Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2014, Vol. 40 ›› Issue (06): 1011-1019.doi: 10.3724/SP.J.1006.2014.01011

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Cloning and Interaction between Transcription Factors SPT and HEC1 of Pistil of Brassica oleracea L.var. capitata L.

XU Jun-Qiang,SUN Zi-Jian,LIU Zhi-Yu,YANG Pu-Li,TANG Qing-Lin,WANG Zhi-Min,SONG Ming*,WANG Xiao-Jia*   

  1. Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education / Chongqing Key Laboratory of Olericulture / College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China?
  • Received:2013-07-01 Revised:2014-03-04 Online:2014-06-12 Published:2014-04-08
  • Contact: 王小佳, E-mail: wxj@swu.edu.cn; 宋明,E-mail: swausongm@163.com, Tel: 023-68251093

Abstract:

To explore interaction of SPT and HECs in cabbage pistil development, we took stigma of self-incompatibility line E1 to obtain total RNA for first-strain cDNA synthesis, and cloned SPT gene fragment with the ORF of 1062 bp and HEC1 gene with 696bp by using primers according to SPT and HEC1 genes in Arabidopsis. Amino acid sequence analysis showed that SPT and HEC1we cloned encoded 353 and 231 amino acid residues, respectively; the predicted molecular weight of SPT protein was 37.67 kD, with pI of 6.83; the predicted molecular weight of HEC1 protein was 25.26 kD, with pI of 10.23. Relative expression of SPT was the highest in the fruit and pistil, that of HEC1 was the highest in the root and bud. Prokaryotic expression plasmids pCold I-SPT and pGEX-HEC1 were constructed and then transformed into E. coli Rosetta (DE3). The Pull-down assay showed that the two tagged expression products could interact with each other. To verify the interactions furtherly, we constructed yeast expression vectors pGBKT7-SPT, pGADT7-HEC1, and pGADT7-SPT, pGBKT7-HEC1 to transform into yeast Y2HGold and Y187 strains, respectively. Finally, diploid yeast showed positive results in SD/–Ade–Trp–Leu–His/X-α-gal/AbA synthetic dropout. It demonstrated that interaction between SPT and HEC1 can activate HIS3, AUR1-C,and ADE2 reporter genes downstream. Yeast two-hybrid experimental results as well as the pull-down assay showed that SPT and HEC1 can form heterodimer to regulate the development of pistil.

Key words: Brassica oleracea, Pistil, SPT, HEC1, Interaction, Yeast two-hybrid

[1]Pettigrew W T. Potassium influences on yield and quality production for maize, wheat, soybean and cotton. Physiol Plant, 2008, 133: 670–681



[2]Damon P M, Ma Q F, Rengel Z. Wheat genotypes differ in potassium accumulation and osmotic adjustment under drought stress. Crop Pasture Sci, 2011, 62: 550–555



[3]Zhang G P, Chen J X, Eshetu A T. Genotypic variation for potassium uptake and utilization efficiency in wheat. Nutr Cycl Agroecosyst, 1999, 54: 41–48



[4]Wong M T F, Corner R J, Cook S E. A decision support system for mapping the site-specific potassium requirement of wheat in the field. Aust J Exp Agric, 2001, 41: 655–661



[5]Roshania G A, Narayanasamyb G. Effects of potassium on temporal growth of root and shoot of wheat and its uptake in different soils. Int J Plant Prod, 2010, 4: 25–32



[6]凌启鸿. 作物群体质量. 上海: 上海科学技术出版社, 2000, pp 271–276



Lin Q H. Crop Population Quality. Shanghai: Shanghai Scientific & Technical Publishers, 2000. pp 271–276 (in Chinese)



[7]谭金芳, 介晓磊, 韩燕来, 郑义. 潮土区超高产麦田供钾特点与小麦钾素营养研究. 麦类作物学报, 2001, 21: 45–50



Tan J F, Jie X L, Han Y L, Zheng Y. Study on potassium supplying properties in super-high yield wheat field in Chao soil region and potassium nutrition characteristics of wheat. J Triticeae Crops, 2001, 21: 45–50 (in Chinese with English abstract)



[8]余松烈, 亦新华, 刘希运. 高产冬小麦对三要素的吸收和供应特点的研究. 土壤肥料, 1981, (1): 31–34



Yu S L, Yi X H, Liu X Y. Studies on absorption and supply characteristics of three elements in high-yield winter wheat. Soils Fert, 1981, (1): 31–34 (in Chinese)



[9]韩燕来, 介晓磊, 谭金芳, 郭天财, 朱云集, 王晨阳, 夏国军, 刘征. 超高产冬小麦氮麟钾吸收、分配与运转规律的研究. 作物学报, 1998, 24: 908–915



Han Y L, Jie X L, Tang J F, Guo T C, Zhu Y J, Wang C Y, Xia G J, Liu Z. Studies on absorption, distribution and translocation of N, P and K of super-high yield winter wheat. Acta Agron Sin, 1998, 24: 908–915 (in Chinese with English abstract)



[10]于振文, 田奇卓, 潘庆民, 岳寿松, 王东, 段藏禄, 段玲玲, 王志军, 牛运生. 黄淮麦区冬小麦超高产栽培的理论与实践. 作物学报, 2002, 28: 577–585



Yu Z W, Tian Q Z, Pan Q M, Yue S S, Wang D, Duan Z L, Duan L L, Wang Z J, Niu Y S. Theory and practice on cultication of super high yield of winter in the wheat fields of Yellow River and Huaihe River districts. Acta Agron Sin, 2002, 28: 577–585 (in Chinese with English abstract)



[11]王强盛, 甄若宏, 丁艳锋, 吉忠军, 曹卫星, 黄丕生. 钾肥用量对优质粳稻钾素积累利用及稻米品质的影响. 中国农业科学, 2004, 37: 1444–1450



Wang Q S, Zhen R H, Ding Y F, Ji Z J, Cao W X, Huang P S. Effects of potassium fertilizer application rates on plant potassium accumulation and grain quality of japonica rice. Sci Agric Sin, 2004, 37: 1444–1450 (in Chinese with English abstract)



[12]Zhang H M, Yang X Y, He X H, Xu M G, Huang S M, Liu H, Wang B R. Effect of long-term potassium fertilization on crop yield and potassium efficiency and balance under wheat-maize rotation in China. Pedosphere, 2011, 21: 154–163



[13]杜世州, 曹承富, 张耀兰, 赵竹, 乔玉强, 刘永华, 张四华. 氮素运筹对淮北地区超高产小麦养分吸收利用的影响. 植物营养与肥料学报, 2011, 17: 9–15



Du S Z, Cao C F, Zhang Y L, Zhao Z, Qiao Y Q, Liu Y H, Zhang S H. Effects of nitrogen application on nitrogen absorption, utilization in super-high-yielding wheat in Huaibei region. Plant Nutr Fert Sci, 2011, 17: 9–15 (in Chinese with English abstract)



[14]周玲, 赵护兵, 王朝辉, 孟晓瑜, 王建伟, 陈辉林, 李小涵. 不同产量水平旱地冬小麦品种氮磷钾养分积累与转移的差异分析. 中国生态农业学报, 2011, 19: 318-325



Zhou L, Zhao H B, Wang Z H, Meng X Y, Wang J W, Chen H L, Li X H. NPK accumulation and translocation in dryland winter wheat cultivars with different yields. Chin J Eco-Agric, 2011, 19: 318–325 (in Chinese with English abstract)



[15]Swiadera J M, Chyana Y, Freijia F G. Genotypic differences in nitrate uptake and utilization efficiency in pumpkin hybrids. J Plant Nutr, 1994, 17: 1687–1699



[16]Damon P M, Rengel Z. Wheat genotypes differ in potassium efficiency under glasshouse and field conditions. Aust J Agric Res 2007, 58: 816–825



[17]于振文, 梁晓芳, 李延奇, 王雪. 施钾量和施钾时期对小麦氮素和钾素吸收利用的影响. 应用生态学报, 2007, 18: 69–74



Yu Z W, Liang X F, Li Y Q, Wang X. Effects of potassium application rate and time on the uptake and utilization of nitrogen and potassium by winter wheat. Chin J Appl Ecol, 2007, 18: 69–74 (in Chinese with English abstract)



[18]赵俊晔, 于振文, 李延奇, 王雪. 施氮量对小麦氮磷钾养分吸收利用和产量的影响. 西北植物学报, 2006, 26: 98–103



Zhao J Y, Yu Z W, Li Y Q, Wang X. Effects of different nitrogen rates of fertilization on nitrogen, phosphorous and potassium uptakes and utilizations as well as kernel yield of wheat under high yield circumstances. Bot Boreali-Occident Sin, 2006, 26: 98–103 (in Chinese with English abstract)

[1] ZHANG Yi-Zhong, ZENG Wen-Yi, DENG Lin-Qiong, ZHANG He-Cui, LIU Qian-Ying, ZUO Tong-Hong, XIE Qin-Qin, HU Deng-Ke, YUAN Chong-Mo, LIAN Xiao-Ping, ZHU Li-Quan. Codon usage bias analysis of S-locus genes SRK, SLG, and SP11/SCR in Brassica oleracea [J]. Acta Agronomica Sinica, 2022, 48(5): 1152-1168.
[2] XIE Qin-Qin, ZUO Tong-Hong, HU Deng-Ke, LIU Qian-Ying, ZHANG Yi-Zhong, ZHANG He-Cui, ZENG Wen-Yi, YUAN Chong-Mo, ZHU Li-Quan. Molecular cloning and expression analysis of BoPUB9 in self-incompatibility Brassica oleracea [J]. Acta Agronomica Sinica, 2022, 48(1): 108-120.
[3] ZHANG Hai, CHENG Guang-Yuan, YANG Zong-Tao, LIU Shu-Xian, SHANG He-Yang, HUANG Guo-Qiang, XU Jing-Sheng. Sugarcane PsbR subunit response to SCMV infection and its interaction with SCMV-6K2 [J]. Acta Agronomica Sinica, 2021, 47(8): 1522-1530.
[4] ZUO Xiang-Jun, FANG Peng-Peng, LI Jia-Na, QIAN Wei, MEI Jia-Qin. Characterization of aphid-resistance of a hairy wild Brassica oleracea taxa, B. incana [J]. Acta Agronomica Sinica, 2021, 47(6): 1109-1113.
[5] WANG Yi-Fan, YIN Wen, HU Fa-Long, FAN Hong, FAN Zhi-Long, ZHAO Cai, YU Ai-Zhong, CHAI Qiang. Response of photosynthetic performance of intercropped wheat to interaction intensity between above- and below-ground [J]. Acta Agronomica Sinica, 2021, 47(5): 929-941.
[6] LI Lan-Lan, MU Dan, YAN Xue, YANG Lu-Ke, LIN Wen-Xiong, FANG Chang-Xun. Effect of OsPAL2;3 in regulation of rice allopathic inhibition on barnyardgrass (Echinochloa crusgalli L.) [J]. Acta Agronomica Sinica, 2021, 47(2): 197-209.
[7] MENG Yu-Yu, WEI Chun-Ru, FAN Run-Qiao, YU Xiu-Mei, WANG Xiao-Dong, ZHAO Wei-Quan, WEI Xin-Yan, KANG Zhen-Sheng, LIU Da-Qun. TaPP2-A13 gene shows induced expression pattern in wheat responses to stresses and interacts with adaptor protein SKP1 from SCF complex [J]. Acta Agronomica Sinica, 2021, 47(2): 224-236.
[8] CHEN Yu-Ting, LIU Lu, CHU Pan-Pan, WEI Jia-Xian, QIAN Hui-Na, CHEN Hua, CAI Tie-Cheng, ZHUANG Wei-Jian, ZHANG Chong. Construction of yeast two-hybrid cDNA library induced by Ralstonia solanacearum and interaction protein screening for AhRRS5 in peanut [J]. Acta Agronomica Sinica, 2021, 47(11): 2134-2146.
[9] WANG Zhen, YAO Meng-Nan, ZHANG Xiao-Li, QU Cun-Min, LU Kun, LI Jia-Na, LIANG Ying. Prokaryotic expression, subcellular localization and yeast two-hybrid library screening of BnMAPK1 in B. napus [J]. Acta Agronomica Sinica, 2020, 46(9): 1312-1321.
[10] JIA Xiao-Ping,YUAN Xi-Lei,LI Jian-Feng,WANG Yong-Fang,ZHANG Xiao-Mei,ZHANG Bo,QUAN Jian-Zhang,DONG Zhi-Ping. Photo-thermal interaction model under different photoperiod-temperature conditions and expression analysis of SiCCT gene in foxtail millet (Setaria italica L.) [J]. Acta Agronomica Sinica, 2020, 46(7): 1052-1062.
[11] ZHENG Qing-Lei,YU Chen-Jing,YAO Kun-Cun,HUANG Ning,QUE You-Xiong,LING Hui,XU Li-Ping. Cloning and expression analysis of sugarcane Fe/S precursor protein gene ScPetC [J]. Acta Agronomica Sinica, 2020, 46(6): 844-857.
[12] Fei-Na ZHENG,Jin-Peng CHU,Xiu ZHANG,Li-Wei FEI,Xing-Long DAI,Ming-Rong HE. Interactive effects of sowing pattern and planting density on grain yield and nitrogen use efficiency in large spike wheat cultivar [J]. Acta Agronomica Sinica, 2020, 46(3): 423-431.
[13] Tong-Hong ZUO, He-Cui ZHANG, Qian-Ying LIU, Xiao-Ping LIAN, Qin-Qin XIE, Deng-Ke HU, Yi-Zhong ZHANG, Yu-Kui WANG, Xiao-Jing BAI, Li-Quan ZHU. Molecular cloning and expression analysis of BoGSTL21 in self-incompatibility Brasscia oleracea [J]. Acta Agronomica Sinica, 2020, 46(12): 1850-1861.
[14] WANG Yan-Hua, JIAN Hong-Jiu, QIU Xiao, LI Jia-Na. Regulatory mechanism of the seed coat color gene BrTT1 in Brassica rapa L. [J]. Acta Agronomica Sinica, 2020, 46(11): 1678-1689.
[15] YAO Shu, ZHANG Ya-Dong, LIU Yan-Qing, ZHAO Chun-Fang, ZHOU Li-Hui, CHEN Tao, ZHAO Qing-Yong, ZHU Zhen, Balakrishna Pillay, WANG Cai-Lin. Effects of SSIIa and SSIIIa alleles and their interaction on eating and cooking quality under Wxmp background of rice [J]. Acta Agronomica Sinica, 2020, 46(11): 1690-1702.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!