Acta Agron Sin ›› 2014, Vol. 40 ›› Issue (01): 29-36.doi: 10.3724/SP.J.1006.2014.00029
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
ZHANG Fan,JIANG Lei,JU Li-Ping,JIN Xiu-Feng,WANG Xuan,ZHANG Xiao-Ke*,WANG Hong-Li,FU Xiao-Jie
[1]Zheng W J, Xu Z S, Chen M, Li L C, Chai S C, Ma Y Z. Isolation and characterization of receptor-like protein kinase WELP1 in wheat. Afr J Microbiol Res, 2012, 6: 2410–2418[2]杨召恩, 杨作仁, 刘坤, 刘传亮, 张朝军, 李付广. 一个亚洲棉MYB家族新基因的克隆及特征分析. 中国农业科学, 2013, 46: 195–204Yang Z E, Yang Z R, Liu K, Liu C L, Zhang C J, Li F G. Cloning and characterization of a novel gene of MYB family from Gossypium arboreum L. Sci Agric Sin, 2013, 46: 195–204 (in Chinese with English abstract)[3]Shinozaki K, Yamaguchi-Shinozaki K. Gene networks involved in drought stress response and tolerance. J Exp Bot, 2007, 58: 221–227[4]Kosová K, Vítámvás P, Prášil I T, Renaut J. Plant proteome changes under abiotic stress: contribution of proteomics studies to understanding plant stress response. J Proteomics, 2011, 74: 1301–1322[5]Caruso G, Cavaliere C, Foglia P, Gubbiotti R, Samperi R, Laganà A. Analysis of drought responsive proteins in wheat (Triticum durum) by 2D-PAGE and MALDI-TOF mass spectrometry. Plant Sci, 2009, 177: 570–576[6]Peng Z, Wang M, Li F, Lv H, Li C, Xia G. A proteomic study of the response to salinity and drought stress in an introgression strain of bread wheat. Mol Cell Proteomics, 2009, 12: 2676–2686[7]Gill S S, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem, 2010, 48: 909–930[8]Arnér E S J, Holmgren A. Physiological functions of thioredoxin and thioredoxin reductase. Eur J Biochem, 2001, 267: 6102–6109[9]Wong J H, Balmer Y, Cai N, Tanaka C K, Vensel W H, Hurkman W J, Buchanan B B. Unraveling thioredoxin-linked metabolic processes of cereal starchy endosperm using proteomics. FEBS Lett, 2003, 547: 151–156[10]Meyer Y, Vignols F, Reichheld J P. Classification of plant thioredoxins by sequence similarity and intron position. Methods Enzymol, 2002, 347: 394–402[11]夏德习, 管清杰, 金淑梅, 李宇佳, 梁涵, 张欣欣, Shunskau N, Tetsuo T, 柳参奎. 拟南芥硫氧还蛋白M1型基因(AtTRX m1)与环境逆境之间的关系. 分子植物育种, 2007, 5: 21–26Xia D X, Guan Q J, Jin S M, Li Y J, Liang H, Zhang X X, Shunskau N, Tetsuo T, Liu S K. The relationship of Arabidopsis thaliana thioredoxin M-type 1 (AtTRX m1) gene with environmental stress. Mol Plant Breed, 2007, 5: 21–26 (in Chinese with English abstract)[12]Broin M, Rey P. Potato plants lacking the CDSP32 plastidic thioredoxin exhibit overoxidation of the BAS1 2-cysteine peroxiredoxin and increased lipid peroxidation in thylakoids under photooxidative stress. Plant Physiol, 2003, 132: 1335–1343[13]Laughner B J, Sehnke P C, Ferl R J. A novel nuclear member of the thioredoxin superfamily. Plant physiol, 1998, 118: 987–996[14]Deshmukh V, Kurtkoti R. Secondary Structure Prediction and Phylogenetic Analysis of Salt Tolerant Proteins. Global J Mol Sci, 2010, 5: 30–36[15]Morya V K., Yadav S, Kim E K, Yadav D. In silico characterization of alkaline proteases from different species of Aspergillus. Appl Biochem Biotechnol, 2012, 166: 243–257[16]Akash M S H, Rehman K, Gillani Z, Sun H, Chen S. Cross-species amino acids sequence comparison and computational docking of human IL-1Ra and rat IL-1Ra on rat receptor. J Proteomics Bioinform, 2013, 6: 38–42[17]Chen Z, Ao J, Yang W, Jiao L, Zheng T, Chen X. Purification and characterization of a novel antifungal protein secreted by Penicillium chrysogenum from an Arctic sediment. Appl Microbiol Biotechnol, 2013, DOI 10.1007/s00253-013-4800-6[18]Zhang A, Qiu L, Huang L, Yu X, Lu G, Cao J. Isolation and characterization of an anther-specific polygalacturonase gene, BcMF16, in Brassica campestris ssp. chinensis. Plant Mol Biol Rep, 2012, 30: 330–338[19]Steinway S, Dannenfelser R, Laucius C, Hayes J, Nayak, S. JCoDA: a tool for detecting evolutionary selection. BMC Bioinf, 2010, 11: 284[20]Ma W, Zhang W, Gale K R. Multiplex-PCR typing of high molecular weight glutenin alleles in wheat. Euphytica, 2003, 134: 51–60[21]Guruprasad K, Reddy B V, Pandit M W. Correlation between stability of a protein and its dipeptide composition: a novel approach for predicting in vivo stability of a protein from its primary sequence. Protein Eng, 1990, 4: 155–161[22]Kurooka H, Kato K, Minoguchi S, Takahashi Y, Ikeda J E, Habu S, Osawa N, Buchberg A M, Moriwaki K, Shisa H, Honjo T. Cloning and characterization of the nucleoredoxin gene that encodes a novel nuclear protein related to thioredoxin. Genomics, 1997, 39: 331–339[23]Funato Y, Miki H. Nucleoredoxin, a novel thioredoxin family member involved in cell growth and differentiation. Antioxidants & Redox Signaling, 2007, 9: 1035–1058[24]王磊, 陈景堂, 张祖新. 主要禾谷类作物比较基因组学研究策略与进展. 遗传, 2007, 29: 1055–1060Wang L, Chen J T, Zhang Z X. Strategies and progresses on cereal comparative genomics. Hereditas, 2007, 29: 1055–1060 (in Chinese with English abstract)[25]周江鸿, 赵素珍, 漆小泉. 短柄草与麦类作物的比较基因组学研究进展. 植物生理学报, 2011, 47: 421–426ZhouJ H, Zhao S Z, Qi X Q. Recent progresses in comparative genomics of Brachypodium and Triticeae crops. Plant Physiol J, 2011, 47: 421-426 (in Chinese with English abstract)[26]He X Y, Zhang Y L, He Z H, Wu Y P, Xiao Y G, Ma C X, Xia X C. Characterization of phytoene synthase 1 gene (Psy1) located on common wheat chromosome 7A and development of a functional marker. Theor Appl Genet, 2008, 116: 213–221[27]Fu D, Sz?cs P, Yan L, Helguera M, Skinner J S, von Zitzewitz J, Hayes M, Dubcovsky J. Large deletions within the first intron in VRN-1 are associated with spring growth habit in barley and wheat. Mol Genet Genomics, 2005, 273: 54–65 |
[1] | WANG Xing-Rong, LI Yue, ZHANG Yan-Jun, LI Yong-Sheng, WANG Jun-Cheng, XU Yin-Ping, QI Xu-Sheng. Drought resistance identification and drought resistance indexes screening of Tibetan hulless barley resources at adult stage [J]. Acta Agronomica Sinica, 2022, 48(5): 1279-1287. |
[2] | WANG Heng-Bo, CHEN Shu-Qi, GUO Jin-Long, QUE You-Xiong. Molecular detection of G1 marker for orange rust resistance and analysis of candidate resistance WAK gene in sugarcane [J]. Acta Agronomica Sinica, 2021, 47(4): 577-586. |
[3] | ZHAO Jia-Jia, QIAO Ling, WU Bang-Bang, GE Chuan, QIAO Lin-Yi, ZHANG Shu-Wei, YAN Su-Xian, ZHENG Xing-Wei, ZHENG Jun. Seedling root characteristics and drought resistance of wheat in Shanxi province [J]. Acta Agronomica Sinica, 2021, 47(4): 714-727. |
[4] | JIN Yi-Rong, LIU Jin-Dong, LIU Cai-Yun, JIA De-Xin, LIU Peng, WANG Ya-Mei. Genome-wide association study of nitrogen use efficiency related traits in common wheat (Triticum aestivum L.) [J]. Acta Agronomica Sinica, 2021, 47(3): 394-404. |
[5] | HAN Bei, WANG Xu-Wen, LI Bao-Qi, YU Yu, TIAN Qin, YANG Xi-Yan. Association analysis of drought tolerance traits of upland cotton accessions (Gossypium hirsutum L.) [J]. Acta Agronomica Sinica, 2021, 47(3): 438-450. |
[6] | GUO Yan-Chun, ZHANG Li-Lan, CHEN Si-Yuan, QI Jian-Min, FANG Ping-Ping, TAO Ai-Fen, ZHANG Lie-Mei, ZHANG Li-Wu. Establishment of DNA molecular fingerprint of applied core germplasm in jute (Corchorus spp.) [J]. Acta Agronomica Sinica, 2021, 47(1): 80-93. |
[7] | ZHANG Ping-Ping,YAO Jin-Bao,WANG Hua-Dun,SONG Gui-Cheng,JIANG Peng,ZHANG Peng,MA Hong-Xiang. Soft wheat quality traits in Jiangsu province and their relationship with cookie making quality [J]. Acta Agronomica Sinica, 2020, 46(4): 491-502. |
[8] | Yin-Ping XU, Yong-Dong PAN, Qiang-De LIU, Yuan-Hu YAO, Yan-Chun JIA, Cheng REN, Ke-Cang HUO, Wen-Qing CHEN, Feng ZHAO, Qi-Jun BAO, Hua-Yu ZHANG. Drought resistance identification and drought resistance indexes screening of barley resources at mature period [J]. Acta Agronomica Sinica, 2020, 46(3): 448-461. |
[9] | Di JIN,Dong-Zhi WANG,Huan-Xue WANG,Run-Zhi LI,Shu-Lin CHEN,Wen-Long YANG,Ai-Min ZHANG,Dong-Cheng LIU,Ke-Hui ZHAN. Fine mapping and candidate gene analysis of awn inhibiting gene B2 in common wheat [J]. Acta Agronomica Sinica, 2019, 45(6): 807-817. |
[10] | Fang-Ping YANG,Jin-Dong LIU,Ying GUO,Ao-Lin JIA,Wei-E WEN,Kai-Xiang CHAO,Ling WU,Wei-Yun YUE,Ya-Chao DONG,Xian-Chun XIA. QTL mapping of adult-plant resistance to stripe rust in wheat variety holdfast [J]. Acta Agronomica Sinica, 2019, 45(12): 1832-1840. |
[11] | ZHANG Xiao-Xiao,PAN Ying-Hong,REN Fu-Li,PU Wei-Jun,WANG Dao-Ping,LI Yu-Bin,LU Ping,LI Gui-Ying,ZHU Li. Establishment of an accurate evaluation method for drought resistance based on multilevel phenotype analysis in sorghum [J]. Acta Agronomica Sinica, 2019, 45(11): 1735-1745. |
[12] | Jun-Hua YE,Qi-Tai YANG,Zhang-Xiong LIU,Yong GUO,Ying-Hui LI,Rong-Xia GUAN,Li-Juan QIU. Genotyping of SCN, SMV Resistance, Salinity Tolerance and Screening of Pyramiding Favorable Alleles in Introduced Soybean Accessions [J]. Acta Agronomica Sinica, 2018, 44(9): 1263-1273. |
[13] | Yong-Jie MIAO, Jun YAN, De-Hui ZHAO, Yu-Bing TIAN, Jun-Liang YAN, Xian-Chun XIA, Yong ZHANG, Zhong-Hu HE. Relationship between Grain Filling Parameters and Grain Weight in Leading Wheat Cultivars in the Yellow and Huai Rivers Valley [J]. Acta Agronomica Sinica, 2018, 44(02): 260-267. |
[14] | WANG Can,ZHOU Ling-Bo,ZHANG Guo-Bing,ZHANG Li-Yi,XU Yan,GAO Xu,JIANG Ne,SHAO Ming-Bo. Identification and Indices Screening of Drought Resistance at Adult Plant Stage in Job’s Tears Germplasm Resources [J]. Acta Agron Sin, 2017, 43(09): 1381-1394. |
[15] | DO Thanh-Trung, LI Jian, ZHANG Feng-Juan, YANG Li-Tao, LI Yang-Rui,XING Yong-Xiu. Analysis of Differential Proteome in Relation to Drought Resistance in Sugarcane [J]. Acta Agron Sin, 2017, 43(09): 1337-1346. |
|