supplement2013.pdf
[9]司权民, 张新心, 段霞瑜, 盛宝钦. 小麦白粉病菌生理小种鉴定. 中国农业科学, 1987, 20(5): 64–70
Si Q M, Zhang X X, Duan X Y, Sheng B Q. Identification of isolates of Erysiphe graminis f. sp. tritici. Sci Agric Sin, 1987, 20(5): 64–70 (in Chinese with English abstract)
[10]盛宝钦. 用反应型记载小麦苗期白粉病. 植物保护, 1988, 14(1): 49
Sheng B Q. Identification of powdery mildew infection type at seedling stage. Plant Prot, 1988, 14(1): 49 (in Chinese)
[11]Saari E E, Prescott J M. A scale for appraising the foliar intensity of wheat diseases. Plant Dis Rep, 1975, 59: 377–381
[12]刘金栋, 陈新民, 何中虎, 伍玲, 白斌, 李在峰, 夏先春. 小麦慢白粉病QTL对条锈病和叶锈病的兼抗性. 作物学报, 2014, 40: 1557–1564
Liu J D, Chen X M, He Z H, Wu L, Bai B, Li Z F, Xia X C. Resistance of slow mildewing genes to stripe rust and leaf rust in common wheat. Acta Agron Sin, 2014, 40: 1557–1564 (in Chinese with English abstract)
[13]Lin F, Chen X M. Quantitative trait loci for non-race-specific, high-temperature adult-plant resistance to stripe rust in wheat cultivar Express. Theor Appl Genet, 2009, 118: 631–642
[14]齐莉莉, 陈佩度, 刘大钧, 周波, 张守中, 盛宝钦, 向齐君, 段霞瑜, 周益林. 小麦白粉病新抗源——基因Pm21. 作物学报, 1995, 21: 257–262
Qi L L, Chen P D, Liu D J, Zhou B, Zhang S Z, Sheng B Q, Xiang Q J, Duan X Y, Zhou Y L. The gene Pm21: a new source for resistance to wheat powdery mildew. Acta Agron Sin, 1995, 21: 257–262 (in Chinese with English abstract)
[15]Luo P G, Luo H Y, Chang Z J, Zhang H Y, Zhang M, Ren Z L. Characterization and chromosomal location of Pm40 in common wheat: a new gene for resistance to powdery mildew derived from Elytrigia intermedium. Theor Appl Genet, 2009, 118: 1059–1064
[16]He R L, Chang Z J, Yang Z J, Yuan Z Y, Zhan H X, Zhang X J, Liu J X. Inheritance and mapping of powdery mildew re-sistance gene Pm43 introgressed from Thinopyrum intermedium into wheat. Theor Appl Genet, 2009, 118: 1173–1180
[17]Zhan H X, Li G R, Zhang X J, Li X, Guo H J, Gong W P, Jia J Q, Qiao L Y, Ren Y K, Yang Z J, Chang Z J. Chromosomal location and comparative genomics analysis of powdery mildew resistance gene Pm51 in a putative wheat–Thinopyrum ponticum introgression line. PLoS One, 2014, 9: e113455
[18]Li G Q, Fang T L, Zhang H T, Xie C J, Li H J, Yang T M, Nevo E, Fahima T, Sun Q X, Liu Z Y. Molecular identification of a new powdery mildew resistance gene Pm41 on chromosome 3BL derived from wild emmer (Triticum turgidum var. dicoccoides). Theor Appl Genet, 2009, 119: 531–539
[19]Hua W, Liu Z J, Zhu J, Xie C J, Yang T M, Zhou Y L, Duan X Y, Sun Q X, Liu Z Y. Identification and genetic mapping of pm42, a new recessive wheat powdery mildew resistance gene derived from wild emmer (Triticum turgidum var. dicoccoides). Theor Appl Genet, 2009, 119: 223–230
[20]Ma H Q, Kong Z G, Fu B H, Li N, Zhang L X, Jia H Y, Ma Z Q. Identification and mapping of a new powdery mildew re-sistance gene on chromosome 6D of common wheat. Theor Appl Genet, 2011, 123: 1099–1106
[21]Xiao M G, Song F J, Jiao J F, Wang X M, Xu H X, Li H J. Identification of the gene Pm47 on chromosome 7BS conferring resistance to powdery mildew in the Chinese wheat landrace Hongyanglazi. Theor Appl Genet, 2013, 126: 1397–1403
[22]Xue F, Wang C Y, Li C, Duan X Y, Zhou Y L, Zhao N J, Wang Y J, Ji W Q. Molecular mapping of a powdery mildew resistance gene in common wheat landrace Baihulu and its allelism with Pm24. Theor Appl Genet, 2012, 125: 1425–1432
[23]Ma P T, Xu H X, Xu Y F, Li L H, Qie Y M, Luo Q L, Zhang X T, Li X Q, Zhou Y L, An D G. Molecular mapping of a new powdery mildew resistance gene Pm2b in Chinese breeding line KM2939. Theor Appl Genet, 2015, 128: 613–622
[24]Xu H X, Yi Y J, Ma P T, Qie Y M, Fu X Y, Xu Y F, Zhang X T, An D G. Molecular tagging of a new broad-spectrum powdery mildew resistance allele Pm2c in Chinese wheat landrace Niaomai. Theor Appl Genet, 2015, 128: 2077–2084
[25]梁新棉, 刘玉平. 河北省优质冬小麦区域试验品种主要农艺性状分析. 河北农业科学, 2006, 10(1): 52–55
Liang X M, Liu Y P. Analysis of the major agronomical characters of wheat varieties in the Hebei provincial high quality winter wheat regional yield trial. J Hebei Agric Sci, 2006, 10(1): 52–55 (in Chinese with English abstract)
[26]胡锐, 邢彩云, 吴营昌, 沙广乐, 李丽霞, 杨爱华. 11个优质小麦品种对小麦白粉病抗性的初步鉴定. 河南农业科学, 2011, 40(5):108–110
Hu R, Xing C Y, Wu Y C, Sha G L, Li M X, Yang A H. Primary identification of resistance of eleven high-quality wheat cultivars to wheat powdery mildew. J Henan Agric Sci, 2011, 40(5): 108–110 (in Chinese with English abstract)
[27]Huang J, Zhao Z H, Song F J, Wang X M, Xu H X, Huang Y, An D G, Li H J. Molecular detection of a gene effective against powdery mildew in the wheat cultivar Liangxing 66. Mol Breed, 2012, 30: 1737–1745
[28]李丹, 袁成国, 吴海彬, 张栋, 梁永, 王振忠, 吴秋红, 陈永兴, 杨作民, 孙其信, 刘志勇. 普通小麦品种农大399抗白粉病基因SSR和AFLP–SCAR分子标记. 植物遗传资源学报, 2013, 14: 104–108
Li D, Yuan C G, Wu H B, Zhang D, Liang Y, Wang Z Z, Wu Q H, Chen Y X, Yang Z M, Sun Q X, Liu Z Y. SSR and AFLP-             derived SCAR markers associated with the powdery mildew resistance gene in common wheat cultivar ND399. J Plant Genet Resour, 2013, 14: 104–108 (in Chinese with English abstract)
[29]宋伟, 孙会改, 孙艳玲, 赵紫慧, 王晓鸣, 武小菲, 李洪杰. 小麦品种汶农14抗白粉病基因的染色体定位. 作物学报. 2014, 40: 798–804
Song W, Sun H G, Sun Y L, Zhao Z H, Wang X M, Wu X F, Li H J. Chromosomal localization of resistance gene to powdery mildew in the wheat cultivar Wennong 14. Acta Agron Sin, 2014, 40: 798–804 (in Chinese with English abstract)
[30]Sun H G, Song W, Sun Y L, Chen X M, Liu J J, Zou J W, Wang X M, Zhou Y F, Lin X H, Li H J. Resistance to powdery mildew in the wheat cultivar Zhongmai 155: effectiveness and molecular detection of the resistance gene. Crop Sci, 2015, 55: 1017–1025
[31]Ma P T, Zhang H X, Xu H X, Xu Y F, Cao Y W, Zhang X T, An D G. The gene PmYB confers broad-spectrum powdery mildew resistance in the multi-allelic Pm2 chromosome region of the Chinese wheat cultivar Yingbo 700. Mol Breed, 2015, 35: 1–10
[32]胡铁柱, 李洪杰, 刘子记, 谢超杰, 周益林, 段霞瑜, 贾旭, 尤明山, 杨作民, 孙其信, 刘志勇. 普通小麦品种“豫麦66”抗白粉病基因的鉴定与分子标记. 作物学报, 2008, 34: 545–550
Hu T Z, Li H J, Liu Z J, Xie C J, Zhou Y L, Duan X Y, Jia X, You M S, Yang Z M, Sun Q X, Liu Z Y. Identification and molecular mapping of the powdery mildew resistance gene in wheat cultivar Yumai 66. Acta Agron Sin, 2008, 34: 545–550 (in Chinese with English abstract)
[33]Xu W G, Li C X, Hu L, Wang H W, Dong H B, Zhang J Z, Zan X C. Identification and molecular mapping PmHNK54: a novel powdery mildew resistance gene in common wheat. Plant Breed, 2011, 130: 603–607
[34]胡铁柱, 李洪杰, 谢超杰, 尤明山, 杨作民, 孙其信, 刘志勇. 小麦品种“唐麦4号”抗白粉病基因的分子标记与染色体定位. 作物学报, 2008, 34: 1193–1198
Hu T Z, Li H J, Xie C J, You M S, Yang Z M, Sun Q X, Liu Z Y. Molecular mapping and chromosomal location of the powdery mildew resistance gene in wheat cultivar Tangmai 4. Acta Agron Sin, 2008, 34: 1193–1198 (in Chinese with English abstract)
[35]殷贵鸿, 李根英, 何中虎, 刘建军, 王辉, 夏先春. 小麦新品种济麦22抗白粉病基因的分子标记定位. 作物学报, 2009, 35: 1425–1431
Yin G H, Li G Y, He Z H, Liu J J, Wang H, Xia X C. Molecular mapping of powdery mildew resistance gene in wheat cultivar Jimai 22. Acta Agron Sin, 2009, 35: 1425–1431 (in Chinese with English abstract)
[36]Xu W G, Li C X, Hu L, Zhang L, Zhang J Z, Dong H B, Wang G S. Molecular mapping of powdery mildew resistance gene PmHNK in winter wheat (Triticum aestivum L.) cultivar Zhoumai 22. Mol Breed, 2010, 26: 31–38

[1] TIAN Tian, CHEN Li-Juan, HE Hua-Qin. Identification of rice blast resistance candidate genes based on integrating Meta-QTL and RNA-seq analysis [J]. Acta Agronomica Sinica, 2022, 48(6): 1372-1388.
[2] ZHOU Wen-Qi, QIANG Xiao-Xia, WANG Sen, JIANG Jing-Wen, WEI Wan-Rong. Mechanism of drought and salt tolerance of OsLPL2/PIR gene in rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1401-1415.
[3] DENG Zhao, JIANG Nan, FU Chen-Jian, YAN Tian-Zhe, FU Xing-Xue, HU Xiao-Chun, QIN Peng, LIU Shan-Shan, WANG Kai, YANG Yuan-Zhu. Analysis of blast resistance genes in Longliangyou and Jingliangyou hybrid rice varieties [J]. Acta Agronomica Sinica, 2022, 48(5): 1071-1080.
[4] WANG Xing-Rong, LI Yue, ZHANG Yan-Jun, LI Yong-Sheng, WANG Jun-Cheng, XU Yin-Ping, QI Xu-Sheng. Drought resistance identification and drought resistance indexes screening of Tibetan hulless barley resources at adult stage [J]. Acta Agronomica Sinica, 2022, 48(5): 1279-1287.
[5] ZHU Zheng, WANG Tian-Xing-Zi, CHEN Yue, LIU Yu-Qing, YAN Gao-Wei, XU Shan, MA Jin-Jiao, DOU Shi-Juan, LI Li-Yun, LIU Guo-Zhen. Rice transcription factor WRKY68 plays a positive role in Xa21-mediated resistance to Xanthomonas oryzae pv. oryzae [J]. Acta Agronomica Sinica, 2022, 48(5): 1129-1140.
[6] LIU Dan, ZHOU Cai-E, WANG Xiao-Ting, WU Qi-Meng, ZHANG Xu, WANG Qi-Lin, ZENG Qing-Dong, KANG Zhen-Sheng, HAN De-Jun, WU Jian-Hui. Rapid identification of adult plant wheat stripe rust resistance gene YrC271 using high-throughput SNP array-based bulked segregant analysis [J]. Acta Agronomica Sinica, 2022, 48(3): 553-564.
[7] YANG Xin, LIN Wen-Zhong, CHEN Si-Yuan, DU Zhen-Guo, LIN Jie, QI Jian-Min, FANG Ping-Ping, TAO Ai-Fen, ZHANG Li-Wu. Molecular identification of a geminivirus CoYVV and screening of resistant germplasms in jute [J]. Acta Agronomica Sinica, 2022, 48(3): 624-634.
[8] ZHANG Si-Meng, NI Wen-Rong, LYU Zun-Fu, LIN Yan, LIN Li-Zhuo, ZHONG Zi-Yu, CUI Peng, LU Guo-Quan. Identification and index screening of soft rot resistance at harvest stage in sweetpotato [J]. Acta Agronomica Sinica, 2021, 47(8): 1450-1459.
[9] FU Hua-Ying, ZHANG Ting, PENG Wen-Jing, DUAN Yao-Yao, XU Zhe-Xin, LIN Yi-Hua, GAO San-Ji. Identification of resistance to leaf scald in newly released sugarcane varieties at seedling stage by artificial inoculation [J]. Acta Agronomica Sinica, 2021, 47(8): 1531-1539.
[10] XI Ling, WANG Yu-Qi, ZHU Wei, WANG Yi, CHEN Guo-Yue, PU Zong-Jun, ZHOU Yong-Hong, KANG Hou-Yang. Identification of resistance to wheat and molecular detection of resistance genes to wheat stripe rust of 78 wheat cultivars (lines) in Sichuan province [J]. Acta Agronomica Sinica, 2021, 47(7): 1309-1323.
[11] ZUO Xiang-Jun, FANG Peng-Peng, LI Jia-Na, QIAN Wei, MEI Jia-Qin. Characterization of aphid-resistance of a hairy wild Brassica oleracea taxa, B. incana [J]. Acta Agronomica Sinica, 2021, 47(6): 1109-1113.
[12] MA Yan-Bin, WANG Xia, LI Huan-Li, WANG Pin, ZHANG Jian-Cheng, WEN Jin, WANG Xin-Sheng, SONG Mei-Fang, WU Xia, YANG Jian-Ping. Transformation and molecular identification of maize phytochrome A1 gene (ZmPHYA1) in cotton [J]. Acta Agronomica Sinica, 2021, 47(6): 1197-1202.
[13] ZHAO Jia-Jia, QIAO Ling, WU Bang-Bang, GE Chuan, QIAO Lin-Yi, ZHANG Shu-Wei, YAN Su-Xian, ZHENG Xing-Wei, ZHENG Jun. Seedling root characteristics and drought resistance of wheat in Shanxi province [J]. Acta Agronomica Sinica, 2021, 47(4): 714-727.
[14] ZHENG Ying-Xia, CHEN Du, WEI Peng-Cheng, LU Ping, YANG Jin-Yue, LUO Shang-Ke, YE Kai-Mei, SONG Bi. Effects of planting density on lodging resistance and grain yield of spring maize stalks in Guizhou province [J]. Acta Agronomica Sinica, 2021, 47(4): 738-751.
[15] HAN Bei, WANG Xu-Wen, LI Bao-Qi, YU Yu, TIAN Qin, YANG Xi-Yan. Association analysis of drought tolerance traits of upland cotton accessions (Gossypium hirsutum L.) [J]. Acta Agronomica Sinica, 2021, 47(3): 438-450.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!