Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2015, Vol. 41 ›› Issue (03): 367-377.doi: 10.3724/SP.J.1006.2015.00367

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Construction of Molecular Fingerprinting Map in Gene Pool of Jute with SRAP, ISSR and SSR Markers

WU Gui-Fen1,2,XU Xian-Jun3,XU Jian-Tang1,TAO Ai-Fen1,ZHANG Li-Wu1,WEI Li-Zhen4,PAN Mo5,FANG Ping-Ping1,LIN Li-Hui1,QI Jian-Min1,*   

  1. 1 Key Laboratory of Ministry for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Province International Cooperation Base for Genetics, Breeding and Multiple Utilization of Characteristic Economy Crops in South China , Fuzhou 350002, China; 2 Horticultural Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; 3 Wuyishan Biological Resource Institute of Fujian Province, Fuzhou 354300, China; 4 Third Middle School of Fuzhou, Fuzhou 350002, China; 5 Fuzhou Tanditongren Mdt InfoTech Ltd, Fuzhou 350001, China
  • Received:2014-09-14 Revised:2014-12-19 Online:2015-03-12 Published:2015-01-12
  • Contact: 祁建民, E-mail: qijm863@163.com, Tel: 0591-87644898 E-mail:2609267430@qq.com

Abstract:

An experiment was conducted using 231 jute germplasm resources from abroad and at home to construct DNA fingerprints of jute varieties with SRAP, ISSR, SSR marker and the DNA fingerprint analysis software. The results showed that 96 DNA fingerprints from 231 jute germplasm resources with 35 pairs of selected SRAP primers, 45 DNA fingerprints from 96 jute varieties with 11 selected polymorphic ISSR primers, and 13 DNA fingerprints from 48 jute varieties with 49 selected polymorphic SSR primers were constructed. This study completed a total of 154 genomic DNA molecular fingerprint maps of jute varieties. Every identified jute variety had its unique “ID”. Other 77 local varieties had not been able to be identified due to their high genetic similarity with some varieties. It showed that jute local variety has a serious phenomenon of synonym.

Key words: Jute, Genetic resources, Molecular markers, DNA fingerprint

[1]李宗道. 麻类的理论与技术. 上海: 上海科学技术出版社, 1980. pp 388–389



Li Z D. Theory and Technology of Hemp. Shanghai: Shanghai Scientific and Technical Publishers, 1980. pp 388–389 (in Chinese)



[2]祁建民, 李维明, 吴为人. 黄麻的起源与进化研究. 作物学报, 1997, 23: 677–682



Qi J M, Li W M, Wu W R. Origin and evolution of jute. Acta Agron Sin, 1997, 23: 677–682 (in Chinese)



[3]李爱青. 肯尼亚黄麻红麻种质资源的考察报告. 中国麻作, 1990, 1: 16–20



Li A Q. The visiting report of jute and kenaf germplasms in Kenya. China’s Fiber Crops, 1990, 12(1): 16–21 (in Chinese)



[4]徐静, 董化玲. 黄麻服饰用纺织产品开发及前景. 纺织科技进展. 科学通报, 2005, 50: 904–911



Xu J, Dong H L. Textile product development and foregrounds for jute dress: textile science and technology progress. Sci Bull, 2005, 50: 904–911



[5]黎宇, 程新奇, 郭安平. 我国黄麻种质资源的研究进展概述. 中国麻作, 1998, 20(3): 38–41



Li Y, Chong X Q, Guo A P. Summary of the progress of jute germplasm resources in China. China’s Fiber Crops, 1998, 20(3): 38–41 (in Chinese)



[6]Smartt J, Gregory W C, Gregory M P. The genomes of Arachis hypogaea: cytogenetiestudies of putative genome donors. Euphytiea, 1978, 27: 665–675



[7]程新奇, 郭安平, 肖瑞芝, 孙家曾. 黄麻种质资源的鉴定与利用分析. 中国麻作, 1993, (4): 1–8



Cheng X Q, Guo A P, Xiao R Z, Sun J Z. identification and utilization analysis of Jute germplasm resources. China’s Fiber Crops, 1993, (4): 1–8 (in Chinese)



[8]Latif M A, Rafii Yusop M, Motiur Rahman M. Microsatellite and minisatellite markers based DNA fingerprinting and genetic diversity of blast and ufra resistant genotypes. Comptes Rendus Biol, 2011, 334: 282–289



[9]Chuang H Y, Huu-Shen L U R, Kae-Kang H W U, Chang M C. Authentication of domestic Taiwan rice varieties based on fingerprinting analysis of microsatellite DNA markers. Bot Studies, 2011, 52(4): 31–40



[10]Ashkenazi V, Chani E, Lavi U. Development of microsatellite markers in potato and their use in phylogenetic and fingerprinting analyses. Genome, 2001, 44: 50–62



[11]Ercisli S, Ipek A, Barut E. SSR marker-based DNA fingerprinting and cultivar identification of olives (Olea europaea). Biocheml Genet, 2011, 49: 555–561



[12]Yu H F, Wang J S, Zhao Z Q, Sheng X G, Gu H H. DNA fingerprinting and genetic purity testing of a new broccoli hybrid using SSR markers. Seed Sci Technol, 2013, 41: 464–468



[13]Rodriguez M J B. Microsatellite DNA fingerprinting technology for coconut and oil palm. Philippine J Crop Sci, 2011, 10: 88–95



[14]Onasanya A, Basso A, Somado E A, Gasore E.R, Nwilene F E, Nwilene F E, Ingelbrecht I L, Lamo J, Wydra K, Ekperigin M M, Langa M, Oyelakin O, Oyelakin O, Sere Y, Winter S, Onasanya R O. Development of a combined molecular diagnostic and DNA fingerprinting technique for rice bacteria pathogens in Africa. Biotechnology, 2010, 9: 89–105



[15]Case C, Kandola K, Chui L, Li V, Nix N, Johnson R. Examining DNA fingerprinting as an epidemiology tool in the tuberculosis program in the Northwest Territories, Canada. Intl J Circumpolar Health, 2013, 9(3): 72



[16]Tyler K D, Wang G, Tyler S D, Johnson W M. Factors affecting reliability and reproducibility of amplification-based DNA fingerprinting of representative bacterial pathogens. J Clinical Microbiol, 1997, 35: 339



[17]Cantini C, Iezzoni A F, Lamboy W F, Boritzki M, Struss D. DNA fingerprinting of tetraploid cherry germplasm using simple sequence repeats. J Am Soc Hort Sci, 2001, 126: 205–209



[18]Wünsch A, Hormaza J I. Cultivar identification and genetic fingerprinting of temperate fruit tree species using DNA markers. Euphytica, 2002, 125: 59–67



[19]Paglia G, Morgante M. PCR-based multiplex DNA fingerprinting techniques for the analysis of conifer genomes. Mol Breed, 1998, 4: 173–177



[20]Vaneechoutte M. DNA fingerprinting techniques for microorganisms. Mol Biotechnol, 1996, 6: 115–142



[21]Partis L, Croan D, Guo Z, Coldham C T, Murby J. Evaluation of a DNA fingerprinting method for determining the species origin of meats. Meat Sci, 2000, 54: 369–376



[22]Prevost A, Wilkinson M J. A new system of comparing PCR primers applied to ISSR fingerprinting of potato cultivars. Theor Appl Genet, 1999, 98: 107–112



[23]Bonito G, Isikhuemhen O S, Vilgalys R. Identification of fungi associated with municipal compost using DNA-based techniques. Bioresource Technol, 2010, 101: 1021–1027



[24]徐建堂, 祁建民, 方平平, 李爱青, 林荔辉, 吴建梅, 陶爱芬. CTAB法提取红麻总DNA技术优化与ISSR和SRAP扩增效果. 中国麻业科学, 2007, 29(4): 179–183



Xu J T, Qi J M, Fang P P, Li A Q, Lin L H, Wu J M, Tao A F. Optimized CTAB protocol for extracting genomic DNA from kenaf and improved PCR amplifications of ISSR and SRAP. Plant Fiber Sci China, 2007, 29(4): 179–183 (in Chinese with English abstract)



[25]Zhang G Q, QI J M, Zhang X C, Fang P P, Su J G, Tao A F, Lan T, Wu W R, Liu A M. A genetic linkage map of kenaf (Hibiscus cannabinus L.) based on SRAP, ISSR and RAPD markers. Agric Sci China, 2011, 10: 1346–1353

[1] ZHANG Yu-Kun, LU Ying, CUI Kan, XIA Shi-Tou, LIU Zhong-Song. Allelic variation and geographical distribution of TT8 for seed color in Brassica juncea Czern. et Coss. [J]. Acta Agronomica Sinica, 2022, 48(6): 1325-1332.
[2] YANG Xin, LIN Wen-Zhong, CHEN Si-Yuan, DU Zhen-Guo, LIN Jie, QI Jian-Min, FANG Ping-Ping, TAO Ai-Fen, ZHANG Li-Wu. Molecular identification of a geminivirus CoYVV and screening of resistant germplasms in jute [J]. Acta Agronomica Sinica, 2022, 48(3): 624-634.
[3] GUO Yan-Chun, YAO Jia-Yu, ZHANG Rong-Bin, CHEN Si-Yuan, HE Qing-Yao, TAO Ai-Fen, FANG Ping-Ping, QI Jian-Min, ZHANG Lie-Mei, ZHANG Li-Wu. Identification and phylogenetic analysis of the pathogen of jute anthracnose in China [J]. Acta Agronomica Sinica, 2022, 48(3): 770-777.
[4] WANG Heng-Bo, CHEN Shu-Qi, GUO Jin-Long, QUE You-Xiong. Molecular detection of G1 marker for orange rust resistance and analysis of candidate resistance WAK gene in sugarcane [J]. Acta Agronomica Sinica, 2021, 47(4): 577-586.
[5] GUO Yan-Chun, ZHANG Li-Lan, CHEN Si-Yuan, QI Jian-Min, FANG Ping-Ping, TAO Ai-Fen, ZHANG Lie-Mei, ZHANG Li-Wu. Establishment of DNA molecular fingerprint of applied core germplasm in jute (Corchorus spp.) [J]. Acta Agronomica Sinica, 2021, 47(1): 80-93.
[6] TAO Ai-Fen,YOU Zi-Yi,XU Jian-Tang,LIN Li-Hui,ZHANG Li-Wu,QI Jian-Min,FANG Ping-Ping. Development and verification of CAPS markers based on SNPs from transcriptome of jute (Corchorus L.) [J]. Acta Agronomica Sinica, 2020, 46(7): 987-996.
[7] TIAN Hong-Li, YANG Yang, WANG Lu, WANG Rui, YI Hong-Mei, XU Li-Wen, ZHANG Yun-Long, GE Jian-Rong, WANG Feng-Ge, ZHAO Jiu-Ran. Screening of compatible maizeSNP384 markers and the construction of DNA fingerprints of maize varieties [J]. Acta Agronomica Sinica, 2020, 46(7): 1006-1015.
[8] Li-Lan ZHANG, Lie-Mei ZHANG, Huan-Ying NIU, Yi XU, Yu LI, Jian-Min QI, Ai-Fen TAO, Ping-Ping FANG, Li-Wu ZHANG. Correlation between SSR markers and fiber yield related traits in jute (Corchorus spp.) [J]. Acta Agronomica Sinica, 2020, 46(12): 1905-1913.
[9] Le-Chen LI,Guo-Zhong ZHU,Xiu-Juan SU,Wang-Zhen GUO. Genome-wide screening and evaluation of SNP core loci for fingerprinting construction of cotton accessions (G. barbadense) [J]. Acta Agronomica Sinica, 2019, 45(5): 647-655.
[10] XU Yi,ZHANG Lie-Mei,GUO Yan-Chun,QI Jian-Min,ZHANG Li-Lan,FANG Ping-Ping,ZHANG Li-Wu. Core collection screening of a germplasm population in jute (Corchorus spp.) [J]. Acta Agronomica Sinica, 2019, 45(11): 1672-1681.
[11] Jia-Yu YAO,Li-Wu ZHANG,Jie ZHAO,Yi XU,Jian-Min QI,Lie-Mei ZHANG. Evaluation and characteristic analysis of SSRs from the whole genome of jute (Corchorus capsularis) [J]. Acta Agronomica Sinica, 2019, 45(1): 10-17.
[12] Jun-Hua YE,Qi-Tai YANG,Zhang-Xiong LIU,Yong GUO,Ying-Hui LI,Rong-Xia GUAN,Li-Juan QIU. Genotyping of SCN, SMV Resistance, Salinity Tolerance and Screening of Pyramiding Favorable Alleles in Introduced Soybean Accessions [J]. Acta Agronomica Sinica, 2018, 44(9): 1263-1273.
[13] Ren-Xin ZHAO,Sen-Ye LI,Rui-Xing GUO,Xin-Hua ZENG,Jing WEN,Chao-Zhi MA,Jin-Xiong SHEN,Jin-Xing TU,Ting-Dong FU,Bin YI. Construction of DNA Fingerprinting for Brassica napus Varieties Based on SNP Chip [J]. Acta Agronomica Sinica, 2018, 44(7): 956-965.
[14] Yi XU,Lie-Mei ZHANG,Jian-Min QI,Mei SU,Shu-Sheng FANG,Li-Lan ZHANG,Ping-Ping FANG,Li-Wu ZHANG. Correlation Analysis between Yield of Bast Fiber and Main Agronomic Traits in Jute (Corchorus spp.) [J]. Acta Agronomica Sinica, 2018, 44(6): 859-866.
[15] Zhong-Yan WEI, Hui-Hui LI, Jun LI, A. Gamar Yasir, Yan-Song MA, Li-Juan QIU. Accurate Identification of Varieties by Nucleotide Polymorphisms and Establishment of Scannable Variety IDs for Soybean Germplasm [J]. Acta Agronomica Sinica, 2018, 44(03): 315-323.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!